Research Progress on Intestinal Microflora and Non-alcoholic Fatty Liver Disease in Children
-
摘要: 儿童非酒精性脂肪性肝病(NAFLD)是全球儿童最常见慢性肝脏疾病,其发病率随着全球肥胖的流行而逐步上升,但缺乏规范、有效的治疗方案。目前其发病机制尚未完全阐明,在众多致病因素中,肠道菌群失调是目前的研究热点,为NAFLD的诊断、预防和治疗开辟了新的方向,但目前对儿童NAFLD的治疗仍在探索中。对近年来肠道菌群及其代谢产物介导儿童NAFLD 的可能机制以及以肠道菌群为干预靶点的诊治方法进行综述,为儿童NAFLD的治疗提供一些新的思路及方法。Abstract: Pediatric non-alcoholic fatty liver disease (NAFLD) is the most common cause of pediatric chronic liver disease worldwide, and its incidence is gradually increasing with the global epidemic of obesity, but there is no standardized and effective treatment plan. At present, the pathogenesis of NAFLD has not been fully elucidated, Among many pathogenic factors, intestinal microflora disorder is the current research hotspot, which opens up a new direction for the diagnosis, prevention, and treatment of NAFLD. However, the treatment of NAFLD in children is still being explored. In this paper, the possible mechanism of intestinal flora and its metabolites mediating NAFLD in children in recent years was reviewed, as well as the diagnosis and treatment methods using intestinal flora as an intervention target, hoping to provide some new ideas and methods for the treatment of NAFLD in children.
-
Key words:
- Non-alcoholic fatty liver disease /
- Children /
- Gut microbiota /
- Gut-liver axis /
- Targeted therapy
-
[1] 中华医学会儿科学分会内分泌遗传代谢学组,中华医学会儿科学分会消化学组,中华医学会儿科学分会青春期医学专业委员会,等. 儿童非酒精性脂肪肝病诊断与治疗专家共识[J]. 中国实用儿科杂志,2018,33(7):487-492. [2] Schwimmer J B. Clinical advances in pediatric nonalcoholic fatty liver disease[J]. Hepatology,2016,63(5):1718-1725. doi: 10.1002/hep.28441 [3] Moran J R,Ghishan F K,Halter S A,et al. Steatohepatitis in obese children: A cause of chronic liver dysfunction[J]. Am J Gastroenterol,1983,78(6):374-377. [4] Zhou F,Zhou J,Wang W,et al. Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018: A systematic review and meta-analysis[J]. Hepatology,2019,70(4):1119-1133. doi: 10.1002/hep.30702 [5] Anderson E L,Howe L D,Jones H E,et al. The prevalence of non-alcoholic fatty liver disease in children and adolescents: A systematic review and meta-analysis[J]. PLoS One,2015,10(10):e0140908. doi: 10.1371/journal.pone.0140908 [6] Zhu Y,Liu R,Shen Z,et al. Combination of luteolin and lycopene effectively protect against the "two-hit" in NAFLD through Sirt1/AMPK signal pathway[J]. Life Sci,2020,256:117990. doi: 10.1016/j.lfs.2020.117990 [7] Fang Y L,Chen H,Wang C L,et al. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From "two hit theory" to "multiple hit model"[J]. World J Gastroenterol,2018,24(27):2974-2983. doi: 10.3748/wjg.v24.i27.2974 [8] Mills S,Stanton C,Lane J A,et al. Precision nutrition and the microbiome,part I: Current state of the science[J]. Nutrients,2019,11(4):923. doi: 10.3390/nu11040923 [9] Tun H M,Bridgman S L,Chari R,et al. Roles of birth mode and infant gut microbiota in intergenerational transmission of overweight and obesity from mother to offspring[J]. JAMA Pediatr,2018,172(4):368-377. doi: 10.1001/jamapediatrics.2017.5535 [10] Sarkar A,Yoo J Y,Valeria Ozorio Dutra S,et al. The association between early-life gut microbiota and long-term health and diseases[J]. J Clin Med,2021,10(3):459. doi: 10.3390/jcm10030459 [11] Hollister E B,Riehle K,Luna R A,et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome[J]. Microbiome,2015,3:36. doi: 10.1186/s40168-015-0101-x [12] Singh R,Zogg H,Wei L,et al. Gut microbial dysbiosis in the pathogenesis of gastrointestinal dysmotility and metabolic disorders[J]. J Neurogastroenterol Motil,2021,27(1):19-34. doi: 10.5056/jnm20149 [13] Oliphant K,Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health[J]. Microbiome,2019,7(1):91. doi: 10.1186/s40168-019-0704-8 [14] Zhao Z H,Lai J K,Qiao L,et al. Role of gut microbial metabolites in nonalcoholic fatty liver disease[J]. J Dig Dis,2019,20(4):181-188. doi: 10.1111/1751-2980.12709 [15] 陈恬,秦琴,刘善荣. 