Research Progress of Glycolytic Reprogramming in Oral Squamous Cell Carcinoma
-
摘要: 口腔鳞状细胞癌(oral squamous cell carcinoma,OSCC)是口腔颌面部最常见的恶性肿瘤,发病率高且预后不佳。癌细胞通过糖酵解代谢重编程改变代谢方式,以支持其对ATP需求的增加。糖酵解重编程介导了包括口腔鳞状细胞癌在内的多系统肿瘤的发生发展,其中涉及多个信号通路和关键因子。总结OSCC中发生的糖酵解代谢改变、关键因子及临床诊治潜能,综述其在口腔鳞状细胞癌中的作用,以期为研究者提供新的研究方向和思路。Abstract: Oral squamous cell carcinoma (OSCC) is the most common malignant tumor in the oral and maxillofacial region with high incidence and poor prognosis. Cancer cells change their metabolism through glycolytic metabolic reprogramming to support their increased demand for ATP. Glycolytic reprogramming mediates the development of multisystem tumors, including oral squamous cell carcinoma, involving multiple signaling pathways and key factors. In this paper, the changes of glycolytic metabolism, key factors and potential clinical diagnostic and theraputic approches of OSCC are summarized, and the role of OSCC in oral squamous cell carcinoma is reviewed in order to provide new research directions and ideas.
-
口腔鳞状细胞癌(oral squamous cell carcinoma,OSCC)是口腔颌面部最常见的恶性肿瘤,约占头颈部恶性肿瘤的90%,且近年来发病率持续上升[1]。OSCC主要治疗方式包括手术、术后化疗和放疗,患者的5 a生存率保持在50%左右。为了进一步提高OSCC患者的诊治效率,寻找更有效的诊断及治疗靶标仍是研究重点。
口腔鳞癌的发生的一个复杂多变的过程,恶性表型细胞的典型特征包括无限的复制能力,避免凋亡的生长信号,组织侵袭和转移等[2]。为了使恶性细胞获得和维持这些特性所需的能量和材料,必须对自身代谢途径进行重编程。癌细胞代谢过程不同于正常的组织细胞,糖酵解和葡萄糖代谢是癌细胞中改变最显著的代谢途径[3]。糖酵解Warburg效应表明,肿瘤细胞更倾向于高活性糖酵解来满足其生存需求[4]。这些通路的重编程涉及到复杂的机制和多种信号分子的协调,了解糖酵解在口腔鳞癌发生发展过程中的机制为进一步寻找口腔鳞癌的治疗方法提供了一种新的思路。但目前关于糖酵解在OSCC发生发展中的作用尚不清楚。本文总结了OSCC中发生的糖酵解代谢特点和关键因子,以及各种可用于OSCC诊断和临床治疗的方法,为抗肿瘤治疗药物的开发提供思路。
1. 糖酵解和Warburg效应
葡萄糖是能量生成代谢的首选底物,在正常情况下,细胞通过有氧呼吸的方式产生能量,当氧气不足时,细胞利用糖酵解产生能量。然而癌细胞的葡萄糖代谢不同于正常细胞,Warburg针对癌细胞的代谢转变发现了Warburg效应[3],Warburg效应是癌症代谢领域的一个关键概念,表明即使在有氧条件下,肿瘤细胞也会通过糖酵解途径产生乳酸和能量[3]。这种代谢方式的转变为癌细胞快速产生能量,实现肿瘤快速增殖提供了一个巨大的生长优势。同时这一转变引起的高乳酸酸性微环境,加强了癌细胞的侵袭性和转移性[5]。
近年来,越来越多的证据表明有氧糖酵解促进OSCC的上皮间充质转化(epithelium-mesenchymal transition,EMT),在OSCC的发生、发展和预后中起着重要作用。其中涉及到复杂的机制和多种信号分子的调控,主要包括葡萄糖转运体(GLUTs)、糖酵解己糖激酶2(HK2)、磷酸果糖激酶(PFK)、乳酸脱氢酶A(LDHA)和丙酮酸脱氢酶激酶1(PDK1)等。分析OSCC的代谢特征成为了一种诊断和判断OSCC预后的有效方式[6]。
2. 糖酵解代谢与OSCC的发生
酒精是口腔鳞癌的危险因素之一,乙醇会增强癌细胞的侵袭性[7]。Anthony等[8]将OSCC癌症干细胞(cancer stem cell,CSC)暴露于乙醇中,发现乙醇暴露激活了OSCC中的促肿瘤侵袭的活化T细胞的核因子(nuclear factor of activated T cell,NFAT)信号通路,从而激活了癌细胞的有氧糖酵解,增加了CSC群体干性特征,包括自我更新能力、干细胞标记物的表达和迁移能力。这表明癌症干性和代谢重编程之间存在分子耦合,CSC代谢重编程在酒精介导的癌变分子机制中发挥作用,参与OSCC的发生发展。高胆固醇(high cholesterol,HC)和维生素D缺乏病(vitamin d deficiency,VDD)在口腔癌发生过程中的协同作用主要是通过改变癌细胞的糖酵解来实现,说明诱发口腔癌的危险因素可以通过调控癌细胞的糖酵解途径促进口腔鳞癌的发生。
