留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人参皂苷Rg1通过Sestrin2保护心肌细胞的作用

刘燃 林志 杨帆 段继坤

陈捷, 郭伟昌, 殷和佳, 严红霞, 张帆, 王尧乙, 李会芳. RANTES及其受体CCR5基因多态性及环境因素在昆明汉族T2DM发生中的交互作用[J]. 昆明医科大学学报, 2021, 42(6): 38-44. doi: 10.12259/j.issn.2095-610X.S20210606
引用本文: 刘燃, 林志, 杨帆, 段继坤. 人参皂苷Rg1通过Sestrin2保护心肌细胞的作用[J]. 昆明医科大学学报, 2023, 44(6): 19-25. doi: 10.12259/j.issn.2095-610X.S20230614
Jie CHEN, Wei-chang GUO, He-jia YIN, Hong-xia YAN, Fan ZHANG, Yao-yi WANG, Hui-fang LI. The Interaction among Gene Polymorphisms of RANTES and Its Receptor CCR5 and Environmental Factors in the Development of T2DM in Kunming Han Nationality[J]. Journal of Kunming Medical University, 2021, 42(6): 38-44. doi: 10.12259/j.issn.2095-610X.S20210606
Citation: Ran LIU, Zhi LIN, Fan YANG, Jikun DUAN. Mechanisms of Ginsenoside Rg1 in Protecting Cardiomyocytes by Sestrin2[J]. Journal of Kunming Medical University, 2023, 44(6): 19-25. doi: 10.12259/j.issn.2095-610X.S20230614

人参皂苷Rg1通过Sestrin2保护心肌细胞的作用

doi: 10.12259/j.issn.2095-610X.S20230614
基金项目: 云南省教育厅科学研究基金资助项目(2019J1252)
详细信息
    作者简介:

    刘燃(1988~),男,哈尼族,云南普洱人,医学硕士,主治医师,主要从事心血管病学临床工作

  • 中图分类号: R541.4

Mechanisms of Ginsenoside Rg1 in Protecting Cardiomyocytes by Sestrin2

  • 摘要:   目的   研究人参皂苷Rg1(G-Rg1)对抗心肌缺血再灌注损伤中Sestrin2的作用及相关机制。  方法  体外培养大鼠 H9c2 心肌细胞,按实验要求随机分5组,分别为对照组,缺氧复氧组,G-Rg1组,缺氧诱导因子 -1α(Hypoxia Inducible Factor-1,HIF-1,HIF-1α) 抑制剂组,Sestrin2 siRNA干扰组。流式细胞术检测各组心肌细胞内活性氧簇(reactive oxygen species,ROS)含量。蛋白质免疫印迹法检测HIF-1α、Sestrin2、蛋白激酶R样内质网激酶(protein kinase R-like ER kinase,PERK)、活化转录因子6(the activating transcription factor 6,ATF-6)和跨膜蛋白激酶1(inositol requiring enzyme 1,IRE-1)蛋白表达。免疫荧光法检测Sestrin2、HIF-1α、IRE-1蛋白表达。  结果   与对照组相比,缺氧复氧组细胞内ROS水平、HIF-1α、Sestrin2、ATF-6、PERK、IRE-1蛋白表达水平明显升高(P < 0.05);与缺氧复氧组相比,G-Rg1组细胞内ROS水平明显降低(P < 0.05),HIF-1α、Sestrin2、ATF-6、PERK、IRE-1蛋白表达水平明显升高(P < 0.05);与G-Rg1组比较,HIF-1α抑制剂组心肌细胞内ROS水平升高,Sestrin2蛋白表达明显下调(P < 0.05);与G-Rg1组比较,siRNA干扰组心肌细胞内ROS水平升高,IRE-1表达明显升高(P < 0.05)。  结论   G-Rg1通过上调Sestrin2表达,保护缺氧复氧心肌细胞,并维持内质网应激平衡稳态。
  • 2型糖尿病(type 2 diabetes mellitus, T2DM)是一种慢性代谢性疾病,遗传因素和环境因素在糖尿病的发生与发展中发挥重要作用。单核苷酸多态性(single nucleotide polymorphism, SNP)是人类遗传变异最常见的一种形式,被广泛应用于糖尿病、高血压的候选基因关联研究中。近年来随着全基因组关联研究(genome-wide association studies, GWAS)技术的发展,新的T2DM易感基因SNP位点被不断报道[1]。SNP与环境因素相互作用,共同影响个体的疾病易感性[2]。鉴于不同地区和种族人群易感基因SNP位点的分布不同,项目组检测了主要参与炎症反应的正常T细胞表达和分泌的活性调节蛋白(regulated upon activation normal T cell expressed and secreted, RANTES)基因启动子区-28(rs2280788)C/G多态性及其受体CCR5基因启动子区59029(rs1799987)A/G多态性,旨在探讨这2个SNP位点间以及2个SNP位点与环境因素间在T2DM的发生中是否存在交互作用,为T2DM的早期防治提供重要依据。

