|
[1]
|
Ghionzoli N,Gentile F,Del Franco A M,et al. Current and emerging drug targets in heart failure treatment[J]. Heart Fail Rev,2022,27(4):1119-1136. doi: 10.1007/s10741-021-10137-2
|
|
[2]
|
Castiglione V,Aimo A,Vergaro G,et al. Biomarkers for the diagnosis and management of heart failure[J]. Heart Fail Rev,2022,27(2):625-643. doi: 10.1007/s10741-021-10105-w
|
|
[3]
|
Bhatt K N,Butler J. Myocardial energetics and heart failure: A review of recent therapeutic trials[J]. Curr Heart Fail Rep,2018,15(3):191-197. doi: 10.1007/s11897-018-0386-8
|
|
[4]
|
Chen Y,He Q,Mo D C,et al. The angiotensin receptor and neprilysin inhibitor,LCZ696,in heart failure: A meta-analysis of randomized controlled trials[J]. Medicine (Baltimore),2022,101(41):e30904.
|
|
[5]
|
Hilger D,Masureel M,Kobilka B K. Structure and dynamics of GPCR signaling complexes[J]. Nat Struct Mol Biol,2018,25(1):4-12. doi: 10.1038/s41594-017-0011-7
|
|
[6]
|
Wang J,Gareri C,Rockman H A. G-protein-coupled receptors in heart disease[J]. Circ Res,2018,123(6):716-735. doi: 10.1161/CIRCRESAHA.118.311403
|
|
[7]
|
Rueda P,Merlin J,Chimenti S,et al. Pharmacological insights into safety and efficacy determinants for the development of adenosine receptor biased agonists in the treatment of heart failure[J]. Front Pharmacol,2021,12:628060. doi: 10.3389/fphar.2021.628060
|
|
[8]
|
Meibom D,Albrecht-Küpper B,Diedrichs N,et al. Neladenoson bialanate hydrochloride: A prodrug of a partial adenosineA1 receptor agonist for the chronic treatment of heart diseases[J]. Chem Med Chem,2017,12(10):728-737. doi: 10.1002/cmdc.201700151
|
|
[9]
|
Voors A A,Bax J J,Hernandez A F,et al. Safety and efficacy of the partial adenosine A1 receptor agonist neladenoson bialanate in patients with chronic heart failure with reduced ejection fraction: A phase IIb,randomized,double-blind,placebo-controlled trial[J]. Eur J Heart Fail,2019,21(11):1426-1433. doi: 10.1002/ejhf.1591
|
|
[10]
|
Neumann J,Kirchhefer U,Dhein S,et al. The roles of cardiovascular H2-histamine receptors under normal and pathophysiological conditions[J]. Front Pharmacol,2021,12:732842. doi: 10.3389/fphar.2021.732842
|
|
[11]
|
Saheera S,Potnuri A G,Guha A,et al. Histamine 2 receptors in cardiovascular biology: A friend for the heart[J]. Drug Discov Today,2022,27(1):234-245. doi: 10.1016/j.drudis.2021.08.008
|
|
[12]
|
Luo T,Chen B,Zhao Z,et al. Histamine H2 receptor activation exacerbates myocardial ischemia/reperfusion injury by disturbing mitochondrial and endothelial function[J]. Basic Res Cardiol,2013,108(3):342. doi: 10.1007/s00395-013-0342-4
|
|
[13]
|
Zeng Z,Shen L,Li X,et al. Disruption of histamine H2 receptor slows heart failure progression through reducing myocardial apoptosis and fibrosis[J]. Clin Sci (Lond),2014,127(7):435-48. doi: 10.1042/CS20130716
|
|
[14]
|
Gergs U,Kirchhefer U,Bergmann F,et al. Characterization of stressed transgenic mice overexpressing H2-histamine receptors in the heart[J]. J Pharmacol Exp Ther,2020,374(3):479-488. doi: 10.1124/jpet.120.000063
|
|
[15]
|
Gergs U,Büxel M L,Bresinsky M,et al. Cardiac effects of novel histamine H2 receptor agonists[J]. J Pharmacol Exp Ther,2021,379(3):223-234. doi: 10.1124/jpet.121.000822
|
|
[16]
|
He G,Hu J,Ma X,et al. Sympathetic histamine exerts different pre- and post-synaptic functions according to the frequencies of nerve stimulation in guinea pig vas deferens[J]. J Neurochem,2008,106(4):1710-9. doi: 10.1111/j.1471-4159.2008.05532.x
|
|
[17]
|
He G,Hu J,Li T,et al. Arrhythmogenic effect of sympathetic histamine in mouse hearts subjected to acute ischemia[J]. Mol Med,2012,18(1):1-9.
