留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肠道菌群与儿童非酒精性脂肪性肝病的研究进展

李露 田云粉

李露, 田云粉. 肠道菌群与儿童非酒精性脂肪性肝病的研究进展[J]. 昆明医科大学学报, 2023, 44(7): 148-155. doi: 10.12259/j.issn.2095-610X.S20230708
引用本文: 李露, 田云粉. 肠道菌群与儿童非酒精性脂肪性肝病的研究进展[J]. 昆明医科大学学报, 2023, 44(7): 148-155. doi: 10.12259/j.issn.2095-610X.S20230708
Lu LI, Yunfen TIAN. Research Progress on Intestinal Microflora and Non-alcoholic Fatty Liver Disease in Children[J]. Journal of Kunming Medical University, 2023, 44(7): 148-155. doi: 10.12259/j.issn.2095-610X.S20230708
Citation: Lu LI, Yunfen TIAN. Research Progress on Intestinal Microflora and Non-alcoholic Fatty Liver Disease in Children[J]. Journal of Kunming Medical University, 2023, 44(7): 148-155. doi: 10.12259/j.issn.2095-610X.S20230708

肠道菌群与儿童非酒精性脂肪性肝病的研究进展

doi: 10.12259/j.issn.2095-610X.S20230708
基金项目: 国家自然科学基金资助项目(81760110);云南省科技厅-昆明医科大学应用基础研究联合专项基金资助项目(202201AY070001-253)
详细信息
    作者简介:

    李露(1995~),女,四川资阳人,在读硕士研究生,主要从事儿科消化临床工作

    通讯作者:

    田云粉,E-mail:136506595@qq.com

  • 中图分类号: R725.7

Research Progress on Intestinal Microflora and Non-alcoholic Fatty Liver Disease in Children