    选取在昆明医科大学第一附属医院就诊的189名汉族人作为研究对象,其中糖尿病组(DM组)97例(男57,女40),年龄(49.53±12.52)岁,均为确诊的T2DM患者;血糖正常组(NC组)92例(男43,女49),年龄(46.22±11.77)岁,均为体检中心体检后的血糖正常者且既往无糖尿病病史。

    1.2.1   一般资料收集

    采用自编问卷收集研究对象的基本信息,包括年龄、性别、身高、体重、腰围、臀围、收缩压、舒张压、高血压史、吸烟史、饮酒史等;并计算体质指数(body mass index, BMI)和腰臀比(waist-to-hip ratio, WHR)。

    1.2.2   生化指标检测

    抽取研究对象的空腹静脉血,采用全自动生化分析仪检测空腹血糖(fasting plasma glucose, FPG)、总胆固醇(total cholesterol, TC)、甘油三酯(triglycerides, TG)、高密度脂蛋白胆固醇(high-density lipoprotein cholesterol, HDL-C)、低密度脂蛋白胆固醇(low-density lipoprotein cholesterol, LDL-C);采用高效液相色谱法检测糖化血红蛋白。

    1.2.3   基因多态性检测

    采用柱式小量全血基因组DNA快速提取试剂盒(北京博迈德科技发展有限公司)提取受试者外周静脉血DNA。使用北京擎科新业生物技术有限公司合成的RANTES基因rs2280788位点特异性片段引物及探针、ABI合成的CCR5基因rs1799987位点特异性片段引物及探针,采用Taqman实时荧光定量PCR法检测RANTES基因启动子区 -28(rs2280788)基因多态性及CCR5基因启动子区 59029(rs1799987)基因多态性。根据PCR产物熔解曲线进行基因分型,见图1

    图  1  RANTES rs2280788及CCR5 rs1799987基因型分型
    注:图A-C分别为CCR5基因rs1799987 AA基因型、CCR5基因rs1799987 GG基因型、CCR5基因rs1799987 AG基因型的PCR产物熔解曲线;图D-F分别为RANTES基因rs2280788 CC基因型、RANTES基因rs2280788 GG基因型、RANTES基因rs2280788 CG基因型的PCR产物熔解曲线。
    Figure  1.  Genotyping of RANTES rs2280788 and CCR5 rs1799987
    1.3.1   糖尿病

    参照世界卫生组织(world health organization, WHO)1999年诊断标准[3],典型糖尿病症状(多饮、多尿、多食、体重下降)加随机血糖 ≥ 11.1 mmol/L,或FPG ≥ 7.0 mmol/L,或口服葡萄糖耐量试验(oral glucose tolerance test, OGTT)2 h血糖 ≥ 11.1 mmol/L;或已确诊糖尿病并已进行治疗者。

    1.3.2   高血压

    参照《中国高血压防治指南(2018年修订版)》[4],在未使用降压药物的情况下,非同日3次测量诊室血压,收缩压 ≥ 140 mmHg 和(或)舒张压 ≥ 90 mmHg。既往有高血压史,目前正在使用降压药物,血压低于140/90 mmHg的患者仍诊断为高血压。

    1.3.3   血脂异常

    参照《中国成人血脂异常防治指南(2016年修订版)》[5],TG ≥ 1. 7 mmol /L,TC ≥ 5.2 mmol /L,LDL-C ≥ 3. 4 mmol /L,HDL-C ≤ 1.0 mmol/L,这四项血脂指标任何一项异常则诊断为血脂异常。

    1.3.4   超重、肥胖、中心性肥胖

    参照《中国成人超重和肥胖症预防控制指南》[6],24 kg/m2 ≤ BMI < 28 kg/m2为超重,BMI ≥ 28 kg/m2为肥胖;男性腰围 ≥ 85 cm,女性腰围 ≥ 80 cm为中心性肥胖。

