留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卫茅碱对人血管内皮细胞及血管平滑肌细胞增殖、迁移及细胞周期的影响

张莉 赵熙 赵华祥 熊宝 徐洁 汤广平 喻卓 陈鹏

张莉, 赵熙, 赵华祥, 熊宝, 徐洁, 汤广平, 喻卓, 陈鹏. 卫茅碱对人血管内皮细胞及血管平滑肌细胞增殖、迁移及细胞周期的影响[J]. 昆明医科大学学报, 2023, 44(7): 1-8. doi: 10.12259/j.issn.2095-610X.S20230723
引用本文: 张莉, 赵熙, 赵华祥, 熊宝, 徐洁, 汤广平, 喻卓, 陈鹏. 卫茅碱对人血管内皮细胞及血管平滑肌细胞增殖、迁移及细胞周期的影响[J]. 昆明医科大学学报, 2023, 44(7): 1-8. doi: 10.12259/j.issn.2095-610X.S20230723
Li ZHANG, Xi ZHAO, Huaxiang ZHAO, Bao XIONG, Jie XU, Guangping TANG, Zhuo YU, Peng CHEN. Effects of Euonymine on Proliferation,Migration,and Cell Cycle of HUVECs and VSMCs[J]. Journal of Kunming Medical University, 2023, 44(7): 1-8. doi: 10.12259/j.issn.2095-610X.S20230723
Citation: Li ZHANG, Xi ZHAO, Huaxiang ZHAO, Bao XIONG, Jie XU, Guangping TANG, Zhuo YU, Peng CHEN. Effects of Euonymine on Proliferation,Migration,and Cell Cycle of HUVECs and VSMCs[J]. Journal of Kunming Medical University, 2023, 44(7): 1-8. doi: 10.12259/j.issn.2095-610X.S20230723

卫茅碱对人血管内皮细胞及血管平滑肌细胞增殖、迁移及细胞周期的影响

doi: 10.12259/j.issn.2095-610X.S20230723
基金项目: 国家自然科学基金资助项目(81860641);云南省基础研究计划重点项目(202001AS070035);云南省科技厅-昆明医科大学应用基础研究联合专项基金资助项目(202101AY070001-015);云南省高层次人才培养支持计划“名医”专项基金资助项目(RLMY20200013)
详细信息
    作者简介:

    张莉(1984~),女,河南南阳人,医学博士,讲师,主要从事天然药物药理学研究工作

    通讯作者:

    喻卓,E-mail:dr_yuzhuo@163.com

    陈鹏,E-mail:chenpeng@kmmu.edu.cn

  • 中图分类号: R956.1

Effects of Euonymine on Proliferation,Migration,and Cell Cycle of HUVECs and VSMCs

  • 摘要:   目的  探讨卫茅碱(Euonymine)对人脐静脉内皮细胞(HUVECs)及人血管平滑肌细胞(VSMCs)的影响,以明确其防治冠脉支架内再狭窄(in-stent restenosis,ISR)的可能机制。  方法  台盼蓝检测Euonymine对HUVECs成活率的影响;MTT法检测Euonymine对HUVECs及VSMCs增殖的影响;划痕法检测Euonymine对VSMCs迁移的影响。  结果  MTT结果显示,卫茅碱干预后, HUVECs和VSMCs的吸光度降低。另外,Euonymine分别作用HUVECs 24 h,VSMCs 48 h后,测的半数有效抑制浓度(IC50)分别为28.6 µg/mL和33.92 µg/mL。流式细胞结果显示,Euonymine(25 μg/mL)使HUVECs和VSMCs的细胞周期阻滞于G0/G1期,而Euonymine(100 µg/mL)使VSMCs有丝分裂被阻断于G0/G1期及G2/M期。  结论  Euonymine主要通过抑制VSMCs的增殖和迁移,影响细胞周期,对于抑制经皮冠状动脉介入治疗术(percutaneous coronary intervention,PCI)后新生内膜形成有潜在的临床应用价值。
  • 图  1  卫茅碱的化学结构式[13]

    Figure  1.  Chemical structural of Euonymine

    图  2  正常HUVECs和VSMCs形态(×100)

    A: 正常对照组HUVECs的形态;B: 正常对照组VSMCs的形态。

    Figure  2.  Typical appearance of HUVECs and VSMCs (×100)