  • 摘要: 儿童非酒精性脂肪性肝病(NAFLD)是全球儿童最常见慢性肝脏疾病,其发病率随着全球肥胖的流行而逐步上升,但缺乏规范、有效的治疗方案。目前其发病机制尚未完全阐明,在众多致病因素中,肠道菌群失调是目前的研究热点,为NAFLD的诊断、预防和治疗开辟了新的方向,但目前对儿童NAFLD的治疗仍在探索中。对近年来肠道菌群及其代谢产物介导儿童NAFLD 的可能机制以及以肠道菌群为干预靶点的诊治方法进行综述,为儿童NAFLD的治疗提供一些新的思路及方法。
  • [1] 中华医学会儿科学分会内分泌遗传代谢学组,中华医学会儿科学分会消化学组,中华医学会儿科学分会青春期医学专业委员会,等. 儿童非酒精性脂肪肝病诊断与治疗专家共识[J]. 中国实用儿科杂志,2018,33(7):487-492.
    [2] Schwimmer J B. Clinical advances in pediatric nonalcoholic fatty liver disease[J]. Hepatology,2016,63(5):1718-1725. doi: 10.1002/hep.28441
    [3] Moran J R,Ghishan F K,Halter S A,et al. Steatohepatitis in obese children: A cause of chronic liver dysfunction[J]. Am J Gastroenterol,1983,78(6):374-377.
    [4] Zhou F,Zhou J,Wang W,et al. Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018: A systematic review and meta-analysis[J]. Hepatology,2019,70(4):1119-1133. doi: 10.1002/hep.30702
    [5] Anderson E L,Howe L D,Jones H E,et al. The prevalence of non-alcoholic fatty liver disease in children and adolescents: A systematic review and meta-analysis[J]. PLoS One,2015,10(10):e0140908. doi: 10.1371/journal.pone.0140908
    [6] Zhu Y,Liu R,Shen Z,et al. Combination of luteolin and lycopene effectively protect against the "two-hit" in NAFLD through Sirt1/AMPK signal pathway[J]. Life Sci,2020,256:117990. doi: 10.1016/j.lfs.2020.117990
    [7] Fang Y L,Chen H,Wang C L,et al. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From "two hit theory" to "multiple hit model"[J]. World J Gastroenterol,2018,24(27):2974-2983. doi: 10.3748/wjg.v24.i27.2974
    [8] Mills S,Stanton C,Lane J A,et al. Precision nutrition and the microbiome,part I: Current state of the science[J]. Nutrients,2019,11(4):923. doi: 10.3390/nu11040923
    [9] Tun H M,Bridgman S L,Chari R,et al. Roles of birth mode and infant gut microbiota in intergenerational transmission of overweight and obesity from mother to offspring[J]. JAMA Pediatr,2018,172(4):368-377. doi: 10.1001/jamapediatrics.2017.5535
    [10] Sarkar A,Yoo J Y,Valeria Ozorio Dutra S,et al. The association between early-life gut microbiota and long-term health and diseases[J]. J Clin Med,2021,10(3):459. doi: 10.3390/jcm10030459
    [11] Hollister E B,Riehle K,Luna R A,et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome[J]. Microbiome,2015,3:36. doi: 10.1186/s40168-015-0101-x
    [12] Singh R,Zogg H,Wei L,et al. Gut microbial dysbiosis in the pathogenesis of gastrointestinal dysmotility and metabolic disorders[J]. J Neurogastroenterol Motil,2021,27(1):19-34. doi: 10.5056/jnm20149
    [13] Oliphant K,Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health[J]. Microbiome,2019,7(1):91. doi: 10.1186/s40168-019-0704-8
    [14] Zhao Z H,Lai J K,Qiao L,et al. Role of gut microbial metabolites in nonalcoholic fatty liver disease[J]. J Dig Dis,2019,20(4):181-188. doi: 10.1111/1751-2980.12709
    [15] 陈恬,秦琴,刘善荣. 肠道菌群在肝病领域的研究现状及应用展望[J]. 中华检验医学杂志,2019,42(3):170-175.
    [16] Volta U,Bonazzi C,Bianchi F B,et al. IgA antibodies to dietary antigens in liver cirrhosis[J]. Ric Clin Lab,1987,17(3):235-242. doi: 10.1007/BF02912537
    [17] Tripathi A,Debelius J,Brenner D A,et al. Publisher correction: The gut-liver axis and the intersection with the microbiome[J]. Nat Rev Gastroenterol Hepatol,2018,15(12):785. doi: 10.1038/s41575-018-0031-8
