Clinical Investigation on Foure-dimensional Left Atrial Automatic Quantitative Technology in Evaluating Left Atrial Volume and Function
-
摘要:
目的 探讨四维左心房自动定量(4D Auto LAQ)技术对非选择性连续患者左心房的容积及功能的应用价值。 方法 187例入选患者中成功分析143例患者。应用4D Auto LAQ 技术及Simpson’s双平面技术分别获取左房整体射血分数(LAEF)、左房最大容积指数(LAVImax)、左心房舒张末期容积(LAVmax)、左心房收缩末期容积(LAVmin),同时记录分析时间,比较2种技术所测参数的准确性及可重复性。 结果 4D Auto LAQ 技术及Simpson’s双平面技术所测值相关性高(r值:LAVmax 0.91,LAVmin 0.89,LAVI0.90,LAEF 0.54;P < 0.01)、一致性较好[平均测量差异:LAVmax1 0.1 mL,LAVmin 3.1 mL,LAVI 6.4 mL,LAEF 10.0%;一致性区间:LAVmax(-30.7-50.9) mL,LAVmin(-32.2-38.4) mL,LAVI(-21.2-34.1) mL,LAEF(-19.8-39.8)%]。4D Auto LAQ 技术对不同心动周期各测量值相关性好(r值:LAVmax 0.99,LAVmin 0.98,LAVImax 0.99,LAEF 0.92;P < 0.01),一致性区间为[LAVmax(-8.9-7.9) mL,LAVmin(-7.9-10.8) mL,LAVI(-7.9-10.8) mL/m2,LAEF(-14.8-9.1)%]。4D Auto LAQ 技术各测量值在观察者内部、观察者间的重复性均较好(组内相关系数均 > 0.8,变异系数均 < 10%),且优于Simpson’s双平面法。4D Auto LAQ 技术技术用时较Simpson’s双平面法明显减少,分别为(30.87±5.05) s、(60.20±5.05) s,(P < 0.05)。 结论 4D Auto LAQ 技术评价左心房容积及功能用时更短,重复性好,具有临床推广价值。 -
关键词:
- 四维左心房自动定量分析 /
- Simpson’s法 /
- 左心房功能 /
- 左心房容积
Abstract:Objective To explore the role of four-dimensional left atrial automatic quantitative technology in evaluating the volume and function of the left atrium in non-selective continuous patients, and to preliminarily explore its accuracy and repeatability. Methods Foure-dimensional left atrial full-volume dynamic images of 187 consecutive patients were collected, 44 patients who failed the analysis were excluded, and 143 were successfully analyzed. Using Simpson’s biplane method as the reference standard, the 4D Auto LAQ technology was used to evaluate the left atrial end-diastolic volume (LAVmax), left atrial end-systolic volume (LAVmin), left atrial maximum volume index (LAVImax), and left atrial global ejection fraction. (LAEF) accuracy and repeatability. Results In all patients who were successfully analyzed, the inter-technique comparisons showed good correlations (R-values: LAVmax 0.91, LAVmin 0.89, LAVI 0.90, LAEF 0.54; all P < 0.01), small biases ( LAVmax 10.1 mL, LAVmin 3.1 mL, LAVI 6.4 mL, LAEF 10.0%; Concordance interval: LAVmax (-30.7-50.9) mL, LAVmin (-32.2-38.4) mL, LAVI (-21.2-34.1) mL, LAEF (-19.8-39.8)%] for all measurements in all patients. 