3. OSCC糖酵解重编程中的关键基因
越来越多的证据表明,有氧糖酵解在OSCC的发生、发展和预后中起着重要作用。采用带有加权基因共表达网络分析(single-sample gene-set enrichment analysis,ssGSEA)的单样本基因集富集分析(weighted gene co-expression network analysis,WGCNA)算法对糖酵解的程度进行量化,并确定与糖酵解相关性最大的关键模块,发现OSCC中的多种基因表达与有氧糖酵解有关[9]。主要包括原癌基因Myc、转录因子缺氧诱导因子1(HIF-1)、PI3K/Akt/mTOR通路和肿瘤抑制因子p53[10-11]等。通过这些调节机制,肿瘤细胞调控了糖酵解酶的水平来调节肿瘤细胞的代谢[12-13]。
低氧是肿瘤细胞独特的微环境,会影响口腔癌细胞的基因表达。缺氧可以促进OSCC细胞PKD1基因的激活和表达。沉默PKD1基因会促进OSCC细胞发生凋亡。PKD1基因敲低会降低癌细胞缺氧诱导因子1α(HIF-1α)和丙酮酸激酶M2(PKM2)的表达,减少口腔鳞癌细胞的糖酵解活性并抑制肿瘤细胞的增殖[14],细胞的葡萄糖摄取减少,乳酸产生增多,糖酵解酶(GLUT-1和LDHA)表达增加。这结果表明,在低氧条件下抑制PKD1的表达后,OSCC细胞的生长和代谢受到明显抑制。此外有研究发现PKD1不仅通过调节HIF-1α和糖酵解酶的表达来调节癌细胞的缺氧糖酵解代谢,还参与酸性肿瘤微环境的重塑[15]。
PER1和PER2基因是一种生物节律基因,研究发现其还与肿瘤的发生有关[16-17],并在OSCC中显著下调。PER1和PER2基因的下调明显促进了OSCC细胞中的糖酵解过程、葡萄糖摄取、细胞增殖和PI3K/AKT通路,促进肿瘤的生长。PER2的过表达显著抑制OSCC细胞增殖和糖酵解,促进细胞凋亡,并降低PI3K、蛋白激酶B、HK2、LDHA的表达和PKM2的磷酸化[18]。因此PER1和PER2可能是OSCC中有价值的治疗靶点。
STAT3是一种促肿瘤蛋白,参与癌细胞的糖酵解过程。Zhen等[19]证明STAT3在口腔鳞癌的发生发展上具有重要作用。STAT3敲低后会上调FoxO1来抑制OSCC细胞的迁移、侵袭,抑制EMT标志物的表达,减少口腔癌细胞的葡萄糖消耗和减弱细胞的有氧糖酵解。
4. 糖酵解代谢关键酶与OSCC
在OSCC细胞中已观察到有氧糖酵解显著增加。与糖酵解过程有关的限速酶在OSCC细胞中表达水平发生变化,进而影响口腔癌的迁移和侵袭行为。研究发现,糖酵解相关蛋白(PKM、LDHA、PDK-1、HK2、FBP、MCT、GLUT-1、PGK1、ME1、ALDO)等在OSCC的致癌过程中显著变化[20]。
丙酮酸是一种主要的糖酵解代谢物,可以通过乳酸脱氢酶(LDHA)或乙酰辅酶A转化为乳酸,肿瘤细胞外的乳酸堆积与肿瘤的远处转移和侵袭有关[21]。丙酮酸激酶(pyruvate kinase,PK)催化糖酵解的最后一步,主要有两种亚型:PKM1和PKM2。PKM1可以通过增加肿瘤细胞的抗药性,增强自噬作用和葡萄糖代谢促进细胞的侵袭。PKM2在肿瘤细胞中的表达更高,PKM2介导的异常葡萄糖代谢促进细胞增殖和迁移以及减少细胞凋亡在OSCC的发生和进展中发挥重要作用,它的过度表达与肿瘤的侵袭性和较差的预后相关[22-23]。在许多癌细胞中观察到细胞代谢从PKM1到PKM2的转变,OSCC细胞中的PKM2/PKM1比率高于周围正常细胞[24]。这种代谢的转变影响了癌细胞的糖酵解过程,促进了口腔癌的生长和侵袭。LDHA通过催化丙酮酸向乳酸的转化来促进糖酵解过程,在OSCC组织和细胞系中均过表达,通过促进糖酵解和EMT促进OSCC恶性发展,LDHA可能是潜在的抗癌治疗靶点[25,26]。
丙酮酸脱氢酶激酶1(pyruvate dehydrogenase kinase,PDK-1)在维持口腔鳞癌糖酵解中起着重要作用。研究发现PDK-1在OSCC中表达上调,与肿瘤的不良预后有关[27]。下调PDK-1后可以下调口腔鳞癌中PDK1/CD47/Akt介导的糖酵解信号通路,从而改善顺铂治疗口腔鳞状细胞癌的疗效[28]。因此,PDK-1抑制剂具有进一步的研究价值。
己糖激酶2(hexokinase 2,HK2)己糖激酶是催化己糖磷酸化的酶,是糖酵解途径的第一个酶,也是糖酵解途径的限速酶,现已被认为是各种癌症的治疗靶点[29-30]。抗癌多酚(EGCG)是茶多酚发挥抗癌作用的关键因子,研究发现HK2是EGCG诱导的人舌癌细胞糖酵解抑制的关键调节因子,并且Akt信号通路参与其中。这一结果表明,靶向代谢酶HK2可能是这类肿瘤的一种新的预防和治疗靶点[31]。
果糖-1,6-二磷酸酶(Fructose-1,6-bisphosphatase,FBP)不仅是糖异生的限速酶,还被发现是一种在多种癌症中下调的肿瘤抑制因子。有研究表明[32],FBP在OSCC组织和细胞中的表达显著下调。FBP可以通过下调c-Myc抑制OSCC细胞的增殖、迁移和糖酵解[32]。FBP-c-Myc信号轴调控OSCC糖酵解,并可能为OSCC治疗提供一种潜在的干预策略。