    [18] De Munck TJI,Xu P,Verwijs HJA,et al. Intestinal permeability in human nonalcoholic fatty liver disease: A systematic review and meta-analysis[J]. Liver Int,2020,40(12):2906-2916. doi: 10.1111/liv.14696
    [19] 张晶. 肠道微生物与儿童非酒精性脂肪性肝病关系的研究进展[J]. 国际儿科学杂志,2020,47(8):522-527.
    [20] Kuang L,Zhou W,Jiang Y. Association of small intestinal bacterial overgrowth with nonalcoholic fatty liver disease in children: A meta-analysis[J]. PLoS One,2021,16(12):e0260479. doi: 10.1371/journal.pone.0260479
    [21] Zhu L,Baker S S,Gill C,et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A connection between endogenous alcohol and NASH[J]. Hepatology,2013,57(2):601-609. doi: 10.1002/hep.26093
    [22] Del Chierico F,Nobili V,Vernocchi P,et al. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach[J]. Hepatology,2017,65(2):451-464. doi: 10.1002/hep.28572
    [23] Schwimmer J B,Johnson J S,Angeles J E,et al. Microbiome signatures associated with steatohepatitis and moderate to severe fibrosis in children with nonalcoholic fatty liver disease[J]. Gastroenterology,2019,157(4):1109-1122. doi: 10.1053/j.gastro.2019.06.028
    [24] 凌剑蓉,章殷捷,张智慧,等. 非酒精性脂肪性肝病儿童肠道菌群特异性的变化[J]. 中华儿科杂志,2018,56(11):850-855.
    [25] Ley R E,Turnbaugh P J,Klein S,et al. Microbial ecology: Human gut microbes associated with obesity[J]. Nature,2006,444(7122):1022-1023. doi: 10.1038/4441022a
    [26] den Besten G,Lange K,Havinga R,et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids[J]. Am J Physiol Gastrointest Liver Physiol,2013,305(12):G900-G910. doi: 10.1152/ajpgi.00265.2013
    [27] Cani P D,Van Hul M,Lefort C,et al. Microbial regulation of organismal energy homeostasis[J]. Nat Metab,2019,1(1):34-46. doi: 10.1038/s42255-018-0017-4
    [28] 贺文娟,钟燕. 肠道菌群及其代谢产物与肥胖的关系[J]. 国际内分泌代谢杂志,2018,38(1):40-43.
    [29] Michail S,Lin M,Frey M R,et al. Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease[J]. FEMS Microbiol Ecol,2015,91(2):1-9.
    [30] Delzenne N M,Knudsen C,Beaumont M,et al. Contribution of the gut microbiota to the regulation of host metabolism and energy balance: a focus on the gut-liver axis[J]. Proc Nutr Soc,2019,78(3):319-328. doi: 10.1017/S0029665118002756
    [31] de Medeiros IC,de Lima JG. Is nonalcoholic fatty liver disease an endogenous alcoholic fatty liver disease? - A mechanistic hypothesis[J]. Med Hypotheses,2015,85(2):148-152. doi: 10.1016/j.mehy.2015.04.021
    [32] Engstler A J,Aumiller T,Degen C,et al. Insulin resistance alters hepatic ethanol metabolism: Studies in mice and children with non-alcoholic fatty liver disease[J]. Gut,2016,65(9):1564-1571. doi: 10.1136/gutjnl-2014-308379
    [33] Chen J,Zheng M,Liu J,et al. Ratio of conjugated chenodeoxycholic to muricholic acids is associated with severity of nonalcoholic steatohepatitis[J]. Obesity (Silver Spring),2019,27(12):2055-2066. doi: 10.1002/oby.22627
    [34] Clifford B L,Sedgeman L R,Williams K J,et al. FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption[J]. Cell Metab,2021,33(8):1671-1684. doi: 10.1016/j.cmet.2021.06.012
    [35] Chávez-Talavera O,Tailleux A,Lefebvre P,et al. Bile acid control of metabolism and inflammation in obesity,type 2 diabetes,dyslipidemia,and nonalcoholic fatty liver disease[J]. Gastroenterology,2017,152(7):1679-1694. doi: 10.1053/j.gastro.2017.01.055