4D Auto LAQ technology showed good correlation between the parameters of different cardiac cycles (r value: LAVmax 0.99, LAVmin 0.98, LAVImax 0.99, LAEF 0.92; all P < 0.01), and the average measurement difference did not exceed two measurement units (1 mL/volume, 1%/LAEF), the consistency interval is also narrow [LAVmax (-8.9-7.9) mL, LAVmin (-7.9-10.8) mL, LAVI (-7.9-10.8) mL/m2, LAEF (-14.8-9.1)%. The intra- and inter-observer repeatability of each parameter of 4D Auto LAQ technology was good (within-group correlation coefficients were all > 0.8, 0.81-0.99, and coefficients of variation were all < 10%), and it was better than Simpson’s biplane method. Compared with Simpson’s biplane method, the time of 4D Auto LAQ quantitative technology was significantly reduced, which were (30.87±5.05)s and (60.20±5.05)s respectively (P < 0.05). Conclusions Since4D Auto LAQ technology can be widely used in clinical practice as a feasible and objective ultrasound technique. -
垂体瘤(pituitary adenoma,PA)是一种起源于垂体前叶实质细胞的常见、多发的原发性良性脑肿瘤,占神经外科所有神经肿瘤的10%~15%。随着磁共振等影像技术的不断发展,近年其检查出患病率呈逐年增长的趋势[1]。其临床表现主要为头痛、视力障碍及部分或完全垂体功能减退。近年神经内镜(Neuroendoscope)和显微镜(Microscope)技术在国内外医疗技术迅猛发展的背景下已广泛应用于垂体瘤切除手术中,国内外学者在应用神经导航(Neural navigation)结合神经内镜等技术切除垂体瘤术中已初步发现,神经内镜在对瘤体的精准定位、提高手术治疗的安全性及高效性、提高垂体腺瘤的全切率和有效降低术后各种并发症的发生率中发挥了重要的作用,并能有效减少在不可见术区操作下引起的副损伤,能最大限度地保护鼻内的正常结构,直视下切除更多的肿瘤组织,全方位提高肿瘤全切除机率[2-3]。本临床病例研究旨在探讨分析全麻下神经导航定位辅助内镜下垂体腺瘤切除经鼻蝶入路的临床应用疗效及前景,报道如下。
1. 资料与方法
1.1 临床资料
收集阳江市人民医院神经外科2018年9月至2023年4月收治的垂体腺瘤手术患者68例,分为2组,实验组34例(神经导航定位辅助内镜下经鼻蝶入路切除垂体腺瘤),对照组34例(显微镜经鼻蝶入路切除垂体腺瘤),纳入标准:(1)术前均进行影像学诊断为垂体瘤;(2)第1次发病并确诊,研究对象最终病理诊断为垂体瘤;(3)术前行内分泌学检查结合临床症状+体征检查符合垂体瘤手术指征;(4)年龄≥25岁及相关资料完善[4]。排除标准:合并有免疫缺陷及器官功能障碍、肝肾功能不全、凝血功能障碍及其它脏器肿瘤或曾有重大手术者。本研究经过阳江市人民医院伦理学委员会批准并同意(批号:阳人医伦理【20220074】号)。2组间病例性别、年龄、病程时长、肿瘤大小等一般资料对比,差异无统计学意义(P > 0.05),具有可比性,见表1。
表 1 2组间一般资料比较[n(%)/$ \bar x \pm s $ ]Table 1. Comparison of general information between two groups[n(%)/$ \bar x \pm s $ ]组别 n 性别 年龄(岁) 病程(a) 肿瘤直径(cm) 男 女 实验组 34 18(52.94) 16(47.05) 48.13 ± 3.11 2.48 ± 1.06 2.81 ± 1.06 对照组 34 15(44.11) 19(55.88) 49.22 ± 1.36 2.32 ± 1.50 2.85 ± 0.67 χ2/t 0.401 0.902 0.212 0.310 P 0.841 0.986 0.647 0.639 1.2 方法
对照组采用莱卡显微镜(Leica F40)在人工气管全麻下经鼻蝶入路进行手术切除。患者采取仰卧位,用0.01%去甲肾上腺素盐水棉条收缩鼻粘膜,在显微镜下通过鼻中隔黏膜进行切开分离找到蝶窦并打开鞍底及硬膜,探查肿瘤进行分离及切除。术后鼻中隔粘膜复位并填塞膨胀海绵。
实验组采用采用工具为神经内镜(KARL STORZ Endoscope 德国),华科精准神经导航仪(型号:Q300-pro)。患者全身麻醉后取平卧体位,头后仰 15°。向术者方向偏转10°,依据术前头部核磁共振片选取右侧鼻孔。用0.01%去甲肾上腺素盐水棉条收缩鼻粘膜,扩张手术通道,内镜经单侧鼻孔进入。将下、中鼻甲推向外侧,找到蝶窦开口。将鼻中隔黏膜用针状电刀从蝶窦开口向前向下到鼻后孔后缘(根据肿瘤大小评估是否会漏制作粘膜瓣大小,上至鼻顶1 cm,下至鼻底中线,前至鼻前庭皮肤粘膜交界处,后至鼻后孔后缘),将粘膜瓣推向鼻后孔,显露蝶窦前壁,磨开鞍底,切开硬膜,显露肿瘤。采取0°或30°内镜查看肿瘤并切除。鞍底应用大腿肌阔筋膜、人工硬膜进行修补,鼻中隔黏膜复位后,填塞钠吸棉、碘仿纱条或膨胀海绵,充分止血。
1.3 观察指标
观察2组病例的肿瘤全切率、手术时间、出血量、住院时间、并发症发生率及手术前后内分泌激素指标。
1.4 统计学处理
统计数据录入 SPSS 24.0统计学软件对所得数据进行统计分析。计量资料以
$ \bar x \pm s $ 表示,比较采用t检验;计数资料以[n(%)]表示,比较采用χ2检验。以P<0.05为差异有统计学意义。2. 结果
2.1 2组手术相关指标对比