|
|
[18]
|
He G H,Cai W K,Meng J R,et al. Relation of polymorphism of the histidine decarboxylase gene to chronic heart failure in Han Chinese[J]. Am J Cardiol,2015,115(11):P1555-1562. doi: 10.1016/j.amjcard.2015.02.062
|
|
[19]
|
Meng R,Chen L R,Zhang M L,et al. Effectiveness and safety of histamine H2 receptor antagonists: An umbrella review of meta-analyses[J]. J Clin Pharmacol,2023,63(1):7-20. doi: 10.1002/jcph.2147
|
|
[20]
|
Zhang J,Cai W K,Zhang Z,et al. Cardioprotective effect of histamine H2 antagonists in congestive heart failure: A systematic review and meta-analysis[J]. Medicine (Baltimore),2018,97(15):e0409.
|
|
[21]
|
Huang Y H,Cai W K,Yin S J,et al. Histamine H2 receptor antagonist exposure was related to decreased all-cause mortality in critical ill patients with heart failure: A cohort study[J]. Eur J PrevCardiol,2022,29(14):1854-1865.
|
|
[22]
|
Sato T,Aikawa T. The role of histamine H2 receptor antagonist in heart failure: A potential game-changer?[J]. Eur J PrevCardiol,2022,29(14):1852-1853.
|
|
[23]
|
Liu Y,Wang Z,Li J,et al. Inhibition of 5-hydroxytryptamine receptor 2B reduced vascular restenosis and mitigated the β-arrestin2-mammalian target of rapamycin/p70S6K pathway[J]. J Am Heart Assoc,2018,7(3):e006810. doi: 10.1161/JAHA.117.006810
|
|
[24]
|
Cidlowski J A,Cruz-Topete D. Glucocorticoid inhibition of estrogen regulation of the serotonin receptor 2B in cardiomyocytes exacerbates cell death in hypoxia/reoxygenation injury[J]. J Am Heart Assoc,2021,10(17):e015868. doi: 10.1161/JAHA.120.015868
|
|
[25]
|
郝德雄,陈明,王玉兵. 5羟色胺2B受体阻滞剂对压力超负荷大鼠心功能的影响[J]. 中华高血压杂志,2016,24(9):863-868.
|
|
[26]
|
Janssen W,Schymura Y,Novoyatleva T,et al. 5-HT2B receptor antagonists inhibit fibrosis and protect from RV heart failure[J]. Biomed Res Int,2015,2015:438403.
|
|
[27]
|
Marzak H,Ayme-Dietrich E,Lawson R,et al. Old spontaneously hypertensive rats gather together typical features of human chronic left-ventricular dysfunction with preserved ejection fraction[J]. J Hypertens,2014,32(6):1307-16. doi: 10.1097/HJH.0000000000000159
|
|
[28]
|
Xia H,Zahra A,Jia M,et al. Na+/H+ exchanger 1,a potential therapeutic drug target for cardiac hypertrophy and heart failure[J]. Pharmaceuticals (Basel),2022,15(7):875. doi: 10.3390/ph15070875
|
|
[29]
|
Sjøgaard-Frich L M,Prestel A,Pedersen E S,et al. Dynamic Na+/H+ exchanger 1 (NHE1) - calmodulin complexes of varying stoichiometry and structure regulate Ca2+-dependent NHE1 activation[J]. Elife,2021,10:e60889. doi: 10.7554/eLife.60889
|
|
[30]
|
Escudero D S,Pérez N G,Díaz R G. Myocardial impact of NHE1 regulation by sildenafil[J]. Front Cardiovasc Med,2021,8:617519. doi: 10.3389/fcvm.2021.617519
|
|
[31]
|
Suleiman M,Abdulrahman N,Yalcin H,et al. The role of CD44,hyaluronan and NHE1 in cardiac remodeling[J]. Life Sci,2018,209:197-201. doi: 10.1016/j.lfs.2018.08.009
|
|
[32]
|
Mohamed I A,Mraiche F. Targeting osteopontin,the silent partner of Na+/H+ exchanger isoform 1 in cardiac remodeling[J]. J Cell Physiol,2015,230(9):2006-2018. doi: 10.1002/jcp.24958
|
|
[33]
|
Previtali S C,Gidaro T,Díaz-Manera J,et al. Rimeporide as a first- in-class NHE-1 inhibitor: Results of a phase Ib trial in young patients with duchenne muscular dystrophy[J]. Pharmacol Res,2020,159:104999. doi: 10.1016/j.phrs.2020.104999