与糖酵解代谢有关的酶特别是单羧酸转运蛋白(monocarboxylate transporter,MCT)在癌细胞中的表达不同于正常细胞,特别是MCT1、MCT2和MCT4三种亚型在OSCC细胞中明显增加,在肿瘤代谢中起着重要作用,与肿瘤的分期和预后有关[33]。研究发现抑制MCT,特别是MCT4可以调节肿瘤细胞的糖酵解,抑制乳酸代谢从而增加肿瘤细胞对放疗的敏感性。
葡萄糖转运蛋白(glucose transporter,GLUT)是糖酵解途径中的主要枢纽。在口腔鳞癌的发生过程中存在葡萄糖代谢的变化,特别是GLUT1的RNA和蛋白水平与正常细胞相比发生了明显地上调[34-35]。GLUT1的高表达对于确保能量产生,加速细胞生长,促进肿瘤恶性转化和进展是必不可少的。GLUT4具有最高的葡萄糖亲和力,GLUT4在OSCC细胞株中的过表达提高了细胞的增殖速率和迁移能力[36]。
研究发现磷酸甘油酸激酶1(phosphoglycerate kinase1,PGK1)、苹果酸酶1(malic enzyme1,ME1)、醛缩酶(aldolase,ALDO)在OSCC中均为高表达状态。通过激活OSCC中的Akt信号来促进OSCC糖酵解、增强干细胞样特性和EMT[37-39],与OSCC的进展和预后有关。
5. 针对OSCC糖酵解代谢的治疗干预措施
有氧糖酵解是癌细胞中独特的代谢标志,并且在癌细胞中检测到谷氨酸表达上调,表明癌细胞的存活高度依赖于葡萄糖摄取[40-41],糖酵解失调可能导致癌细胞的抗药性增加。已有许多研究证实了糖酵解途径在诊断和治疗癌症中的价值[42-44]。
顺铂(DDP)是治疗OSCC的一种有效的一线化疗药物,提高肿瘤细胞对DDP的药物敏感性可有效促进OSCC的化疗效果。Liu等[45]发现长链非编码RNA中的lncRNA-MIR600HG下调可提高miR-125a-5p的表达,降低环指蛋白44的表达,从而抑制OSCC细胞的糖酵解,提高DDP敏感性。有研究发现葛根素通过FBXW7/mTOR信号抑制糖酵解并增加口腔鳞状细胞癌中的顺铂化学敏感性[44]。
丹参酮IIA(Tan IIA)减少了肿瘤细胞葡萄糖消耗和乳酸的产生,并促进了OSCC细胞的凋亡。其机制在于抑制Akt-c-Myc信号传导并促进c-Myc泛素化和降解,最终在转录水平上降低HK2表达从而抑制HK2介导的糖酵解,可以作为是OSCC的潜在抗肿瘤化合物[46]。丹参酚酸B(Sal-B)是丹参中最丰富和生物活性最强的水溶性化合物,已被报道在多项研究中抑制化学诱导的口腔癌发生。Sal-B通过PI3K/Akt/HIF-1α信号通路调节异常的葡萄糖代谢,降低OSCC细胞中的代谢紊乱,降低细胞的糖酵解水平,发挥抗癌活性[47-48]。
作为糖酵解的有效抑制剂,2-脱氧-d-葡萄糖(2-deoxy-D-glucose,2DG)已被提议用于癌症治疗,并已在临床中进行了广泛研究。2DG损害了OSCC细胞中关键致癌受体Axl和Met的N-联糖基化,发挥抗癌作用[49]。
川楝素是一种多甲氧基黄酮类化合物,被用作治疗各种疾病的重要中药。用其处理肿瘤细胞后发现,细胞的磷酸化PKA和磷酸化CREB的水平降低,葡萄糖消耗改变,丙酮酸和乳酸的生成增多,抑制OSCC细胞增殖,可成为一种潜在的临床治疗药物[50]。
Garcinol是从Garcinia indica的干果皮中提取的天然聚异戊二烯二苯甲酮,经Garcinol处理OSCC细胞后可以抑制细胞的线粒体氧化磷酸化,促进OSCC细胞糖酵解,增加乳酸含量和丙酮酸激酶的活性,促进GLUT以及糖酵解途径相关的几个重要基因HIF-1α、Akt和PTEN的表达[51]。
利用苦瓜提取物(bitter melon extract,BME)处理口腔癌细胞系后可显著降低关键糖酵解基因SLC2A1、GLUT-1、PFKP、LDHA、PKM和PDK3的mRNA和蛋白质表达水平。BME治疗后口腔癌细胞的丙酮酸和乳酸水平以及糖酵解速率降低,因此,BME介导的口腔癌细胞代谢重编程与常规疗法联合将具有重要的预防和治疗意义[52]。
放疗是治疗口腔癌的一种有效手段,但是目前关于抑制糖酵解提高放疗的疗效在OSCC中存在争议,仍需要进一步的研究[53]。
6. 小结
综上所述,糖酵解重编程是OSCC进展的一个重要标志,它使癌细胞即使是在缺氧等条件下依然能够持续高速生长。口腔癌的糖酵解变化主要包括线粒体缺陷,对缺氧肿瘤微环境的适应以及酶的信号传导和表达异常。已知的参与OSCC中葡萄糖代谢的关键因素主要有PKD1、PKM、GLUT-1、HK2、FBP、MCTs、LDHA、PGK1、ME1、ALDO等。这些因子的异常表达影响了OSCC的糖酵解过程和能量代谢,进而调控肿瘤进展和预后,但是各关键酶与肿瘤微环境、免疫因子及信号通路之间的机制尚不明确,依然需要进一步的研究。
OSCC是一种具有高发病率和死亡率的口腔肿瘤,目前的治疗方式主要集中在手术和放化疗等。虽然这些治疗方式取得一定成效,但由于OSCC发病机制极其复杂,总生存率提高的并不明显,肿瘤细胞代谢作为新发现的生物标志物和治疗干预的新领域正在被深入研究。许多临床广泛应用的药物如顺铂(DDP)、抗癌多酚(EGCG)、丹参酮IIA、2-脱氧-d-葡萄糖(2DG)等均可通过抑制口腔癌细胞的糖酵解过程,发挥抗癌作用。OSCC糖酵解途径为今后OSCC的治疗提供可靠策略。寻找有效的糖酵解关键酶抑制剂作为OSCC分子靶向药物或者与肿瘤药物联合运用,有望成为OSCC治疗的最佳方案。