    [36] Chiang J Y L,Ferrell J M. Bile acids as metabolic regulators and nutrient sensors[J]. Annu Rev Nutr,2019,39:175-200. doi: 10.1146/annurev-nutr-082018-124344
    [37] Jiao N,Baker S S,Chapa-Rodriguez A,et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD[J]. Gut,2018,67(10):1881-1891. doi: 10.1136/gutjnl-2017-314307
    [38] Shi Z,Chen G,Cao Z,et al. Gut microbiota and its metabolite deoxycholic acid contribute to sucralose consumption-induced nonalcoholic fatty liver disease[J]. J Agric Food Chem,2021,69(13):3982-3991. doi: 10.1021/acs.jafc.0c07467
    [39] Nimer N,Choucair I,Wang Z,et al. Bile acids profile,histopathological indices and genetic variants for non-alcoholic fatty liver disease progression[J]. Metabolism,2021,116:154457. doi: 10.1016/j.metabol.2020.154457
    [40] Ticho A L,Malhotra P,Dudeja P K,et al. Intestinal absorption of bile acids in health and disease[J]. Compr Physiol,2019,10(1):21-56.
    [41] Craciun S,Balskus E P. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme[J]. Proc Natl Acad Sci U S A,2012,109(52):21307-21312. doi: 10.1073/pnas.1215689109
    [42] Sherriff J L,O'Sullivan T A,Properzi C,et al. Choline,its potential role in nonalcoholic fatty liver disease,and the case for human and bacterial genes[J]. Adv Nutr,2016,7(1):5-13. doi: 10.3945/an.114.007955
    [43] Ji Y,Yin Y,Sun L,et al. The molecular and mechanistic insights based on gut-liver axis: Nutritional target for non-alcoholic fatty liver disease (NAFLD) improvement[J]. Int J Mol Sci,2020,21(9):3066. doi: 10.3390/ijms21093066
    [44] Tan X,Liu Y,Long J,et al. Trimethylamine n-oxide aggravates liver steatosis through modulation of bile acid metabolism and inhibition of farnesoid X receptor signaling in nonalcoholic fatty liver disease[J]. Mol Nutr Food Res,2019,63(17):e1900257. doi: 10.1002/mnfr.201900257
    [45] Ye J Z,Li Y T,Wu W R,et al. Dynamic alterations in the gut microbiota and metabolome during the development of methionine-choline-deficient diet-induced nonalcoholic steatohepatitis[J]. World J Gastroenterol,2018,24(23):2468-2481. doi: 10.3748/wjg.v24.i23.2468
    [46] Gao X,Liu X,Xu J,et al. Dietary trimethylamine n-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet[J]. J Biosci Bioeng,2014,118(4):476-481. doi: 10.1016/j.jbiosc.2014.03.001
    [47] Dumas M E,Rothwell A R,Hoyles L,et al. Microbial-host co-metabolites are prodromal markers predicting phenotypic heterogeneity in behavior,obesity,and impaired glucose tolerance[J]. Cell Rep,2017,20(1):136-148. doi: 10.1016/j.celrep.2017.06.039
    [48] Dumas M E,Barton R H,Toye A,et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice[J]. Proc Natl Acad Sci U S A,2006,103(33):12511-12516. doi: 10.1073/pnas.0601056103
    [49] S Lavekar A,V Raje D,Manohar T,et al. Role of probiotics in the treatment of nonalcoholic fatty liver disease: A meta-analysis[J]. Euroasian J Hepatogastroenterol,2017,7(2):130-137.
    [50] Fei N,Bruneau A,Zhang X,et al. Endotoxin producers overgrowing in human gut microbiota as the causative agents for nonalcoholic fatty liver disease[J]. mBio,2020,11(1):e03263.