肠道菌群在肝病领域的研究现状及应用展望[J]. 中华检验医学杂志,2019,42(3):170-175. [16] Volta U,Bonazzi C,Bianchi F B,et al. IgA antibodies to dietary antigens in liver cirrhosis[J]. Ric Clin Lab,1987,17(3):235-242. doi: 10.1007/BF02912537 [17] Tripathi A,Debelius J,Brenner D A,et al. Publisher correction: The gut-liver axis and the intersection with the microbiome[J]. Nat Rev Gastroenterol Hepatol,2018,15(12):785. doi: 10.1038/s41575-018-0031-8 [18] De Munck TJI,Xu P,Verwijs HJA,et al. Intestinal permeability in human nonalcoholic fatty liver disease: A systematic review and meta-analysis[J]. Liver Int,2020,40(12):2906-2916. doi: 10.1111/liv.14696 [19] 张晶. 肠道微生物与儿童非酒精性脂肪性肝病关系的研究进展[J]. 国际儿科学杂志,2020,47(8):522-527. [20] Kuang L,Zhou W,Jiang Y. Association of small intestinal bacterial overgrowth with nonalcoholic fatty liver disease in children: A meta-analysis[J]. PLoS One,2021,16(12):e0260479. doi: 10.1371/journal.pone.0260479 [21] Zhu L,Baker S S,Gill C,et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A connection between endogenous alcohol and NASH[J]. Hepatology,2013,57(2):601-609. doi: 10.1002/hep.26093 [22] Del Chierico F,Nobili V,Vernocchi P,et al. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach[J]. Hepatology,2017,65(2):451-464. doi: 10.1002/hep.28572 [23] Schwimmer J B,Johnson J S,Angeles J E,et al. Microbiome signatures associated with steatohepatitis and moderate to severe fibrosis in children with nonalcoholic fatty liver disease[J]. Gastroenterology,2019,157(4):1109-1122. doi: 10.1053/j.gastro.2019.06.028 [24] 凌剑蓉,章殷捷,张智慧,等. 非酒精性脂肪性肝病儿童肠道菌群特异性的变化[J]. 中华儿科杂志,2018,56(11):850-855. [25] Ley R E,Turnbaugh P J,Klein S,et al. Microbial ecology: Human gut microbes associated with obesity[J]. Nature,2006,444(7122):1022-1023. doi: 10.1038/4441022a [26] den Besten G,Lange K,Havinga R,et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids[J]. Am J Physiol Gastrointest Liver Physiol,2013,305(12):G900-G910. doi: 10.1152/ajpgi.00265.2013 [27] Cani P D,Van Hul M,Lefort C,et al. Microbial regulation of organismal energy homeostasis[J]. Nat Metab,2019,1(1):34-46. doi: 10.1038/s42255-018-0017-4 [28] 贺文娟,钟燕. 肠道菌群及其代谢产物与肥胖的关系[J]. 国际内分泌代谢杂志,2018,38(1):40-43. [29] Michail S,Lin M,Frey M R,et al. Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease[J]. FEMS Microbiol Ecol,2015,91(2):1-9. [30] Delzenne N M,Knudsen C,Beaumont M,et al. Contribution of the gut microbiota to the regulation of host metabolism and energy balance: a focus on the gut-liver axis[J]. Proc Nutr Soc,2019,78(3):319-328. doi: 10.1017/S0029665118002756 [31] de Medeiros IC,de Lima JG. Is nonalcoholic fatty liver disease an endogenous alcoholic fatty liver disease? - A mechanistic hypothesis[J]. Med Hypotheses,2015,85(2):148-152. doi: 10.1016/j.mehy.2015.04.021 [32] Engstler A J,Aumiller T,Degen C,et al. Insulin resistance alters hepatic ethanol metabolism: Studies in mice and children with non-alcoholic fatty liver disease[J]. Gut,2016,65(9):1564-1571. doi: 10.1136/gutjnl-2014-308379 [33] Chen J,Zheng M,Liu J,et al. Ratio of conjugated chenodeoxycholic to muricholic acids is associated with severity of nonalcoholic steatohepatitis[J]. Obesity (Silver Spring),2019,27(12):2055-2066. doi: 10.1002/oby.22627 [34] Clifford B L,Sedgeman L R,Williams K J,et al. FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption[J]. Cell Metab,2021,33(8):1671-1684. doi: 10.1016/j.cmet.2021.06.012 [35] Chávez-Talavera O,Tailleux A,Lefebvre P,et al. Bile acid control