    采用χ2拟合优度检验基因型分布是否符合 Hardy-Weinberg 遗传平衡定律。采用SPSS 26.0进行统计学分析,正态计量资料使用均数±标准差表示,非正态计量资料使用中位数(下四分位数,上四分位数)表示,计数资料采用率表示。两组间正态计量资料比较采用两独立样本t检验,非正态计量资料比较采用两独立样本秩和检验。采用多因子降维法(multifactor dimensionality reduction,MDR)3.0.2 软件分析各因素间的交互作用。P < 0.05为差异有统计学意义。

    DM组的FPG、HbA1c、腰围、BMI、收缩压、TG高于NC组,TC、HDL低于NC组(P < 0.05),两组间年龄、性别、舒张压、LDL水平无统计学差异(P > 0.05),见表1

    表  1  研究对象的基线资料比较 ($\bar x \pm s$
    Table  1.  Comparison of baseline data of the subjects ($ \bar x \pm s$
    特征NC组
    n = 92)
    DM组
    n = 97)
    t/Z/χ2P
    年龄(岁) 46.22 ± 11.77 49.53 ± 12.52 −1.87 0.063
    性别[n(%)]
     女性 49(53.30) 40(41.20) 2.74 0.098
     男性 43(46.70) 57(58.80)
    FPG (mmol/L) 5.03 ± 0.69 8.38 ± 2.95* −10.892 < 0.001
    HbA1c (%) 5.58 ± 0.39 9.20 ± 2.21* −15.915 < 0.001
    腰围 (cm) 83.83 ± 11.84 90.79 ± 10.09* −4.359 < 0.001
    BMI (kg/m2 24.02 ± 3.73 25.17 ± 3.85* −2.086 0.038
    收缩压 (mmHg) 119.68 ± 16.92 130.65 ± 19.35* −4.138 < 0.001
    舒张压 (mmHg) 79.38 ± 9.94 77.82 ± 11.44 0.996 0.321
    TC (mmol/L) 4.99 ± 0.88 4.47 ± 1.13* 3.49 0.001
    HDL (mmol/L) 1.34(1.11,1.64) 1.00(0.85,1.17) * −6.411 < 0.001
    TG (mmol/L) 1.25(0.90,1.99) 1.61(1.07,2.31) * −2.148 0.032
    LDL (mmol/L) 2.88(2.50,3.66) 3.08(2.32,3.45) −0.16 0.873
      与NC组比较,*P < 0.05。
    下载: 导出CSV 
    | 显示表格

    χ2拟合优度检验,DM组和NC组的CCR5 rs1799987基因多态性位点及RANTES rs2280788基因多态性位点的基因型分布均符合Hardy-Weinberg平衡定律(P > 0.05),所选样本具有群体代表性。DM组和NC组组间的CCR5 rs1799987基因型频率及A/G等位基因频率、RANTES rs2280788基因型频率及C/G等位基因频率差异统计学意义(P > 0.05),见表2

    表  2  DM组和NC组的CCR5 rs1799987及RANTES rs2280788基因型及等位基因频率 [n(%)]
    Table  2.  Genotypes and allele frequencies of CCR5 rs1799987 and RANTES rs2280788 in DM and NC groups [n(%)]
    组别基因型频率等位基因频率
    CCR5 rs1799987 AA AG GG A G
    NC组 19(20.70) 49(53.30) 24(26.10) 87(47.28) 97(52.72)
    DM组 18(18.60) 47(48.50) 32(33.00) 83(42.78) 111(57.22)
    RANTES rs2280788 CC + CG GG C G
    NC组 20(21.70) 72(78.30) 22(11.96) 162(88.04)
    DM组 23(23.70) 74(76.30) 24(12.37) 170(87.63)
      注:因RANTES rs2280788CC基因型仅3例,RANTES rs2280788 CG基因型40例,因此将这两个基因型合并到RANTES rs2280788 CC + CG组一起分析。
    下载: 导出CSV 
    | 显示表格

    以是否患T2DM(NC组 = 0,DM组 = 1)作为因变量,CCR5 rs1799987基因型(1 = AA,2 = AG,3 = GG)、RANTES rs2280788基因型(1 = CC,2 = CG,3 = GG)为自变量,将数据导入MDR软件,得到1~2阶交互模型,见表3