-
[1] Chi A C,Day T A,Neville B W. Oral cavity and oropharyngeal squamous cell carcinoma-an update[J]. CA:A Cancer Journal for Clinicians,2015,65(5):401-421. doi: 10.3322/caac.21293 [2] Romero-Garcia S,Lopez-Gonzalez J S,Báez-Viveros J L,et al. Tumor cell metabolism: an integral view[J]. Cancer Biol Ther,2011,12(11):939-948. doi: 10.4161/cbt.12.11.18140 [3] Warburg O,Posener K,Negelein E. On the metabolism of carcinoma cells[J]. Biochemische Zeitschrift,1924,152:309-344. [4] Wang Y,Xia Y,Lu Z. Metabolic features of cancer cells[J]. Cancer Communications (London,England),2018,38(1):65. doi: 10.1186/s40880-018-0335-7 [5] Ghanavat M,Shahrouzian M,Deris Zayeri Z,et al. Digging deeper through glucose metabolism and its regulators in cancer and metastasis[J]. Life Sci,2021,264:118603. doi: 10.1016/j.lfs.2020.118603 [6] Somashekar B S,Kamarajan P,Danciu T,et al. Magic angle spinning NMR-based metabolic profiling of head and neck squamous cell carcinoma tissues[J]. Journal of Proteome Research,2011,10(11):5232-5241. doi: 10.1021/pr200800w [7] Boffetta P,Hashibe M. Alcohol and cancer[J]. The Lancet Oncology,2006,7(2):149-156. doi: 10.1016/S1470-2045(06)70577-0 [8] Nguyen A, Kim A H, Kang M K, et al. Chronic alcohol exposure promotes cancer stemness and glycolysis in oral/oropharyngeal squamous cell carcinoma cell lines by activating NFAT signaling [J]. International Journal of Molecular Sciences, 2022, 23(17): 9779. [9] Zhou X,Xue D,Qiu J. Identification of biomarkers related to glycolysis with weighted gene co-expression network analysis in oral squamous cell carcinoma[J]. Head and Neck-Journal for the Sciences and Specialties of the Head and Neck,2022,44(1):89-103. [10] Robey R B,Hay N. Is AKT the “Warburg kinase”?-AKT-energy metabolism interactions and oncogenesis[J]. Seminars in cancer biology,2009,19(1):25-31. doi: 10.1016/j.semcancer.2008.11.010 [11] Marquard F, Jücker M J B P. PI3K/AKT/mTOR signaling as a molecular target in head and neck cancer [J]. 