of metabolism and inflammation in obesity,type 2 diabetes,dyslipidemia,and nonalcoholic fatty liver disease[J]. Gastroenterology,2017,152(7):1679-1694. doi: 10.1053/j.gastro.2017.01.055 [36] Chiang J Y L,Ferrell J M. Bile acids as metabolic regulators and nutrient sensors[J]. Annu Rev Nutr,2019,39:175-200. doi: 10.1146/annurev-nutr-082018-124344 [37] Jiao N,Baker S S,Chapa-Rodriguez A,et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD[J]. Gut,2018,67(10):1881-1891. doi: 10.1136/gutjnl-2017-314307 [38] Shi Z,Chen G,Cao Z,et al. Gut microbiota and its metabolite deoxycholic acid contribute to sucralose consumption-induced nonalcoholic fatty liver disease[J]. J Agric Food Chem,2021,69(13):3982-3991. doi: 10.1021/acs.jafc.0c07467 [39] Nimer N,Choucair I,Wang Z,et al. Bile acids profile,histopathological indices and genetic variants for non-alcoholic fatty liver disease progression[J]. Metabolism,2021,116:154457. doi: 10.1016/j.metabol.2020.154457 [40] Ticho A L,Malhotra P,Dudeja P K,et al. Intestinal absorption of bile acids in health and disease[J]. Compr Physiol,2019,10(1):21-56. [41] Craciun S,Balskus E P. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme[J]. Proc Natl Acad Sci U S A,2012,109(52):21307-21312. doi: 10.1073/pnas.1215689109 [42] Sherriff J L,O'Sullivan T A,Properzi C,et al. Choline,its potential role in nonalcoholic fatty liver disease,and the case for human and bacterial genes[J]. Adv Nutr,2016,7(1):5-13. doi: 10.3945/an.114.007955 [43] Ji Y,Yin Y,Sun L,et al. The molecular and mechanistic insights based on gut-liver axis: Nutritional target for non-alcoholic fatty liver disease (NAFLD) improvement[J]. Int J Mol Sci,2020,21(9):3066. doi: 10.3390/ijms21093066 [44] Tan X,Liu Y,Long J,et al. Trimethylamine n-oxide aggravates liver steatosis through modulation of bile acid metabolism and inhibition of farnesoid X receptor signaling in nonalcoholic fatty liver disease[J]. Mol Nutr Food Res,2019,63(17):e1900257. doi: 10.1002/mnfr.201900257 [45] Ye J Z,Li Y T,Wu W R,et al. Dynamic alterations in the gut microbiota and metabolome during the development of methionine-choline-deficient diet-induced nonalcoholic steatohepatitis[J]. World J Gastroenterol,2018,24(23):2468-2481. doi: 10.3748/wjg.v24.i23.2468 [46] Gao X,Liu X,Xu J,et al. Dietary trimethylamine n-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet[J]. J Biosci Bioeng,2014,118(4):476-481. doi: 10.1016/j.jbiosc.2014.03.001 [47] Dumas M E,Rothwell A R,Hoyles L,et al. Microbial-host co-metabolites are prodromal markers predicting phenotypic heterogeneity in behavior,obesity,and impaired glucose tolerance[J]. Cell Rep,2017,20(1):136-148. doi: 10.1016/j.celrep.2017.06.039 [48] Dumas M E,Barton R H,Toye A,et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice[J]. Proc Natl Acad Sci U S A,2006,103(33):12511-12516. doi: 10.1073/pnas.0601056103 [49] S Lavekar A,V Raje D,Manohar T,et al. Role of probiotics in the treatment of nonalcoholic fatty liver disease: A meta-analysis[J]. Euroasian J Hepatogastroenterol,2017,7(2):130-137. [50] Fei N,Bruneau A,Zhang X,et al. Endotoxin producers overgrowing in human gut microbiota as the causative agents for nonalcoholic fatty liver disease[J]. mBio,2020,11(1):e03263. [51] Kåhrström C T,Pariente N,Weiss U. Intestinal microbiota in health and disease[J]. Nature,2016,535(7610):47. doi: 10.1038/535047a [52] Chen Y,Jin Y,Stanton C,et al. Alleviation effects of bifidobacterium breve on dss-induced colitis depends on intestinal tract barrier maintenance and gut microbiota modulation[J]. Eur J Nutr,2021,60(1):369-387. doi: 10.1007/s00394-020-02252-x [53] Sun Q,Zhang S,Liu X,et al. Effects of a probiotic