    表  3  基因-基因交互作用的多因子降维法模型
    Table  3.  MDR models of gene-gene interactions
    模型训练组平衡精度测试组平衡精度交叉验证一致性POR95%CI
    X1 0.5371 0.4338 7/10 0.2989 1.3949 0.7436~2.6166
    X1、X2 0.5820 0.5314 10/10 0.0205 2.0465 1.1118~3.7672
      X1:CCR5 rs1799987基因型;X2:RANTES rs2280788基因型。
    下载: 导出CSV 
    | 显示表格

    经置换检验,一因素模型差异无统计学意义(P > 0.05),二因素模型差异有统计学意义(P < 0.05),即CCR5 rs1799987 -RANTES rs2280788交互模型为最佳模型,该模型的交叉验证一致性为10/10,测试组平衡精度为0.5314。两因素交互模型,见图2

    图  2  CCR5 rs1799987 -RANTES rs2280788两因素交互模型单元格图
    Figure  2.  CCR5 rs1799987-RANTES rs2280788 Two-factor interactive model cell diagram

    交互模型图解析:图中每个单元格里左侧的条形表示病例组,右侧的条形表示对照组,病例数 ≥ 对照数的单元格呈深灰色(提示该因素组合为高危组合),病例数 < 对照数的单元格呈浅灰色(提示该因素组合为低危组合)。图2显示:CCR5 rs1799987 AA及RANTES rs2280788 CC基因型携带者、CCR5 rs1799987 AG及RANTES rs2280788 CG基因型携带者、CCR5 rs1799987 GG及RANTES rs2280788 GG基因型携带者患T2DM风险明显增加。

    表3所示,携带以上3种具有交互作用的任何一种基因型组合个体患T2DM的风险是未携带者的2.0465倍(OR 2.0465,95%CI 1.1118~3.7672)。

    以是否患T2DM(NC组 = 0,DM组 = 1)为因变量,CCR5 rs1799987基因型、RANTES rs2280788基因型、吸烟、饮酒、高血压、BMI、中心性肥胖、血脂为自变量,采用 MDR 分析各因素间的交互作用,赋值情况见表4

    表  4  MDR软件中各变量赋值情况
    Table  4.  Variable assignment in MDR
    变量赋值
    CCR5 rs1799987基因型 1 = AA,2 = AG,3 = GG
    RANTES rs2280788基因型 1 = CC,2 = CG,3 = GG
    吸烟 0 = 否,1 = 是
    饮酒 0 = 否,1 = 是
    高血压 0 = 否,1 = 是
    BMI 0 = < 18.5,1 = 18.5-23.9,2 = ≥ 24.0
    中心性肥胖 0 = 否,1 = 是
    血脂 0 = 血脂正常,1 = 血脂异常
    下载: 导出CSV 
    | 显示表格

    经分析得出1~3阶交互模型,见表5,经置换检验发现,3个模型均有统计学意义(P < 0.001)。其中高血压-中心性肥胖两因素模型的交叉验证一致性最大(10/10),且测试组平衡精度最高(0.7031),故两因素交互模型为最佳模型。两因素交互模型见图3图3显示,患高血压的中心性肥胖人群发生T2DM的风险较无高血压和中心性肥胖人群明显增加。表5显示,患高血压的中心性肥胖人群发生T2DM的风险是无高血压和中心性肥胖人群的8.1640倍(OR:8.1640,95%CI:3.8745~17.2026)。未发现CCR5 rs1799987及RANTES rs2280788位点与环境因素间存在交互作用。

    表  5  基因与环境因素交互作用的多因子降维法模型
    Table  5.  MDR models of the interaction of genes and environmental factors
    模型训练组平衡精度测试组平衡精度交叉验证一致性POR95%CI
    X1 0.6748 0.6748 10/10 < 0.001 4.7143 2.4914-8.9206
    X1、X2 0.7031 0.7031 10/10 < 0.001 8.1640 3.8745-17.2026
    X1、X2、X3 0.7333 0.6691 6/10 < 0.001 9.5000 4.5822-19.6956
      注:X1:高血压,X2:中心性肥胖;X3:饮酒。
    下载: 导出CSV 
    | 显示表格
    图  3  高血压-中心性肥胖两因素交互模型单元格图
    Figure  3.  Hypertension-central obesity Two-factor interactive model cell diagram