    图  3  Euonymine对HUVECs活性的影响

    Figure  3.  Viability of HUVECs treated with Euonymine

    图  4  Euonymine作用HUVECs 24 h的生长抑制率曲线

    Figure  4.  Curve inhibition rate of Euonymine treated HUVECs for 24 h

    图  5  Euonymine作用VSMCs 48 h的生长抑制率曲线

    Figure  5.  Curve inhibition rate of Euonymine treated VSMCs for 48 h

    图  6  卫茅碱抑制VSMCs迁移

    A:划痕实验24 h后各实验组 VSMCs迁移的图像;B:Euonymine抑制VSMCs迁移距离的统计分析。与正常对照组比较,**P < 0.01;与模型组比较,#P < 0.05($ \bar x \pm s $,n = 6)。

    Figure  6.  Euonymine inhibits the migration of VSMCs

    图  7  卫茅碱对血清诱导的HUVECs细胞周期影响($ \bar x \pm s$n = 6)

    A~C:不同浓度的Euonymine作用HUVECs后24 h的DNA直方图; D: Euonymine处理24 h的HUVECs的细胞周期的统计学分析。

    Figure  7.  Effect of Euonymine on the cell cycle of HUVECs induced by serum ($ \bar x \pm s$n = 6)

    图  8  Euonymine对血清诱导的VSMCs细胞周期影响($\bar x \pm s $n = 6)

    A~C:不同浓度的Euonymine作用VSMC后24 h的DNA直方图;D~E: Euonyming处理24 h和48 h的VSMCs的细胞周期分布。

    Figure  8.  Effect of Euonymine on the cell cycle of VSMCs induced by serum ($\bar x \pm s $n = 6)

    表  1  不同浓度Euonymine对HUVECs增殖的影响($ \bar x \pm s $n = 6)

    Table  1.   Effect of different concentrations of Euonymine on the proliferation of HUVECs ($\bar x \pm s $n = 6)

    分组OD (570 nm)IR(%)FP
    正常对照组 DMSO 0.768 ± 0.06
    Euonymine(µg/mL) 12.5 0.654 ± 0.08 16.1
    25 0.591 ± 0.19 25.0 5.97 0.030*
    50 0.460 ± 0.07 43.5
    100 0.152 ± 0.12 87.0
      *P < 0.05;与正常对照组相比较,P < 0.05。
    下载: 导出CSV

    表  2  不同浓度Euonymine对VSMCs增殖的影响($\bar x \pm s$n = 6)

    Table  2.   Effect of different concentrations of Euonymine on the proliferation of VSMCs ($\bar x \pm s $n = 6)

