留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

壮族人群ERAP基因多态性与脊灰疫苗序贯免疫诱导的抗体应答的相关性分析

师雨晗 李菁 刘舒媛 赵婷 杨净思 史荔 梁疆莉

师雨晗, 李菁, 刘舒媛, 赵婷, 杨净思, 史荔, 梁疆莉. 壮族人群ERAP基因多态性与脊灰疫苗序贯免疫诱导的抗体应答的相关性分析[J]. 昆明医科大学学报, 2023, 44(7): 22-28. doi: 10.12259/j.issn.2095-610X.S20230711
引用本文: 师雨晗, 李菁, 刘舒媛, 赵婷, 杨净思, 史荔, 梁疆莉. 壮族人群ERAP基因多态性与脊灰疫苗序贯免疫诱导的抗体应答的相关性分析[J]. 昆明医科大学学报, 2023, 44(7): 22-28. doi: 10.12259/j.issn.2095-610X.S20230711
Yuhan SHI, Jing LI, Shuyuan LIU, Ting ZHAO, Jingsi YANG, Li SHI, Jiangli LIANG. Correlation of ERAP Gene Polymorphism with Antibody Response Induced by Sequential Immunization of Polio Vaccine[J]. Journal of Kunming Medical University, 2023, 44(7): 22-28. doi: 10.12259/j.issn.2095-610X.S20230711
Citation: Yuhan SHI, Jing LI, Shuyuan LIU, Ting ZHAO, Jingsi YANG, Li SHI, Jiangli LIANG. Correlation of ERAP Gene Polymorphism with Antibody Response Induced by Sequential Immunization of Polio Vaccine[J]. Journal of Kunming Medical University, 2023, 44(7): 22-28. doi: 10.12259/j.issn.2095-610X.S20230711

壮族人群ERAP基因多态性与脊灰疫苗序贯免疫诱导的抗体应答的相关性分析

doi: 10.12259/j.issn.2095-610X.S20230711
基金项目: 国家重大新药创制项目(2015ZX09101031)
详细信息
    作者简介:

    师雨晗(2002~),女,云南昆明人,在读本科生

    通讯作者:

    梁疆莉,E-mail:liangjiangli@imbcams.com.cn

  • 中图分类号: C310.34

Correlation of ERAP Gene Polymorphism with Antibody Response Induced by Sequential Immunization of Polio Vaccine

  • 摘要:   目的  分析内质网氨肽酶(endoplasmic reticulum aminopeptidases,ERAP)基因多态性与脊髓灰质炎疫苗序贯免疫诱导的中和抗体应答的相关性。  方法  选取243名来自广西壮族自治区并完成2剂灭活脊髓灰质炎疫苗和1剂二价口服脊髓灰质炎减毒疫苗接种的壮族受试者,检测免前和基础免疫28 d血清中I、II、III型脊髓灰质炎中和抗体水平,采用TaqMan探针基因分型法对单核苷酸多态性(single nucleotide polymorphism,SNP)进行分型。共选择8个SNP位点,6个ERAP1基因(rs27037、rs27044、rs30187、rs26618、rs26653、rs3734016)和2个ERAP2基因(rs2549782、rs2248374),计算各SNPs的等位基因和基因型频率,分析各SNPs与各型抗体应答的相关性。  结果  在I型脊髓灰质炎抗体应答中,携带rs2549782-G和rs2248374-A等位基因个体抗体几何平均滴度(geometric mean titer,GMT)低于携带rs2549782-T和rs2248374-G等位基因个体[均为(11.590±1.979) vs (11.950±1.895),P = 0.031];rs2549782基因型GT和rs2248374基因型AG诱导的中和抗体低于rs2549782基因型TT和rs2248374基因型GG[均为(11.741±0.141) vs (12.378±0.157),P = 0.045]。  结论  ERAP2基因多态性可能影响脊髓灰质炎疫苗诱导的抗体水平。
  • 表  1  SNPs的位点信息

    Table  1.   SNPs information

    基因SNP位点位置突变类型
    ERAP1 rs27037(G/T) chr5:96758990 intron
    rs27044(C/G) chr5:96783148 Gln730Glu(Q>E)
    rs30187(C/T) chr5:96788627 Lys528Arg(K>R)
    rs26618(T/C) chr5:96795133 Ile276Met(I>M)
    rs26653(C/G) chr5:96803547 Arg127Pro(R>P)
    rs3734016(C/T) chr5:96803761 Glu56Lys(E>K)
    ERAP2 rs2549782(T/G) chr5:96895296 Lys392Asn(K>N)
    rs2248374(G/A) chr5:96900192 splice region variant
    下载: 导出CSV