实验组的垂体腺瘤切除手术时长、手术出血量、住院时间降低。术后影像学检查肿瘤全切率提高,差异具有统计学意义(P<0.05),见表2。
表 2 2组手术相关指标对比 [$ \bar x \pm s $ /n(%)]Table 2. Comparison of surgical related indicators between two groups [$ \bar x \pm s$ /n(%)]组 别 n 手术时间(min) 术中出血量(mL) 住院时间(d) 全切率 实验组 34 94.25 ± 3.23 97.63 ± 1.56 9.34 ± 1.16 30/(88.2) 对照组 34 125.34 ± 2.36 148.33 ± 5.13 13.28 ± 1.56 21/(61.7) t/χ2 9.012 15.206 8.912 10.213 P 0.041* 0.035* 0.047* 0.043* 与对照组相关手术指标比较,*P<0.05。 2.2 2组主要并发症发生率比较
2组在电解质紊乱、垂体功能障碍、一过性尿崩、脑脊液漏、颅内感染的并发症发生几率对比。实验组降低,差异具有统计学意义(P<0.05),见表3。
表 3 2组相关并发症指标对比[n(%)]Table 3. Comparison of two groups of related complications indicators[n(%)]组 别 n 电解质紊乱(n) 垂体功能障碍(n) 一过性尿崩(n) 脑脊液漏(n) 颅内感染(n) 并发症发生几率 实验组 34 6 1 2 2 0 11(32.35) 对照组 34 9 3 4 2 1 19(55.88) χ2 7.823 P 0.035* 与对照组并发症发生几率对比,*P<0.05。 2.3 2组手术前后内分泌激素比较
2组在手术治疗前后生长激素及泌乳素的对比中,术后实验组2种激素水平均低于对照组,差异具有统计学意义(P<0.05),见表4。
表 4 2组手术前后内分泌激素指标对比($ \bar x \pm s $ )Table 4. Comparison of endocrine hormone indicators before and after surgery between two groups($ \bar x \pm s $ )组别 n GH(ng/mL) PRL(ng/mL) 治疗前 治疗后 治疗前 治疗后 实验组 34 33.86 ± 1.53 3.15 ± 1.08 21.45 ± 2.35 5.82 ± 1.07 对照组 34 34.25 ± 1.46 7.02 ± 1.03 28.25 ± 2.71 8.92 ± 1.56 t 8.132 9.954 P 0.048 0.039 与对照组术前后生长激素与泌乳素对比,*P<0.05。 2.4 2组在手术中效果对比
实验组在神经内镜手术中从充分暴露蝶窦并打开前壁再到磨除鞍底及切开鞍底硬膜,视野充分、快捷清晰且最大程度进行肿瘤切除,见图1。
对照组在显微镜下通过鼻中隔黏膜进行切开分离找到蝶窦并打开鞍底及硬膜,探查肿瘤进行分离及切除,见图2。
2.5 2组术前后影像学对比
实验组在神经内镜下手术切除垂体瘤术前后增强影像,见图3。
对照组在显微镜下手术切除垂体瘤术前后增强影像,见图4。
3. 讨论
垂体腺瘤在神经肿瘤中是继神经胶质瘤和脑膜瘤之后较常见的成人颅内肿瘤[5]。目前国内外内镜颅内手术越来越多地用于各种疾病,内镜手术是切除鞍上肿瘤的更好技术,并证明具有更清晰的可视化优势[6]。且众多的临床研究表明,神经内镜手术由于视野及光线优于显微镜,暴露病变快捷清晰,极大地避免了因手术引起的损伤,并能成角度提供全景像,清晰显示垂体与残留肿瘤,以及有无脑脊液漏等,从而大大提高了肿瘤的暴露清晰度,有利于方便、快捷地行垂体瘤完整切除[7-8]。大多数医院对于神经内镜的实用性仍在继续加深研究并拓展相关领域,指导神经内镜手术越来越多地用于各种颅内深部疾病。然而,关于神经内镜用于垂体瘤切除的优势仍缺乏系统的总结,对于其使用中的应用技巧和需要注意的共性问题仍报道甚少。
从理论上讲,神经内镜方法将提供一些优势,例如能够高清全景可视化手术相关解剖、残留肿瘤区域等。然而在二次复发性手术中由于解剖已发生改变及疤痕组织增生和纤维化组织导致视野环境复杂,对于能否顺利完成此类手术可能具有挑战性[9-10]。以往类似此手术术后出现脑脊液漏的发生率较高,近年提出了以水密方式闭合硬膜缺损的新方法使内镜颅底手术术后脑脊液渗漏现已基本得到控制,避免脑脊液漏引起的相关并发症[11]。据文献报导,神经内镜手术后在所有结局指标(包括切除范围、激素缓解、神觉结果、脑脊液漏等)方面优于显微镜手术,缘于这些高精技术可以更清晰、安全、高效地暴露了颅底占位病变并进行最大程度切除,同时也促使国内外越来越多医疗中心纷纷开展应用神经内镜微创手术治疗各种颅内疾病[12-13]。
经过本研究,笔者认为内镜颅底手术的专业化程度更高。导航下神经内镜经鼻蝶入路切除垂体瘤是作为一种借助鼻底和颅底技术相结合的微侵袭手术,可以更加高效、安全地切除鞍区肿瘤并可成为治疗鞍区占位病变的标准流程[14]。本研究结果与上述文献报导的结果一致,并进一步证实了该手术方法的优势,表现在以下方面:患者采用导航下神经内镜经鼻蝶入路垂体瘤切除术进行治疗,在显著提高肿瘤全切率、减少手术出血量、缩短术后住院时间等方面可获得确切的效果,从而使垂体瘤患者术后生活质量明显提高[15-17]。
综上所述,从这项临床研究中可以清楚地看到,垂体瘤使用神经内镜通过经鼻蝶入路方法进行切除策略是一种非常有前途的操作模式,通常不仅伴随着最小创伤和快速康复,且有更好的治疗效果。总之,神经导航辅助内镜下经鼻蝶入路切除垂体瘤技术的应用前景广阔,在将来临床应用和科研等方面将发挥不可缺少的作用。
-
表 1 4D Auto LAQ技术与Simpson’s双平面法各参数的相关性和一致性分析(