    遗传因素在T2DM的发生中发挥重要作用,目前已报道超过100个基因位点与T2DM的患病风险相关[7]。不同的基因位点间可能存在交互作用,共同对T2DM的易感性产生影响[8]。本研究采用多因子降维法对CCR5 rs1799987、RANTES rs22807882个SNP位点在T2DM发病中的影响进行了分析,发现这2个SNP位点间存在交互作用,CCR5 rs1799987 AA基因型与RANTES rs2280788 CC基因型、CCR5 rs1799987 AG基因型与RANTES rs2280788 CG基因型、CCR5 rs1799987 GG基因型与RANTES rs2280788 GG基因型3种交互形式中任何一种的携带者发生T2DM的风险增加约1倍,这为早期筛查T2DM的高危人群提供了重要线索,为糖尿病的早期防治提供指导依据。

    T2DM的发病是遗传和环境因素相互作用的结果,有报道TCF7L2 rs290487与饮酒和高血压[9]、IGF2BP2rs4402960与吸烟[10]、INAFM2 rs67839313与鸡蛋摄入量[11]、CDKN2A/CDKN2B rs10811661与BMI、腰围和腰臀比[12]等在T2DM发生中存在交互影响。而本研究未发现CCR5 rs1799987、RANTES rs22807882个SNP位点与环境因素吸烟、饮酒、高血压、BMI、中心性肥胖、血脂异常在昆明地区汉族T2DM的发病中存在交互作用,这与龙天柱[13]、许红霞等[14]的研究结论相似。T2DM的发病机制复杂,单一模型可能无法清楚的解释其中的因果关系,而且当纳入的分析因素较多,样本量不够大时,拟合降维分析的效能也会降低[15],这也可能是本研究未发现遗传与环境因素间存在交互作用的原因。因此,将来仍有必要扩大样本进一步深入研究。

    另外,本研究发现高血压和中心性肥胖在昆明汉族T2DM的发病过程中存在交互作用,同时有高血压和中心性肥胖的人群发生T2DM的风险是无高血压和中心性肥胖人群的8.1640倍。也有多项研究报道高血压是糖尿病的危险因素之一[16-18],这可能与内皮功能障碍、炎性与抗炎性因子平衡的紊乱有关[19]。中心性肥胖个体多余脂肪在肝脏、肌肉等非脂肪组织中的积聚会导致胰岛素抵抗,在胰腺中的积聚会产生破坏性脂毒素、游离脂肪酸和炎性介质引起胰岛β细胞的破坏,从而导致糖尿病的发生[20-22]。但高血压和中心性肥胖之间的交互作用增加罹患 T2DM 的机制目前尚不清楚,有待深入研究。

    综上所述,本研究发现在昆明地区汉族人群T2DM的发生中,RANTES基因启动子区-28(rs2280788)与CCR5基因启动子区59029(rs1799987)两个SNP位点间、高血压和中心性肥胖间存在交互作用,会使T2DM的发生风险增加。因此,针对交互作用的危险因素早期筛查糖尿病的高危人群,积极进行环境因素的干预可能对减少或延缓糖尿病的发生与发展具有重要指导意义。

  • 图  1  各组心肌细胞 ROS 水平

    用 ROS 阳性细胞所占百分比表示各组心肌细胞中 ROS 水平。**P < 0.01。

    Figure  1.  The levels of ROS in cardiomyocytes

    图  2  各组心肌细胞 HIF-1α、Sestrin2 蛋白表达及内质网跨膜蛋白:ATF-6、PERK、IRE-1 表达

    *P < 0.05,**P < 0.01。

    Figure  2.  The protein expression of HIF-1α,Sestrin2,ATF-6,PERK,IRE-1 in cardiomyocytes

    图  3  各组心肌细胞 HIF-1-α、Sestrin2、ATF-6、PERK、IRE-1 蛋白表达(×200)

    Figure  3.  The protein expression of Sestrin2,HIF-1α,ATF-6,PERK,IRE-1 in cardiomyocytes (×200)