    表  2  研究对象基本特征($\bar x \pm s $

    Table  2.   Basic characteristics of the subjects ($\bar x \pm s $

    型别性别(nGMTtP
    I型 男(128) 11.628 ± 2.043 1.350 0.178
    女(115) 11.964 ± 1.814
    II型 男(128) 6.110 ± 1.806 0.945 0.345
    女(115) 6.335 ± 1.910
    III型 男(128) 11.409 ± 1.699 1.292 0.198
    女(115) 11.675 ± 1.492
    下载: 导出CSV

    表  3  ERAP基因的SNPs位点等位基因与脊灰中和抗体(GMT)水平的相关性($\bar x \pm s $

    Table  3.   Correlation between ERAP SNPs alleles and GMT of neutralizing antibody against poliovirus ($\bar x \pm s $

    基因SNP位点脊灰抗体型等位基因nGMTP
    ERAP1 rs27037 I G 295 11.860 ± 1.873 0.351
    T 191 11.670 ± 2.038
    II G 295 6.205 ± 1.765 0.961
    T 191 6.233 ± 1.986
    III G 295 11.600 ± 1.463 0.838
    T 191 11.430 ± 1.801
    rs27044 I C 252 11.870 ± 1.913 0.282
    G 234 11.700 ± 1.968
    II C 252 6.272 ± 1.733 0.416
    G 234 6.156 ± 1.937
    III C 252 11.620 ± 1.450 0.760
    G 234 11.450 ± 1.755
    rs30187 I C 249 11.860 ± 1.915 0.338
    T 237 11.710 ±1.966
    II C 249 6.297 ± 1.784 0.245
    T 237 6.131 ± 1.923
    III C 249 11.610 ± 1.467 0.815
    T 237 11.460 ± 1.738
    rs26618 I C 157 11.740 ± 1.902 0.579
    T 329 11.810 ± 1.960
    II C 157 6.277 ± 1.804 0.497
    T 329 6.187 ± 1.878
    III C 157 11.650 ± 1.410 0.657
    T 329 11.480 ± 1.690
    rs26653 I C 247 11.760 ± 1.947 0.657
    G 239 11.820 ± 1.936
    II C 247 6.114 ± 1.899 0.155
    G 239 6.322 ± 1.802
    III C 247 11.470 ± 1.725 0.910
    G 239 11.800 ± 1.472
    rs3734016 I C 428 11.730 ± 1.954 0.077
    T 58 12.190 ± 1.792
    II C 428 6.170 ± 1.858 0.129
    T 58 6.558 ± 1.790
    III C 428 11.510 ± 1.634 0.582
    T 58 11.720 ± 1.374
    ERAP2 rs2549782 I G 221 11.590 ± 1.979 0.031*
    T 265 11.950 ± 1.895
    II G 221 6.187 ± 1.836 0.992
    T 265 6.241 ± 1.870
    III G 221 11.560 ± 1.578 0.943
    T 265 11.510 ± 1.630
    rs2248374 I A 221 11.590 ± 1.979 0.031*
    G 265 11.950 ± 1.895
    II A 221 6.187 ± 1.836 0.992
    G 265 6.241 ± 1.870
    III A 221 11.560 ± 1.578 0.943
    G 265 11.510 ± 1.630
      *P < 0.05。
    下载: 导出CSV

    表  4  ERAP基因SNPs的基因型与脊灰I型中和抗体GMT水平的相关性($\bar x \pm s $

    Table  4.   Correlation between ERAP SNPs genotypes and GMT of neutralizing antibody against polio type1 ($\bar x \pm s $