$\bar x \pm s $ )Table 1. Comparison,correlation and consistency analysis of parameters between 4D Auto LAQ technology and Simpson’s biplane method (
$\bar x \pm s $ )变量 n 4D Auto LAQ技术 Simpson’s法 r P 平均测量差异 一致性区间 LAVmax(mL) 全部 150 56.86 ± 31.4 66.99 ± 44.4 0.91 < 0.0001* 10.1 −30.7-50.9 左房正常组 56 30.91 ± 7.0 32.43 ± 7.2 0.58 < 0.0001* 4.3 −11.7-20.4 左房扩大组 94 76.45 ± 33.73 99.11 ± 43.47 0.87 < 0.0001* 22.7 −19.6-64.9 LAVmin(mL) 全部 150 36.49 ± 24.27 39.63 ± 35.86 0.89 < 0.0001* 3.1 −32.2-38.4 左房正常组 56 15.07 ± 4.9 13.26 ± 4.2 0.51 < 0.0001* −1.8 −11.0-7.4 左房扩大组 94 53.51 ± 23.82 64.65 ± 37.17 0.81 < 0.0001* 11.1 −33.2-55.5 LAVImax(mL/m2) 全部 150 37.69 ± 20.57 44.14 ± 29.59 0.90 < 0.0001* 6.4 −21.2-34.1 左房正常组 56 21.86 ± 5.09 20.90 ± 4.18 0.72 < 0.0001* −1.0 −7.9-6.0 左房扩大组 96 46.86 ± 20.50 60.03 ± 26.12 0.88 < 0.0001* 13.2 −12.0-38.4 LAEF(%) 全部 150 37.99 ± 14.7 48.00 ± 16.72 0.54 < 0.0001* 10.0 −19.8-39.8 左房正常组 56 43.56 ± 14.69 62.61 ± 11.05 0.51 < 0.0001* 17.1 −6.7-40.9 左房扩大组 94 30.75 ± 11.67 37.61 ± 13.77 0.52 < 0.0001* 6.9 −18.4-32.2 LAVmax:左房最大容积;LAVmin:左最小容积;LAVImax:左房最大容积指数;LVEF:左房整体射血分数。*P < 0.05。 表 2 4D Auto LAQ 技术技术不同心动周期各参数相关性及一致性分析(
$\bar x \pm s $ )Table 2. Correlation and consistency analysis of various parameters of 4D Auto LAQ technology in different Cardiac cycle (
$\bar x \pm s $ )变量 心动周期1 心动周期2 r P 平均测量差异 一致性区间 LAVmax(mL) 56.25 ± 30.4 56.77 ± 28.7 0.99 < 0.0001* −0.5 −8.9-7.9 LAVmin(mL) 35.56 ± 23.7 34.09 ± 21.6 0.98 < 0.0001* 1.5 −7.9-10.8 LAVIma(mL/m2) 37.89 ± 20.4 37.15 ± 19.7 0.99 < 0.0001* 0.7 −4.7-5.6 LAEF(%) 39.9 ± 14.8 42.8 ± 14.9 0.92 < 0.0001* −0.29 −14.8-9.1 *P < 0.05。 表 3 自动定量技术与Simpson’s双平面法重复性检验(
$\bar x \pm s $ )Table 3. Automatic quantitative technology and Simpson’s biplane method for repeatability testing (
$\bar x \pm s $ )变量 观察者内 观察者间 变异(%) 组内相关系数 变异(%) 组内相关系数 4D Auto LAQ技术 LAVmax 3.99 ± 5.2 0.99 8.81 ± 6.7 0.93 LAVmin 6.63 ± 5.7 0.96 11.2 ± 5.6 0.93 LAVImax 4.32 ± 5.1 0.98 9.26 ± 7.2 0.94 LAEF 6.50 ± 4.2 0.84 8.5 ± 9.2 0.81 Simpson’s法 EDV 9.1 ± 3.9 0.94 11.5 ± 8.9 0.86 ESV 13.66 ± 7.9 0.85 14.36 ± 9.5 0.83 LAVImax 8.3 ± 5.8 0.90 10.2 ± 5.7 0.86 EF 10.5 ± 7.4 0.71 13.6 ± 7.8 0.58 -
[1] Lang R M,Badano L P,Mor-Avi V,et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American society of echocardiography and the european association of cardiovascular imaging[J]. Eur Heart J Cardiovasc Imaging,2015,16(1):233-270. [2] Yao G H, Deng Y, Liu Y, et al, Echocardiographic measurements in Normal Chinese adults focusing on cardiac chambers and great arteries: A prospective, nationwide, and