2020, 172: 113729. [12] Raggi C,Taddei M L,Rae C,et al. Metabolic reprogramming in cholangiocarcinoma[J]. J Hepatol,2022,77(3):849-864. doi: 10.1016/j.jhep.2022.04.038 [13] Tang Y C,Hsiao J R,Jiang S S,et al. c-MYC-directed NRF2 drives malignant progression of head and neck cancer via glucose-6-phosphate dehydrogenase and transketolase activation[J]. Theranostics,2021,11(11):5232-5247. doi: 10.7150/thno.53417 [14] Wang L W,Yu Y,Chen J,et al. Protein kinase D1 regulates the growth and metabolism of oral squamous carcinoma cells in tumor microenvironment[J]. West China Journal of Stomatology,2019,37(6):577-582. [15] Chen J,Cui B,Fan Y,et al. Protein kinase D1 regulates hypoxic metabolism through HIF-1 and glycolytic enzymes incancer cells[J]. Oncology Reports,2018,40(2):1073-1082. [16] Fu L,Pelicano H,Liu J,et al. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo[J]. Cell,2002,111(1):41-50. doi: 10.1016/S0092-8674(02)00961-3 [17] Zheng B,Larkin D W,Albrecht U,et al. The mPer2 gene encodes a functional component of the mammalian circadian clock[J]. Nature,1999,400(6740):169-173. doi: 10.1038/22118 [18] Long W, Gong X, Yang Y, et al. Downregulation of PER2 promotes tumor progression by enhancing glycolysis via the phosphatidylinositol 3-kinase/Protein kinase B pathway in oral squamous cell carcinoma [J]. Journal of Oral and Maxillofacial Surgery, 2020, 78(10): 10. [19] Zheng M,Cao M X,Yu X H,et al. STAT3 promotes invasion and aerobic glycolysis of human oral squamous cell carcinoma via inhibiting foxO1[J]. Front Oncol,2019,9:1175. doi: 10.3389/fonc.2019.01175 [20] Grimm M, Cetindis M, Lehmann M, et al. Association of cancer metabolism-related proteins with oral carcinogenesis - indications for chemoprevention and metabolic sensitizing of oral squamous cell carcinoma? [J]. Journal of Translational Medicine, 2014, 12: 208. [21] Brizel D M,Schroeder T,Scher R L,et al. Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer[J]. International Journal of Radiation Oncology Biology Physics,2001,51(2):349-353. doi: 10.1016/S0360-3016(01)01630-3 [22] Wang Y,Zhang X,Zhang Y,et al. Overexpression of pyruvate kinase M2 associates with aggressive clinicopathological features and unfavorable prognosis in oral squamous cell carcinoma[J]. Cancer Biology & Therapy,2015,16(6):839-845. [23] Yang W,Xia Y,Hawke D,et al. PKM2 Phosphorylates Histone H3 and Promotes Gene Transcription and Tumorigenesis[J]. Cell,2014,158(5):1210. [24] Kurihara-shimomura M, Sasahira T, Nakashima C, et al. The multifarious functions