    分组OD (570 nm)
    24 h48 h72 h96 h
    正常对照组 DMSO 0.788 ± 0.16 0.841 ± 0.14 0.885 ± 0.08 0.925 ± 0.20
    Euonymine
    (µg/mL)
    12.5 0.688 ± 0.10 0.680 ± 0.13 0.676 ± 0.12 0.637 ± 0.04
    25 0.626 ± 0.08 0.628 ± 0.19 0.607 ± 0.10 0.569 ± 0.12
    50 0.524 ± 0.11 0.425 ± 0.15 0.419 ± 0.07 0.402 ± 0.18
    100 0.312 ± 0.07 0.259 ± 0.13 0.219 ± 0.17 0.188 ± 0.08
    200 0.259 ± 0.04 0.185 ± 0.16 0.156 ± 0.06 0.137 ± 0.18
    F 6.21 6.49 6.61 6.76
    P 0.041* 0.041* 0 .031* 0.028*
      *P < 0.05;与正常对照组比较,P < 0.05。
    下载: 导出CSV
  • [1] Jensen L O,Thayssen P,Thuesen L,et al. Influence of a pressure gradient distal to implanted bare-metal stent on in—stent restenosis after percutaneous coronary intervention[J]. Circulation,2007,116(24):2802-2808. doi: 10.1161/CIRCULATIONAHA.107.704064
    [2] Maarten J S,Gert J L,Braim M R,et al. Primary Tenting of Totally Occluded Native Coronary Arteries II (PRISON II): A randomized comparison of bare metal stent implantation with sirolimus-eluting stent implantation for the treatment of total coronary occlusicms[J]. Circulation,2006,114(9):921-928. doi: 10.1161/CIRCULATIONAHA.106.613588
    [3] Kawai K,Virmani R,Finn A V,et al. In-Stent Restenosis[J]. Interv Cardiol Clin,2022,11(4):429-443.
    [4] Stettler C,Wandel S,Allemann S,et al. Outcomes associated with drug-eluting and bare-metal stents: A collaborative network meta-analysis[J]. Lancet,2007,370(9591):937-948. doi: 10.1016/S0140-6736(07)61444-5
    [5] Hong S J,Hong M K. Drug-eluting stents for the treatment of coronary artery disease: A review of recent advances[J]. Expert Opinion on Drug Delivery,2022,19(3):269-280. doi: 10.1080/17425247.2022.2044784
    [6] Hu W and Jiang J. Hypersensitivity and in-stent restenosis in coronary stent materials[J]. Front Bioeng Biotechnol,2022,10:1003322. doi: 10.3389/fbioe.2022.1003322
    [7] Hsiao S T,Spencer T,Boldock L,et al. Endothelial repair in stented arteries is accelerated by inhibition of Rho-associated protein kinase[J]. Cardiovasc Res,2016,112(3):689-701. doi: 10.1093/cvr/cvw210
    [8] Guo L W,Wang B,Goel S A,et al. Halofuginone stimulates adaptive remodeling and preserves re-endothelialization in balloon-injured rat carotid arteries[J]. Circ Cardiovasc Interv,2014,7(4):594-601. doi: 10.1161/CIRCINTERVENTIONS.113.001181
    [9] Alraies M C,Darmoch F,Tummala R,et al. Diagnosis and management challenges of in-stent restenosis in coronary arteries[J]. World J Cardiol,2017,9(8):640-651. doi: 10.4330/wjc.v9.i8.640
    [10] Yang F,Chen Q,He S,et al. MiR-22 is a novel mediator of vascular smooth muscle cell phenotypic modulation and neointima formation[J]. Circulation,2018,137(17):1824-1841. doi: 10.1161/CIRCULATIONAHA.117.027799
    [11] Glogov S. Intimal hyplasia,vascular remodeling and the restenosis problem[J]. Circulation,1993,88:152-158.
    [12] Zhao J,Zhang F,Xiao X,et al. Tripterygium hypoglaucum (Levl. ) hutch and its main bioactive components: Recent advances in pharmacological activity,pharmacokinetics and potential toxicity[J]. Front Pharmacol,2021,12:715359. doi: 10.3389/fphar.2021.715359
    [13] Zhang L,Tao Y,Yang R,et al. Euonymine inhibits in-stent restenosis through enhancing contractile phenotype of vascular smooth muscle cells via modulating the PTEN/AKT/mTOR signaling pathway[J]. Phytomedicine,2022,107:154450. doi: 10.1016/j.phymed.2022.154450
    [14] 陈妍. 昆明山海棠提取物对人血管内皮及血管平滑肌细胞增殖的影响[D]. 昆明: 昆明医科大学, 2012.
    [15] Pasterkamp G,Ruijter H M,Libby P. Temporal shifts in clinical presentation and underlying mechanisms of atherosclerotic disease[J]. Nat Rev Cardiol,2017,14(1):21-29. doi: 10.1038/nrcardio.2016.166
    [16] Heiden K V,Gijsen F J,Narracott A,et al. The effects of stenting on shear stress: Relevance to endothelial injury and repair[J]. Cardiovasc Res,2013,99(2):269-275. doi: 10.1093/cvr/cvt090