  • [1] Lu M L,Wang J,Sun Y,et al. Ginsenoside Rg1 attenuates mechanical stress-induced cardiac injury via calcium sensing receptor-related pathway[J]. J Ginseng Res,2021,45(6):683-694. doi: 10.1016/j.jgr.2021.03.006
    [2] Yang C,Jiang G,Xing Y. Protective effect of ginsenosides Rg1 on ischemic injury of cardiomyocytes after acute myocardial infarction[J]. Cardiovasc Toxicol,2022,22(10-11):910-915. doi: 10.1007/s12012-022-09767-1
    [3] Che X,Chai J,Fang Y,et al. Sestrin2 in hypoxia and hypoxia-related diseases[J]. Redox Rep,2021,26(1):111-116. doi: 10.1080/13510002.2021.1948774
    [4] Zhu H,Zhou H. Novel insight into the role of endoplasmic reticulum stress in the pathogenesis of myocardial ischemia-reperfusion injury[J]. Oxid Med Cell Longev,2021,2021:5529810.
    [5] Gao A,Li F,Zhou Q,Chen L. Sestrin2 as a potential therapeutic target for cardiovascular diseases[J]. Pharmacol Res,2020,159:104990. doi: 10.1016/j.phrs.2020.104990
    [6] Kishimoto Y,Aoyama M,Saita E,et al. Association between plasma sestrin2 levels and the presence and severity of coronary artery disease[J]. Dis Markers,2020,2020:7439574.
    [7] Fang C,Yang Z,Shi L,et al. Circulating sestrin levels are increased in hypertension patients[J]. Dis Markers,2020,2020:3787295.
    [8] Kishimoto Y,Saita E,Ohmori R,et al. Plasma sestrin2 concentrations and carotid atherosclerosis[J]. Clin Chim Acta,2020,504:56-59. doi: 10.1016/j.cca.2020.01.020
    [9] Li L,Pan C S,Yan L,et al. Ginsenoside Rg1 ameliorates rat myocardial ischemia-reperfusion injury by modulating energy metabolism pathways[J]. Front Physiol,2018,9:78. doi: 10.3389/fphys.2018.00078
    [10] Lyu T J,Zhang Z X,Chen J,Liu Z J. Ginsenoside Rg1 ameliorates apoptosis,senescence and oxidative stress in ox-LDL-induced vascular endothelial cells via the AMPK/SIRT3/p53 signaling pathway[J]. Exp Ther Med,2022,24(3):545. doi: 10.3892/etm.2022.11482
    [11] Granger D N,Kvietys P R. Reperfusion injury and reactive oxygen species: The evolution of a concept[J]. Redox Biol,2015,6:524-551. doi: 10.1016/j.redox.2015.08.020
    [12] Martindale J J,Fernandez R,Thuerauf D,et al. Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen-regulated form of ATF6[J]. Circ Res,2006,98(9):1186-1193. doi: 10.1161/01.RES.0000220643.65941.8d
    [13] Ruan Y,Zeng J,Jin Q,et al. Endoplasmic reticulum stress serves an important role in cardiac ischemia/reperfusion injury (Review)[J]. Exp Ther Med,2020,20(6):268.
    [14] Liu Y,Li M,Sun M,et al. Sestrin2 is an endogenous antioxidant that improves contractile function in the heart during exposure to ischemia and reperfusion stress[J]. Free Radic Biol Med,2021,165:385-394. doi: 10.1016/j.freeradbiomed.2021.01.048
    [15] Park H W,Park H,Ro S H,et al. Hepatoprotective role of Sestrin2 against chronic ER stress[J]. Nat Commun,2014,5:4233. doi: 10.1038/ncomms5233