of pyruvate kinase M2 in oral cancer cells [J]. International Journal of Molecular Sciences, 2018, 19(10): 2907. [25] Cai H, Li J, Zhang Y, et al. LDHA promotes oral squamous cell carcinoma progression through facilitating glycolysis and epithelial-mesenchymal transition[J]. Frontiers in Oncology, 2019, 9: 1446. [26] Yuan C,Li Z,Wang Y,et al. Overexpression of metabolic markers PKM2 and LDH5 correlates with aggressive clinicopathological features and adverse patient prognosis in tongue cancer[J]. Histopathology,2014,65(5):595-605. doi: 10.1111/his.12441 [27] Wigfield S M,Winter S C,Giatromanolaki A,et al. PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer[J]. British Journal of Cancer,2008,98(12):1975-1984. doi: 10.1038/sj.bjc.6604356 [28] Pai S, Yadav V K, Kuo K T, et al. PDK1 inhibitor BX795 improves cisplatin and radio-efficacy in oral squamous cell carcinoma by downregulating the PDK1/CD47/Akt-mediated glycolysis signaling pathway[J]. International Journal of Molecular Sciences, 2021, 22(21): 11492. [29] Guo D,Tong Y,Jiang X,et al. Aerobic glycolysis promotes tumor immune evasion by hexokinase2-mediated phosphorylation of IκBα[J]. Cell Metabolism,2022,34(9):1312-24.e6. doi: 10.1016/j.cmet.2022.08.002 [30] Patra K C,Wang Q,Bhaskar P T,et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer[J]. Cancer Cell,2013,24(2):213-228. doi: 10.1016/j.ccr.2013.06.014 [31] Christison T, Wang J, Huang Y, et al. Profiling anionic polar metabolites in oral cancer using capillary ion chromatography and high resolution accurate mass spectrometry [J]. Abstracts of Papers of the American Chemical Society, 2015, 249: 49. [32] Wang L, Wang J, Shen Y, et al. Fructose-1, 6-bisphosphatase 2 inhibits oral squamous cell carcinoma tumorigenesis and glucose metabolism via downregulation of c-myc[J]. Oxidative Medicine and Cellular Longevity, 2022, 2022. [33] Simoes-sousa S,Granja S,Pinheiro C,et al. Prognostic significance of monocarboxylate transporter expression in oral cavity tumors[J]. Cell Cycle,2016,15(14):1865-1873. doi: 10.1080/15384101.2016.1188239 [34] Nakazato K,Mogushi K,Kayamori K,et al. Glucose metabolism changes during the development and progression of oral tongue squamous cell carcinomas[J]. Oncology Letters,2019,18(2):1372-1380. [35] Gholami