|
|
[34]
|
Chen J,Chen S,Zhang B,et al. SIRT3 as a potential therapeutic target for heart failure[J]. Pharmacol Res,2021,165:105432. doi: 10.1016/j.phrs.2021.105432
|
|
[35]
|
He X,Zeng H,Chen J X. Emerging role of SIRT3 in endothelial metabolism,angiogenesis,and cardiovascular disease[J]. J Cell Physiol,2019,234(3):2252-2265. doi: 10.1002/jcp.27200
|
|
[36]
|
Chen W J,Cheng Y,Li W,et al. Quercetin attenuates cardiac hypertrophy by inhibiting mitochondrial dysfunction through SIRT3/PARP-1 pathway[J]. Front Pharmacol,2021,12:739615. doi: 10.3389/fphar.2021.739615
|
|
[37]
|
Liu J,Tang M,Li T,et al. Honokiol ameliorates post-myocardial infarction heart failure through Ucp3-mediated reactive oxygen species inhibition[J]. Front Pharmacol,2022,13:811682. doi: 10.3389/fphar.2022.811682
|
|
[38]
|
Pillai V B,Samant S,Sundaresan N R,et al. Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial SIRT3[J]. Nat Commun,2015,6:6656. doi: 10.1038/ncomms7656
|
|
[39]
|
马斌,雷贺吉,韩淑伟. 血清肿瘤坏死因子-α、白细胞介素-1β及白细胞介素-6与慢性心力衰竭病人心功能的相关性分析[J]. 中西医结合心脑血管病杂志,2019,17(16):2490-2492. doi: 10.12102/j.issn.1672-1349.2019.16.025
|
|
[40]
|
Hanna A,Frangogiannis N G. Inflammatory cytokines and chemokines as therapeutic targets in heart failure[J]. Cardiovasc Drugs Ther,2020,34(6):849-863. doi: 10.1007/s10557-020-07071-0
|
|
[41]
|
NemecSvete A,Verk B,Čebulj-Kadunc N,et al. Inflammation and its association with oxidative stress in dogs with heart failure[J]. BMC Vet Res,2021,17(1):176. doi: 10.1186/s12917-021-02878-x
|
|
[42]
|
Kotyla P J. Bimodal function of Anti-TNF treatment: shall we be concerned about Anti-TNF treatment in patients with rheumatoid arthritis and heart failure?[J]. Int J Mol Sci,2018,19(6):1739. doi: 10.3390/ijms19061739
|
|
[43]
|
Dinarello C A. The IL-1 family of cytokines and receptors in rheumatic diseases[J]. Nat Rev Rheumatol,2019,15(10):612-632. doi: 10.1038/s41584-019-0277-8
|
|
[44]
|
Abbate A,Toldo S,Marchetti C,et al. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease[J]. Circ Res,2020,126(9):1260-1280. doi: 10.1161/CIRCRESAHA.120.315937
|
|
[45]
|
Everett B M,Cornel J H,Lainscak M,et al. Anti-Inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure[J]. Circulation,2019,139(10):1289-1299. doi: 10.1161/CIRCULATIONAHA.118.038010
|
|
[46]
|
Szekely Y,Arbel Y. A review of interleukin-1 in heart disease: Where do we stand today?[J]. Cardiol Ther,2018,7(1):25-44.
|
|
[47]
|
Ye Y,Yang X,Long B,et al. Association between a CCL17 genetic variant and risk of coronary artery disease in a Chinese Han population[J]. Circ J,2017,82(1):224-231.
|
|
[48]
|
Zhang Y,Ye Y,Tang X,et al. CCL17 acts as a novel therapeutic target in pathological cardiac hypertrophy and heart failure[J]. J Exp Med,2022,219(8):e20200418. doi: 10.1084/jem.20200418
|
|
[49]
|
Feng G,Bajpai G,Ma P,et al. CCL17 aggravates myocardial injury by suppressing recruitment of regulatory T cells[J]. Circulation,2022,145(10):765-782. doi: 10.1161/CIRCULATIONAHA.121.055888
|
|
[50]
|
Feng G,Zhu C,Lin C Y,et al. CCL17 protects against viral myocarditis by suppressing the recruitment of regulatory T cells[J]. J Am Heart Assoc,2023,12(4):e028442. doi: 10.1161/JAHA.122.028442
|