    [17] Kanellakis P,Nestel P,Bobik A. Angioplasty-induced superoxide anions and neointimal hyperplasia in the rabbit carotid artery:Suppression by the isoflavone trans-tetrahydrodaidzei[J]. Atherosclerosis,2004,176(1):63-72.
    [18] Lim W W,Corden B,Ng B,et al. Interleukin-11 is important for vascular smooth muscle phenotypic switching and aortic inflammation,fibrosis and remodeling in mouse models[J]. Sci Rep,2020,10(1):17853. doi: 10.1038/s41598-020-74944-7
    [19] Karacsonyi J,Sasi V,Ung I,et al. Management of a balloon shaft fracture during subintimal retrograde chronic total occlusion percutaneous coronary intervention due to in-stent restenosis[J]. J Invasive Cardiol,2018,30(8):E64-E66.
    [20] Nicolais C,Lakhter V,Virk H,et al. Therapeutic Options for In-Stent Restenosis[J]. Curr Cardiol Rep,2018,20(2):7-21. doi: 10.1007/s11886-018-0952-4
    [21] Benada J,Macurek L. Targeting the checkpoint to kill cancer cells[J]. Biomolecules,2015,5(3):1912-1937. doi: 10.3390/biom5031912
    [22] 沈晓君,魏群,陈芳,等. 葛根素对血管平滑肌细胞周期相关蛋白表达的影响[J]. 中国中医基础医学杂志,2011,7(1):69-79. doi: 10.19945/j.cnki.issn.1006-3250.2011.01.032
    [23] Altesha M A,Ni T,Khan A,et al. Circular RNA in cardiovascular disease[J]. J Cell Physiol,2019,234(5):5588-5600. doi: 10.1002/jcp.27384
    [24] Jamasbi E,Hamelian M,Hossain M A,et al. The cell cycle,cancer development and therapy[J]. Mol Biol Rep,2022,49(11):10875-10883. doi: 10.1007/s11033-022-07788-1
    [25] Men H,Cai H,Cheng Q,et al. The regulatory roles of p53 in cardiovascular health and disease[J]. Cell Mol Life Sci,2021,78(5):2001-2018.
    [26] Rieger A M. Flow cytometry and cell cycle analysis: An Overview[J]. Methods Mol Biol,2022,2579:47-57.
    [27] Song P,Zhao Q,Zou M H. Targeting senescent cells to attenuate cardiovascular disease progression[J]. Ageing Res Rev,2020,60:101072. doi: 10.1016/j.arr.2020.101072
    [28] Wang Z. Cell cycle progression and synchronization: An overview[J]. Methods Mol Biol,2022,2579:3-23.
    [29] Minzer S,Losno R A,Casas R. The effect of alcohol on cardiovascular risk factors: Is there new information?[J]. Nutrients,2020,12(4):912-918.
  • [1] 张浒, 林玲, 杨爱玲, 苏蓉, 黄波.  冠脉搭桥术后静脉桥平滑肌细胞模型建立, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241003
    [2] 王惠, 曾文珺, 张海萍, 郭瑞威.  钙库操纵型钙通道Orai3分子对冠状动脉血管平滑肌细胞增殖的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230423
    [3] 梁彩红, 孟明耀, 李欣欣, 熊晶晶, 李檬, 刘梅, 侯宗柳, 黄永坤.  肠道菌群代谢物脱氧胆酸对人脐带间充质干细胞hUC-MSCs增殖及细胞周期的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230402
    [4] 张紫微, 郑甲林, 许晓宇, 王红.  二甲双胍通过AMPK/PPAR-γ通路诱导自噬抑制高糖对血管平滑肌细胞的增殖作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231026
    [5] 张黎, 王清岑, 周罗慧, 杨娟, 王红.  木犀草素通过调控内质网应激抑制平滑肌细胞的迁移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220518
    [6] 王晓寒, 牟善茂, 郝翠芳, 任琳琳, 王敏, 赵彤.  富血小板血浆促进人子宫内膜间充质干细胞(EnMSCs)增殖的机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220126
    [7] 钱石兵, 孟明耀, 于鸿滨, 段开文, 李昌全, 夏志刚.  三七总皂苷对人根尖牙乳头干细胞增殖的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221018
    [8] 贾凤梅, 殷顺会, 冉丽权, 田明彤, 张明珠.  特发性牙龈纤维瘤来源外泌体对正常牙龈细胞周期的影响, 昆明医科大学学报.
    [9] 陈晨, 王友兰, 刘伟军, 饶嫱, 杜庭彦, 杜晓华, 杨为民, 朱秀芬.  灯盏花乙素对人心脏微血管内皮细胞中PKCε表达的调控作用, 昆明医科大学学报.
    [10] 倪广惠, 佟钧, 胡芝, 李娜, 陈贤露, 缪璇, 何越峰.  灯盏乙素对乳腺癌细胞中细胞周期调控分子的基因表达, 昆明医科大学学报.
    [11] 柏春玲, 廖泽容, 张巧, 董馨忆.  应用流式细胞术快速测定细胞周期的DNA一步法, 昆明医科大学学报.
    [12] 戈佳云.  慢病毒介导的FHIT基因过表达调控人肝癌细胞株生长实验研究, 昆明医科大学学报.
    [13] 曹蕊.  瘦素对动脉粥样硬化血管内皮细胞中IL-6表达的影响, 昆明医科大学学报.
    [14] 倪滔.  改良贴壁组织块法与改良I型胶原酶消法对成骨细胞增殖效果的比较研究, 昆明医科大学学报.
    [15] 潘艳丽.  吡格列酮对高糖诱导下血管内皮细胞凋亡的影响, 昆明医科大学学报.
    [16] 刘韬.  Corilagin对HUVEC增殖及细胞周期的影响, 昆明医科大学学报.
    [17] 赵瑜敏.  牙龈卟啉单胞菌对兔血管平滑肌细胞增殖和迁移的影响, 昆明医科大学学报.
    [18] 李华.  大鼠脑微血管内皮细胞的原代培养, 昆明医科大学学报.
    [19] 低氧诱导对人肝癌SMMC7721细胞生物学行为的影响, 昆明医科大学学报.
    [20] 20(R)-人参皂苷Rg3抗血小板活化因子诱导血管内皮细胞损伤的保护作用, 昆明医科大学学报.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  2818
  • HTML全文浏览量:  1837
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-17
  • 网络出版日期:  2023-07-17
  • 刊出日期:  2023-07-25

目录

    /

    返回文章
    返回