    ERAPSNP位点抗体型别基因型nGMTP
    ERAP1 rs27037 I型 GG 86 12.099 ± 1.792 0.109
    GT 123 11.535 ± 1.948
    TT 34 11.910 ± 2.202
    rs27044 I型 CC 58 12.010 ± 2.001 0.563
    CG 136 11.750 ± 1.841
    GG 49 11.630 ± 2.150
    rs30187 I型 CC 56 11.990 ± 2.033 0.626
    CT 137 11.750 ± 1.822
    TT 50 11.650 ± 2.167
    rs26618 I型 CC 20 11.930 ± 1.591 0.672
    CT 117 11.670 ± 2.005
    TT 106 11.890 ± 1.939
    rs26653 I型 CC 57 11.780 ± 2.083 0.830
    CG 133 11.730 ± 1.839
    GG 53 11.930 ± 2.064
    rs3734016 I型 CC 189 11.690 ± 1.968 0.235
    CT 50 12.080 ± 1.854
    TT 4 12.900 ± 1.286
    ERAP2 rs2549782 I型 GG 48 11.600 ± 2.046 0.043*
    GT 125 11.590 ± 1.942
    TT 70 12.280 ± 1.802
    rs2248374 I型 AA 48 11.600 ± 2.046 0.043*
    AG 125 11.590 ± 1.942
    GG 70 12.280 ± 1.802
      *P < 0.05。
    下载: 导出CSV
  • [1] Tan P L,Jacobson R M,Poland G A,et al. Twin studies of immunogenicity-determining the genetic contribution to vaccine failure[J]. Vaccine,2001,19(17-19):2434-2439. doi: 10.1016/S0264-410X(00)00468-0
    [2] Newport M J,Goetghebuer T,Weiss H A,et al. Genetic regulation of immune responses to vaccines in early life[J]. Genes Immun,2004,5(2):122-129. doi: 10.1038/sj.gene.6364051
    [3] Neefjes J,Jongsma M L,Paul P,et al. Towards a systems understanding of MHC class I and MHC class II antigen presentation[J]. Nat Rev Immunol,2011,11(12):823-836. doi: 10.1038/nri3084
    [4] Vyas J M,Van Der Veen A G,Ploegh H L. The known unknowns of antigen processing and presentation[J]. Nat Rev Immunol,2008,8(8):607-618. doi: 10.1038/nri2368
    [5] Yao Y,Liu N,Zhou Z,et al. Influence of ERAP1 and ERAP2 gene polymorphisms on disease susceptibility in different populations[J]. Hum Immunol,2019,80(5):325-334. doi: 10.1016/j.humimm.2019.02.011
    [6] Hattori A,Tsujimoto M. Endoplasmic reticulum aminopeptidases:Biochemistry,physiology and pathology[J]. J Biochem,2013,154(3):219-228. doi: 10.1093/jb/mvt066
    [7] Nguyen T T,Chang S C,Evnouchidou I,et al. Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1[J]. Nat Struct Mol Biol,2011,18(5):604-613. doi: 10.1038/nsmb.2021
    [8] Evnouchidou I,Birtley J,Seregin S,et al. A common single nucleotide polymorphism in endoplasmic reticulum aminopeptidase 2 induces a specificity switch that leads to altered antigen processing[J]. J Immunol,2012,189(5):2383-2392. doi: 10.4049/jimmunol.1200918
    [9] 傅宇婷,黄腾,英志芳,等. 脊髓灰质炎免疫策略调整进程中不同免疫程序接种效果的比较[J]. 中国生物制品学杂志,2019,32(7):786-793. doi: 10.13200/j.cnki.cjb.002680
    [10] 赵志梅,傅宇婷,施红媛,等. Sabin株脊髓灰质炎灭活疫苗与不同剂型Ⅰ型Ⅲ型脊髓灰质炎减毒活疫苗序贯接种的抗体滴度比较[J]. 中华疾病控制杂志,2019,23(4):402-406. doi: 10.16462/j.cnki.zhjbkz.2019.04.007
    [11] Liao G,Li R,Li C,et al. Phase 3 Trial of a sabin strain-based inactivated poliovirus vaccine[J]. J Infect Dis,2016,214(11):1728-1734. doi: 10.1093/infdis/jiw433
    [12] Liao G,Li R,Li C,et al. Safety and immunogenicity of inactivated poliovirus vaccine made from sabin strains:A phase II,randomized,positive-controlled trial[J]. J Infect Dis,2012,205(2):237-243. doi: 10.1093/infdis/jir723
    [13] Chen H,Li L,Weimershaus M,et al. ERAP1-ERAP2 dimers trim MHC I-bound precursor peptides; implications for understanding peptide editing[J]. Sci Rep,2016,6(1):28902. doi: 10.1038/srep28902