    [16] Wang L X,Zhu X M,Luo Y N,et al. Sestrin2 protects dendritic cells against endoplasmic reticulum stress-related apoptosis induced by high mobility group box-1 protein[J]. Cell Death Dis,2020,11(2):125. doi: 10.1038/s41419-020-2324-4
    [17] Zheng J,Chen P,Zhong J,et al. HIF-1α in myocardial ischemia-reperfusion injury (Review)[J]. Mol Med Rep,2021,23(5):352.
    [18] Essler S,Dehne N,Brüne B. Role of sestrin2 in peroxide signaling in macrophages[J]. FEBS Lett,2009,583(21):3531-3535. doi: 10.1016/j.febslet.2009.10.017
    [19] Ala M. Sestrin2 in cancer: a foe or a friend[J]. Biomark Res,2022,10(1):29. doi: 10.1186/s40364-022-00380-6
    [20] Lu C,Jiang Y,Xu W,Bao X. Sestrin2: multifaceted functions,molecular basis,and its implications in liver diseases[J]. Cell Death Dis,2023,14(2):160. doi: 10.1038/s41419-023-05669-4
  • [1] 翟瑜如, 白艳, 李云云.  FGF2通过PERK/EIF2α/ATF4信号通路调节缺氧诱导的巩膜成纤维细胞增殖和胶原代谢, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241004
    [2] 世文彪, 马彩良, 赵亚林, 王峰, 汪菊林, 张米慧.  妊娠期高血压疾病患者外周血IL-1β、IL-2、IL-4、IL-5、IL-6的变化与意义, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230909
    [3] 蔡丽, 杨华英, 程建红, 曹佳, 魏娜.  小儿消化性溃疡治疗期间血清6-Keto-PGF1α、TGF-α、TXB2水平变化及对预后的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230928
    [4] 凌昱, 杨艳飞, 孙晶晶, 张丽峰, 许榛, 崔继华.  1~6岁“喂养问题”儿童不同饮食行为问题与养育人情况的相关影响因素, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210910
    [5] 徐爱萍, 林华, 高丽辉, 李玲, 陈梦威, 王歌, 杨娟, 牛艳芬.  芒果苷元对TGF-β1诱导的HK-2细胞EMT的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210701
    [6] 阮愕舒, 王烁, 苏惠, 尹凤琼, 钱忠义, 杨建宇.  人参皂苷Rg1对2型糖尿病大鼠的肾脏保护作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210625
    [7] 杨松涛, 杨禾丰, 佘睿, 雷雅燕, 杨帆.  不同组分的稀有人参皂苷对牙髓细胞增殖作用的实验研究, 昆明医科大学学报.
    [8] 张凤兰, 赵瑜, 袁婧, 杨璐军, 鲁琳.  人参皂苷Rg3对体外培养小鼠神经干细胞增殖的影响, 昆明医科大学学报.
    [9] 边立功, 钟莲梅, 艾青龙, 陈鑫月, 许文凯, 闫润淇, 邱进, 陆地.  人参皂苷Rg1调控Nrf2在SD大鼠脑缺血再灌注损伤后的抗氧化作用, 昆明医科大学学报.
    [10] 侯云鹤, 张皓鑫, 王依雨, 苏艳梅, 顾丹珊, 林少芳, 杨世昆, 李树德.  人参皂苷Rg1对NAFLD动物模型中同型半胱氨酸的调控机制, 昆明医科大学学报.
    [11] 李瑞, 陈晨, 邹澄, 赵庆, 郭巍怡, 黄丽, 杜如男, 杨为民.  一个新颖的人参皂苷元衍生物及其抗肿瘤活性(英文), 昆明医科大学学报.
    [12] 李俊杰.  脑缺血-再灌注损伤大鼠脑组织中TNF-α,IL-6和IL-1β的表达, 昆明医科大学学报.
    [13] 罗夙医.  三七皂苷Rg1对慢性应激大鼠脑组织神经颗粒素表达的影响, 昆明医科大学学报.
    [14] 李源.  人参皂苷Rg1对AD大鼠脑片模型Bcl-2表达的影响, 昆明医科大学学报.
    [15] 曾瑾.  人参皂苷Rg3、IFN-α治疗血吸虫病肝纤维化的肝脏电镜观察, 昆明医科大学学报.
    [16] 徐镇平.  芒果苷代谢产物1,3,6,7-四羟基三口酮的全合成, 昆明医科大学学报.
    [17] 曾瑾.  人参皂苷Rg3、干扰素α联合与单一用药治疗血吸虫病肝纤维化疗效对比, 昆明医科大学学报.
    [18] 三七原人参三醇型总皂苷和人参三醇的4个衍生物的合成研究, 昆明医科大学学报.
    [19] 20(R)-人参皂苷Rg3抗血小板活化因子诱导血管内皮细胞损伤的保护作用, 昆明医科大学学报.
    [20] 梁平.  人参皂苷Rg1脂质体的制备及稳定性研究, 昆明医科大学学报.
  • 期刊类型引用(1)

    1. 王鹏,冯三江,金晓,连烨. 老年高血压性脑出血患者miR-155、CCR5、PDCD4表达变化及临床意义. 中国老年学杂志. 2025(03): 533-536 . 百度学术

    其他类型引用(0)

  • 加载中
图(3)
计量
  • 文章访问数:  2935
  • HTML全文浏览量:  1763
  • PDF下载量:  6
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-03-16
  • 网络出版日期:  2023-06-19
  • 刊出日期:  2023-06-25

目录

/

返回文章
返回