    [51] Kåhrström C T,Pariente N,Weiss U. Intestinal microbiota in health and disease[J]. Nature,2016,535(7610):47. doi: 10.1038/535047a
    [52] Chen Y,Jin Y,Stanton C,et al. Alleviation effects of bifidobacterium breve on dss-induced colitis depends on intestinal tract barrier maintenance and gut microbiota modulation[J]. Eur J Nutr,2021,60(1):369-387. doi: 10.1007/s00394-020-02252-x
    [53] Sun Q,Zhang S,Liu X,et al. Effects of a probiotic intervention on escherichia coli and high-fat diet-induced intestinal microbiota imbalance[J]. Appl Microbiol Biotechnol,2020,104(3):1243-1257. doi: 10.1007/s00253-019-10304-4
    [54] Alisi A,Bedogni G,Baviera G,et al. Randomised clinical trial: The beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis[J]. Aliment Pharmacol Ther,2014,39(11):1276-1285. doi: 10.1111/apt.12758
    [55] Famouri F,Shariat Z,Hashemipour M,et al. Effects of probiotics on nonalcoholic fatty liver disease in obese children and adolescents[J]. J Pediatr Gastroenterol Nutr,2017,64(3):413-417. doi: 10.1097/MPG.0000000000001422
    [56] Singh S P,Jadaun J S,Narnoliya L K,et al. Prebiotic oligosaccharides: Special focus on fructooligosaccharides,its biosynthesis and bioactivity[J]. Appl Biochem Biotechnol,2017,183(2):613-635. doi: 10.1007/s12010-017-2605-2
    [57] Nicolucci A C,Hume M P,Martínez I,et al. Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity[J]. Gastroenterology,2017,153(3):711-722. doi: 10.1053/j.gastro.2017.05.055
    [58] Ho J,Nicolucci A C,Virtanen H,et al. Effect of prebiotic on microbiota,intestinal permeability,and glycemic control in children with type 1 diabetes[J]. J Clin Endocrinol Metab,2019,104(10):4427-4440. doi: 10.1210/jc.2019-00481
    [59] Abdel-Razik A,Mousa N,Shabana W,et al. Rifaximin in nonalcoholic fatty liver disease: Hit multiple targets with a single shot[J]. Eur J Gastroenterol Hepatol,2018,30(10):1237-1246. doi: 10.1097/MEG.0000000000001232
    [60] Jian J,Nie MT,Xiang B,et al. Rifaximin ameliorates non-alcoholic steatohepatitis in mice through regulating gut microbiome-related bile acids[J]. Front Pharmacol,2022,13:841132. doi: 10.3389/fphar.2022.841132
    [61] Hwang I,Park Y J,Kim Y R,et al. Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity[J]. FASEB J,2015,29(6):2397-2411. doi: 10.1096/fj.14-265983
    [62] 中华医学会肠外肠内营养学分会,中国国际医疗保健促进交流会加速康复外科分会,中国微生态治疗创新联盟,等. 菌群移植标准化方法学的建立与临床应用中国专家共识[J]. 中华胃肠外科杂志,2020,23(Z1):5-13. doi: 10.3760/cma.j.cn.441530-20200420-00231
    [63] Zhou D,Pan Q,Shen F,et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota[J]. Sci Rep,2017,7(1):1529. doi: 10.1038/s41598-017-01751-y
    [64] Craven L,Rahman A,Nair Parvathy S,et al. Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: A randomized control trial[J]. Am J Gastroenterol,2020,115(7):1055-1065. doi: 10.14309/ajg.0000000000000661
    [65] Leong K S W,Jayasinghe T N,Wilson B C,et al. Effects of fecal microbiome transfer in adolescents with obesity: The gut bugs randomized controlled trial[J]. JAMA Netw Open,2020,3(12):e2030415. doi: 10.1001/jamanetworkopen.2020.30415
    [66] 杨蕊旭,周达,范建高. 靶向肠道菌群代谢产物防治非酒精性脂肪性肝病[J]. 实用肝脏病杂志,2017,20(6):643-646.
    [67] 周达,范建高. 肠道菌群-SCFAs在代谢性疾病中的作用研究[J]. 胃肠病学和肝病学杂志,2016,25(3):330-332.