    [14] Stratikos E,Stamogiannos A,Zervoudi E,et al. A role for naturally occurring alleles of endoplasmic reticulum aminopeptidases in tumor immunity and cancer pre-disposition[J]. Front Oncol,2014,4(4):363.
    [15] Alvarez-Navarro C,López DE Castro J A. ERAP1 structure,function and pathogenetic role in ankylosing spondylitis and other MHC-associated diseases[J]. Mol Immunol,2014,57(1):12-21.
    [16] Stamogiannos A,Koumantou D,Papakyriakou A,et al. Effects of polymorphic variation on the mechanism of endoplasmic reticulum aminopeptidase 1[J]. Mol Immunol,2015,67(2 Pt B):426-435.
    [17] Coulombe-Huntington J,Lam K C,Dias C,et al. Fine-scale variation and genetic determinants of alternative splicing across individuals[J]. PLoS Genet,2009,5(12):e1000766. doi: 10.1371/journal.pgen.1000766
    [18] Cagliani R,Riva S,Biasin M,et al. Genetic diversity at endoplasmic reticulum aminopeptidases is maintained by balancing selection and is associated with natural resistance to HIV-1 infection[J]. Hum Mol Genet,2010,19(23):4705-4714. doi: 10.1093/hmg/ddq401
    [19] Biasin M,Sironi M,Saulle I,et al. Endoplasmic reticulum aminopeptidase 2 haplotypes play a role in modulating susceptibility to HIV infection[J]. AIDS,2013,27(11):1697-1706. doi: 10.1097/QAD.0b013e3283601cee
    [20] Liu S,Cao D,Shen Y,et al. The ERAP gene is associated with HCV chronic infection in a Chinese Han population[J]. Hum Immunol,2017,78(11-12):731-738. doi: 10.1016/j.humimm.2017.10.005
    [21] Kuiper J J W,Setten J V,Devall M,et al. Functionally distinct ERAP1 and ERAP2 are a hallmark of HLA-A29-(Birdshot) uveitis[J]. Hum Mol Genet,2018,27(24):4333-4343.
    [22] Vanhille D L,Hill L D,Hilliard D D,et al. A novel ERAP2 haplotype structure in a chilean population: Implications for ERAP2 protein expression and preeclampsia risk[J]. Mol Genet Genomic Med,2013,1(2):98-107. doi: 10.1002/mgg3.13
    [23] Castro-Santos P,Moro-García M A,Marcos-Fernández R,et al. ERAP1 and HLA-C interaction in inflammatory bowel disease in the Spanish population[J]. Innate Immun,2017,23(5):476-481. doi: 10.1177/1753425917716527
    [24] Jiang R,Liu X,Sun X,et al. Immunogenicity and safety of the inactivated poliomyelitis vaccine made from sabin strains in a phase IV clinical trial for the vaccination of a large population[J]. Vaccine,2021,39(9):1463-1471. doi: 10.1016/j.vaccine.2021.01.027
    [25] He H,Wang Y,Deng X,et al. Immunogenicity of three sequential schedules with sabin inactivated poliovirus vaccine and bivalent oral poliovirus vaccine in Zhejiang,China: an open-label,randomised,controlled trial[J]. Lancet Infect Dis,2020,20(9):1071-1079. doi: 10.1016/S1473-3099(19)30738-8
    [26] Jacobson R M,Poland G A,Vierkant R A,et al. The association of class I HLA alleles and antibody levels after a single dose of measles vaccine[J]. Hum Immunol,2003,64(1):103-109. doi: 10.1016/S0198-8859(02)00741-3
    [27] Ovsyannikova I G,Jacobson R M,Vierkant R A,et al. Replication of rubella vaccine population genetic studies:Validation of HLA genotype and humoral response associations[J]. Vaccine,2009,27(49):6926-6931. doi: 10.1016/j.vaccine.2009.08.109