intervention on escherichia coli and high-fat diet-induced intestinal microbiota imbalance[J]. Appl Microbiol Biotechnol,2020,104(3):1243-1257. doi: 10.1007/s00253-019-10304-4 [54] Alisi A,Bedogni G,Baviera G,et al. Randomised clinical trial: The beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis[J]. Aliment Pharmacol Ther,2014,39(11):1276-1285. doi: 10.1111/apt.12758 [55] Famouri F,Shariat Z,Hashemipour M,et al. Effects of probiotics on nonalcoholic fatty liver disease in obese children and adolescents[J]. J Pediatr Gastroenterol Nutr,2017,64(3):413-417. doi: 10.1097/MPG.0000000000001422 [56] Singh S P,Jadaun J S,Narnoliya L K,et al. Prebiotic oligosaccharides: Special focus on fructooligosaccharides,its biosynthesis and bioactivity[J]. Appl Biochem Biotechnol,2017,183(2):613-635. doi: 10.1007/s12010-017-2605-2 [57] Nicolucci A C,Hume M P,Martínez I,et al. Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity[J]. Gastroenterology,2017,153(3):711-722. doi: 10.1053/j.gastro.2017.05.055 [58] Ho J,Nicolucci A C,Virtanen H,et al. Effect of prebiotic on microbiota,intestinal permeability,and glycemic control in children with type 1 diabetes[J]. J Clin Endocrinol Metab,2019,104(10):4427-4440. doi: 10.1210/jc.2019-00481 [59] Abdel-Razik A,Mousa N,Shabana W,et al. Rifaximin in nonalcoholic fatty liver disease: Hit multiple targets with a single shot[J]. Eur J Gastroenterol Hepatol,2018,30(10):1237-1246. doi: 10.1097/MEG.0000000000001232 [60] Jian J,Nie MT,Xiang B,et al. Rifaximin ameliorates non-alcoholic steatohepatitis in mice through regulating gut microbiome-related bile acids[J]. Front Pharmacol,2022,13:841132. doi: 10.3389/fphar.2022.841132 [61] Hwang I,Park Y J,Kim Y R,et al. Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity[J]. FASEB J,2015,29(6):2397-2411. doi: 10.1096/fj.14-265983 [62] 中华医学会肠外肠内营养学分会,中国国际医疗保健促进交流会加速康复外科分会,中国微生态治疗创新联盟,等. 菌群移植标准化方法学的建立与临床应用中国专家共识[J]. 中华胃肠外科杂志,2020,23(Z1):5-13. doi: 10.3760/cma.j.cn.441530-20200420-00231 [63] Zhou D,Pan Q,Shen F,et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota[J]. Sci Rep,2017,7(1):1529. doi: 10.1038/s41598-017-01751-y [64] Craven L,Rahman A,Nair Parvathy S,et al. Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: A randomized control trial[J]. Am J Gastroenterol,2020,115(7):1055-1065. doi: 10.14309/ajg.0000000000000661 [65] Leong K S W,Jayasinghe T N,Wilson B C,et al. Effects of fecal microbiome transfer in adolescents with obesity: The gut bugs randomized controlled trial[J]. JAMA Netw Open,2020,3(12):e2030415. doi: 10.1001/jamanetworkopen.2020.30415 [66] 杨蕊旭,周达,范建高. 靶向肠道菌群代谢产物防治非酒精性脂肪性肝病[J]. 实用肝脏病杂志,2017,20(6):643-646. [67] 周达,范建高. 肠道菌群-SCFAs在代谢性疾病中的作用研究[J]. 胃肠病学和肝病学杂志,2016,25(3):330-332. [68] Deng M,Qu F,Chen L,et al. SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD[J]. J Endocrinol,2020,245(3):425-437. doi: 10.1530/JOE-20-0018 [69] Ye J,Lv L,Wu W,et al. Butyrate protects mice against methionine-choline-deficient diet-induced non-alcoholic steatohepatitis by improving gut barrier function,attenuating inflammation and reducing endotoxin levels[J]. Front Microbiol,2018,9:1967. doi: 10.3389/fmicb.2018.01967 [70] Thomas C,Gioiello A,Noriega L,et al. TGR5-mediated bile acid sensing controls glucose homeostasis[J]. Cell Metab,2009,10(3):167-177. doi: 10.1016/j.cmet.2009.08.001 [71] Jia W,Xie G,Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J]. Nat Rev Gastroenterol Hepatol,2018,15(2):111-128. doi: 10.1038/nrgastro.2017.119 [72] Jiang C,Xie C,Lv Y,et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction[J]. Nat Commun,2015,6:10166. doi: 10.1038/ncomms10166
点击查看大图
计量
- 文章访问数: 2860
- HTML全文浏览量: 2218
- PDF下载量: 23
- 被引次数: 0