    [68] Deng M,Qu F,Chen L,et al. SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD[J]. J Endocrinol,2020,245(3):425-437. doi: 10.1530/JOE-20-0018
    [69] Ye J,Lv L,Wu W,et al. Butyrate protects mice against methionine-choline-deficient diet-induced non-alcoholic steatohepatitis by improving gut barrier function,attenuating inflammation and reducing endotoxin levels[J]. Front Microbiol,2018,9:1967. doi: 10.3389/fmicb.2018.01967
    [70] Thomas C,Gioiello A,Noriega L,et al. TGR5-mediated bile acid sensing controls glucose homeostasis[J]. Cell Metab,2009,10(3):167-177. doi: 10.1016/j.cmet.2009.08.001
    [71] Jia W,Xie G,Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J]. Nat Rev Gastroenterol Hepatol,2018,15(2):111-128. doi: 10.1038/nrgastro.2017.119
    [72] Jiang C,Xie C,Lv Y,et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction[J]. Nat Commun,2015,6:10166. doi: 10.1038/ncomms10166
  • [1] 李波, 孙杨, 缪应雷.  炎症性肠病的肠道微生态变化及对策, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240401
    [2] 胡伟, 李金男, 杨伟, 苏黎, 喻卓, 陈志松.  儿童肌部室间隔缺损的介入治疗研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240307
    [3] 陈杭, 崔琦, 黄敏杉, 刘建军, 马岚青.  miRNA在非酒精性脂肪性肝病中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240101
    [4] 牛俊杰, 姬文娟, 于拽拽.  肠道菌群、血清ET、PCT水平与脓毒症病情程度、预后的相关性, 昆明医科大学学报.
    [5] 李媛媛, 宋亚贤, 徐玉善, 曾晓甫, 袁惠, 徐兆, 江艳.  肠道菌群代谢物TMAO与非酒精性脂肪性肝病的关系, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240210
    [6] 李抒瑾, 杨艳飞, 苏敏, 凌昱, 饶艳琼, 崔继华.  儿童注意缺陷多动障碍共病情绪问题的单核苷酸多态性研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230420
    [7] 李丹, 万绪莲, 李律宇, 云宇, 罗光云, 刘韦兵, 林公府, 李宁, 黎勇坤, 段为钢.  尿酸酶缺失大鼠肠道菌群的变化, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230205
    [8] 张学敏, 田云粉.  胆汁酸代谢异常在非酒精性脂肪性肝病发展中的作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231125
    [9] 陆小华, 袁洪新.  BTLA、CTLA-4基因多态性与肝癌TACE联合靶向治疗疗效及预后相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230927
    [10] 张莹, 高虹, 张翠香, 陈泽莹, 邹红群, 李丽琼, 杨巨品, 胡月新.  儿童幽门螺杆菌感染情况及其与缺铁性贫血的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220418
    [11] 杨顺航, 李炯明, 刘建和, 王光, 李沛.  肠源性高草酸尿症的发病机制与治疗进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220734
    [12] 杨永锐, 王丽媛, 李海雯, 赵智蓉, 普瑞, 吴贵帅, 李树德.  灯盏乙素抑制NOX的表达改善非酒精性脂肪性肝病肝脏纤维化的研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220721
    [13] 刘四香, 黄永坤, 王明英, 胡红卫, 马敏, 凌昱.  功能性便秘患儿的肠道菌群分析及治疗干预, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220309
    [14] 世淑兰, 戴熙廷, 赵广周, 李小娟, 李荣杰, 麻明彪.  16SrRNA基因检测在儿童细菌性脑膜炎早期诊断中的应用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210522
    [15] 黄海林, 李小娟, 尹建雯, 蒋鸿超.  2017年至2020年儿童感染性腹泻沙门菌和志贺菌分布及药敏结果, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210713
    [16] 徐永芳, 吴娜, 胡月新, 赵永美, 郑绍鼎, 危玲, 郑思佳, 刘建军.  GW7647对大鼠非酒精性脂肪性肝病(NAFLD)的治疗作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210804
    [17] 梁睿, 淳于纬训, 沈焘, 孙乐, 李云峰.  肠道菌群和免疫在结直肠肿瘤中作用研究进展, 昆明医科大学学报.
    [18] 薛平燕, 江艳, 徐玉善, 袁惠, 李璇, 宋亚贤, 刘华.  肠道菌群结构在非酒精性脂肪性肝病患者中的改变, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201120
    [19] 盛晓翠.  儿童泌尿系感染的病原菌分析, 昆明医科大学学报.
    [20] 闭合复位克氏针固定治疗儿童肱骨髁上不稳定骨折, 昆明医科大学学报.
  • 加载中
计量
  • 文章访问数:  2496
  • HTML全文浏览量:  1681
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-24
  • 网络出版日期:  2023-07-18
  • 刊出日期:  2023-07-25

目录

    /

    返回文章
    返回