    [28] Mineta M,Tanimura M,Tana T,et al. Contribution of HLA class I and class II alleles to the regulation of antibody production to hepatitis B surface antigen in humans[J]. Int Immunol,1996,8(4):525-531. doi: 10.1093/intimm/8.4.525
    [29] Hayney M S,Poland G A,Dimanlig P,et al. Polymorphisms of the TAP2 gene may influence antibody response to live measles vaccine virus[J]. Vaccine,1997,15(1):3-6. doi: 10.1016/S0264-410X(96)00133-8
    [30] Yucesoy B,Talzhanov Y,Johnson V J,et al. Genetic variants within the MHC region are associated with immune responsiveness to childhood vaccinations[J]. Vaccine,2013,31(46):5381-5391. doi: 10.1016/j.vaccine.2013.09.026
    [31] Lankat-Buttgereit B,Tampe R. The transporter associated with antigen processing:Function and implications in human diseases[J]. Physiol Rev,2002,82(1):187-204. doi: 10.1152/physrev.00025.2001
  • [1] 洪超, 向旭东, 李盈甫, 曹杨, 陈雪雅, 李帅, 邢安灏, 林牧, 马千里.  ERK1/2信号通路基因3'UTR多态性与非小细胞肺癌的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240302
    [2] 郭妮, 张承, 洪超, 刘伟鹏, 姚宇峰, 严志凌.  KRAS基因3′UTR多态性与云南汉族人群宫颈癌及宫颈上皮内瘤变的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240203
    [3] 牛志鑫, 汤丽华, 史磊, 洪超, 姚宇峰, 严志凌.  MAPK1NRAS基因多态性与云南汉族人群宫颈上皮内瘤变的相关性, 昆明医科大学学报.
    [4] 齐汝楠, 史磊, 刘舒媛, 李菁, 史荔.  HLA-DM基因多态性与脊髓灰质炎疫苗诱导抗体应答的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240102
    [5] 李吉, 柯坤彬, 张白羽, 刘裔道, 白晶, 董滔, 王振丞, 秦德强, 王梦悦, 李颢.  云南德宏州傣族人群CaSR基因SNP与含钙肾结石和高钙尿的关联性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230520
    [6] 张云芳, 庄杉杉, 余艳, 李铮, 吴晓明, 聂晓改.  PEAR1基因多态性与缺血性脑卒中的相关性研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231120
    [7] 程甜甜, 尹文卅, 王佳, 卢玉梅, 陈炫羽, 聂胜洁, 刘林林.  TMTC1基因多态性与精神分裂症的关联性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231014
    [8] 伍蓉霜, 彭江丽, 陈永刚, 陈洁, 马国伟, 李先蕊, 李谢, 余春红.  SLC2A9基因单核苷酸多态性与吡嗪酰胺致高尿酸血症易感性关系, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230409
    [9] 李抒瑾, 杨艳飞, 苏敏, 凌昱, 饶艳琼, 崔继华.  儿童注意缺陷多动障碍共病情绪问题的单核苷酸多态性研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230420
    [10] 梅聪, 翁晓春, 彭葆坤, 颜穗珺, 李春, 周琼, 唐哲.  CLOCK基因rs4580704多态性位点与2型糖尿病和睡眠质量的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210332
    [11] 李东云, 冮顺奎, 李捷, 张明星, 李雷.  ABCG2、SLC2A9、SLC17A3和 PRKG2基因单核苷酸位点多态性与哈尼族人群痛风的关系, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210320
    [12] 阮小荟, 向茜, 王玉明, 周治含, 张弦, 郭燕, 杨晓瑞.  维生素D受体基因Bg1I、Cdx-2位点多态性与桥本氏甲状腺炎的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210824
    [13] 向茜, 王玉明, 杨艳润, 李万碧, 张弦, 杨才, 刘华.  维生素D受体基因ApaI、FokI、TaqI、Tru9I位点单核苷酸多态性与桥本氏甲状腺炎的相关性, 昆明医科大学学报.
    [14] 向茜, 李万碧, 张弦, 刘华, 王玉明, 杨才, 白云霞.  维生素D受体基因ApaⅠ、BsmⅠ位点单核苷酸多态性与2型糖尿病肾病的相关性, 昆明医科大学学报.
    [15] 刘城秀.  云南汉族人群TNF-α基因和ALCAM基因多态性与HCV慢性感染的相关性, 昆明医科大学学报.
    [16] 向茜.  维生素D受体基因FokI位点单核苷酸多态性与糖尿病肾病的相关性, 昆明医科大学学报.
    [17] 戴书颖.  IL-4基因启动子SNP-1098T>G和-590C>T多态性与云南汉族人群HCV慢性感染的相关性研究, 昆明医科大学学报.
    [18] 李莹.  云南汉族人群IL-10基因启动子多态性与HCV慢性感染的相关性研究, 昆明医科大学学报.
    [19] 刘丽丽.  染色体9p21单核苷酸多态性与冠心病/心肌梗死相关性的研究进展, 昆明医科大学学报.
    [20] 杨小蕾.  STAT4基因单核苷酸多态性与云南汉族人群SLE发病的相关性研究, 昆明医科大学学报.
  • 加载中
计量
  • 文章访问数:  2563
  • HTML全文浏览量:  1639
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-11
  • 网络出版日期:  2023-07-17
  • 刊出日期:  2023-07-25

目录

    /

    返回文章
    返回