multicenter study[J]. Journal of the American Society of Echocardiography, 2015, 28(5): 570-579. [3] Sun L,Feng H,Ni L,et al. Realization of fully automated quantification of left ventricular volumes and systolic function using transthoracic 3D echocardiography[J]. Cardiovasc Ultrasound,2018,16(1):2. doi: 10.1186/s12947-017-0121-8 [4] Medvedofsky D,Mor-Avi V,Amzulescu M,et al. Three-dimensional echocardiographic quantification of the left-heart chambers using an automated adaptive analytics algorithm: Multicentre validation study[J]. Eur Heart J Cardiovasc Imaging,2018,19(1):47-58. doi: 10.1093/ehjci/jew328 [5] Chen L,Zhang C,Wang J,et al. Left atrial strain measured by 4D Auto LAQ echocardiography is significantly correlated with high risk of thromboembolism in patients with non-valvular atrial fibrillation.[J]. Quantitative Imaging in Medicine and Surgery,2021,11(9):3920-3931. doi: 10.21037/qims-20-1381 [6] 汤跃跃,张容亮,杨寒凝,等. 经食管实时三维及二维超声心动图在左心耳封堵围术期的应用[J]. 中国医学影像学杂志,2021,29(4):339-342. doi: 10.3969/j.issn.1005-5185.2021.04.012 [7] Thavendiranathan P ,Liu S. Full-volume 3D transthoracic echocardiography to measure LV volumes and systolic functiona fully automated endocardial contouring algorithm in sinus[J]. Journal of theAmerican College of Cardiology,2012,5(3):239-251. [8] 林广,张志强. 人工智能医学影像在骨关节系统中的应用进展[J]. 中国医学影像学杂志,2022,30(2):184-187. doi: 10.3969/j.issn.1005-5185.2022.02.017 [9] 胡彦斌,李亚南,崔存英,等. 四维自动左心房定量分析技术评估心力衰竭患者左心房功能的研究[J]. 中华超声影像学杂志,2022,31(3):7. [10] Luo X X,Fang F,So H K,et al. Automated left heart chamber volumetric assessment using three-dimensional echocardiography in Chinese adolescents[J]. Echo Res Pract,2017,4(4):53-61. doi: 10.1530/ERP-17-0028 [11] Feng C,Chen L,Li J,et al. Three-dimensional echocardiographic measurements using automated quantification software for big data processing[J]. J Xray Sci Technol,2017,25(2):313-321. [12] Spitzer E,Ren B,Soliman O I,et al. Accuracy of an automated transthoracic echocardiographic tool for 3D assessment of left heart cha mber volumes[J]. Echocardiography,2017,34(2):199-209. doi: 10.1111/echo.13436 [13] Laser K T,Karabiyik A,Krperich H,et al. Validation and reference values for three-dimensional echocardiographic right ventricular volumetry in children:A multicenter study[J]. Journal of the American Society of Echocardiography:Official Publication of the American Society of Echocardiography,2018,31(9):1050-1063. [14] Tsang W,Salgo I S,Medvedofsky D,et al. Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm[J]. JACC Cardiovasc Imaging,2016,9(7):769-782. [15] Levy F,Dan S E,Iacuzio L,et al. Performance of new automated transthoracic three-dimensional echocardiographic software for left ventricular volumes and function assessment in routine clinical practice: Comparison with 3 Tesla cardiac magnetic resonance[J]. Arch Cardiovasc Dis,2017,110(11):580-589. [16] Barletta V,Hinojar R,Carbonell A,et al. Three-dimensional full automated software in the evaluation of the left ventricle function:From theory to clinical practice[J]. Int J Cardiovasc Imaging,2018,34(8):1205-1213. [17] Cai Q,Wang J,Li H,Li C,Wu X,Lu X. Measurement of left ventricular volumes and ejection fraction in patients with regional wall motion abnormalities using an automated 3D quantification algorithm[J]. Ultrasound Med Biol,2018,44(11):2274-2282. [18] Sabour,Siamak. Automated measurement of left ventricular ejection fraction and volume using the Philips EPIQ system: Methodological issues on validity and reproducibility[J]. Echocardiography,2018,35(1):135. doi: 10.1111/echo.13781 [19] Menon D,Kadiu G,Sanil Y,et al. Anthracycline treatment and left atrial function in children:A real-time 3-dimensional echocardiographic study[J]. Pediatric Cardiology,2022,43(3):645-654. [20] Muraru A D,Ac A,Cucchini A U,et al. Intervendor consistency and accuracy of left ventricular volume measurements using three-dimensional echocardiography[J]. Journal of the American Society of Echocardiography,2018,31(2):158-168. doi: 10.1016/j.echo.2017.10.010 [21] Levy F,Iacuzio L,Schouver E D,et al. Performance of a new fully automated transthoracic three-dimensional echocardiographic software for quantification of left cardiac chamber size and function:Comparison with 3 Tesla cardiac magnetic resonance[J]. Journal of Clinical Ultrasound,2019,47(9):546-554. [22] Motoc A,Scheirlynck E,Roosens B,et al. Additional value of left atrium remodeling assessed by three-dimensional echocardiography for the prediction of atrial fibrillation recurrence after cryoballoon ablation[J]. The International Journal of Cardiovascular Imaging,2022,38(5):1103-1111. [23] Toader D M,Mirea O,Craciun-Mirescu A,et al. The link between left atrial longitudinal reservoir strain and mitral apparatus geometry in patients with dilated cardiomyopathy[J]. European Heart Journal,2022,43(2):26-29. [24] 滕花,任建丽,冉海涛,等. 三维超声心动图自动定量技术在评价左心腔容积及功能中的应用价值[J]. 中华超声影像学杂志,2019,28(3):192-199. doi: 10.3760/cma.j.issn.1004-4477.2019.03.002 期刊类型引用(1)
1. 张辉,娄飞云. 神经内镜和显微镜下经鼻蝶入路切除术治疗垂体腺瘤的临床观察. 深圳中西医结合杂志. 2024(17): 73-76 . 百度学术
其他类型引用(0)
-