S,Chamorro-petronacci C,Pérez-sayáns M,et al. Immunoexpression profile of hypoxia-inducible factor (HIF) targets in potentially malignant and malignant oral lesions: a pilot study[J]. Journal of Applied Oral Science:Revista FOB,2023,31:e20220461. doi: 10.1590/1678-7757-2022-0461 [36] Chang Y C, Chi L H, Chang W M, et al. Glucose transporter 4 promotes head and neck squamous cell carcinoma metastasis through the TRIM24-DDX58 axis [J]. Journal of Hematology & Oncology, 2017, 10(1): 11. [37] Zhang Y,Cai H,Liao Y,et al. Activation of PGK1 under hypoxic conditions promotes glycolysis and increases stem cell-like properties and the epithelial-mesenchymal transition in oral squamous cell carcinoma cells via the AKT signalling pathway[J]. International Journal of Oncology,2020,57(3):743-755. doi: 10.3892/ijo.2020.5083 [38] Nakashima C,Yamamoto K,Fujiwara-tani R,et al. Expression of cytosolic malic enzyme (ME1) is associated with disease progression in human oral squamous cell carcinoma[J]. Cancer Science,2018,109(6):2036-2045. doi: 10.1111/cas.13594 [39] Li Y J,Huang T H,Hsiao M,et al. Suppression of fructose-bisphosphate aldolase C expression as a predictor of advanced oral squamous cell carcinoma[J]. Head and Neck-Journal for the Sciences and Specialties of the Head and Neck,2016,38:E1075-E85. [40] Wilde L,Roche M,Domingo-vidal M,et al. Metabolic coupling and the Reverse Warburg Effect in cancer: Implications for novel biomarker and anticancer agent development[J]. Seminars in Oncology,2017,44(3):198-203. doi: 10.1053/j.seminoncol.2017.10.004 [41] Muhammad S N H, Safuwan N A M, Yaacob N S, et al. Regulatory mechanism on anti-Glycolytic and anti-metastatic activities induced by strobilanthes crispus in breast cancer, in vitro [J]. Pharmaceuticals (Basel, Switzerland), 2023, 16(2): 153. [42] Bai R, Meng Y, Cui J. Therapeutic strategies targeting metabolic characteristics of cancer cells [J]. Critical Reviews in Oncology/Hematology, 2023, 104037. [43] Samuel S M,Varghese E,Satheesh N J,et al. Metabolic heterogeneity in TNBCs: A potential determinant of therapeutic efficacy of 2-deoxyglucose and metformin combinatory therapy[J]. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie,2023,164:114911. [44] Huang G, Chen S, Washio J, et al. Glycolysis-related gene analyses indicate that DEPDC1 promotes the malignant progression of oral squamous cell carcinoma via the WNT/β-catenin signaling pathway[J]. International Journal of Molecular Sciences, 2023, 24(3): 1992. [45] Liu X, Zhao T, Yuan Z, et Al. MIR600HG sponges miR-125a-5p to regulate glycometabolism and cisplatin resistance of oral squamous cell carcinoma cells via mediating RNF44 [J]. Cell Death Discovery, 2022, 8(1): 216. [46] Li M, Gao F, Zhao Q, et al. Tanshinone IIA inhibits oral squamous cell carcinoma via reducing AKT-c-MYC signaling-mediated aerobic glycolysis [J]. Cell Death & Disease, 2020, 11(5): 381. [47] Wei J, Wu J, Xu W, et al. Salvanic acid B inhibits glycolysis in oral squamous cell carcinoma via targeting PI3K/AKT/HIF-1 alpha signaling pathway [J]. Cell Death & Disease, 2018, 9: 599. [48] Wei J,Xie G,Ge S,et al. Metabolic transformation of DMBA-induced carcinogenesis and inhibitory effect of salvianolic acid B and breviscapine treatment[J]. Journal of Proteome Research,2012,11(2):1302-1316. doi: 10.1021/pr2009725 [49] Lee N, Jang W J, Seo J H, et al. 2-Deoxy-d-Glucose-Induced Metabolic Alteration in Human Oral Squamous SCC15 Cells: Involvement of N-Glycosylation of Axl and Met [J]. Metabolites, 2019, 9(9): 3515-3524. [50] Lin C X,Tu C W,Ma Y K,et al. Nobiletin inhibits cell growth through restraining aerobic glycolysis via PKA-CREB pathway in oral squamous cell carcinoma[J]. Food Science & Nutrition,2020,8(7):3515-3524. [51] Zhang G,Fu J,Su Y,et al. Opposite effects of garcinol on tumor energy metabolism in oral squamous cell carcinoma cells[J]. Nutrition and Cancer-an International Journal,2019,71(8):1403-1411. doi: 10.1080/01635581.2019.1607409 [52] Sur S, Nakanishi H, Flaveny C, et al. Inhibition of the key metabolic pathways, glycolysis and lipogenesis, of oral cancer by bitter melon extract [J]. Cell Communication and Signaling, 2019, 17(1): 131. [53] Kawata M,Ogi K,Nishiyama K,et al. Additive effect of radiosensitization by 2-deoxy-D-glucose delays DNA repair kinetics and suppresses cell proliferation in oral squamous cell carcinoma[J]. Journal of Oral Pathology & Medicine,2017,46(10):979-985. 期刊类型引用(1)
1. 王蓝天,张易青. CENPA表达与癌症的关系研究进展. 局解手术学杂志. 2023(11): 1021-1024 . 百度学术
其他类型引用(0)
-

计量
- 文章访问数: 3275
- HTML全文浏览量: 1910
- PDF下载量: 23
- 被引次数: 1