M2 Macrophage-derived Exosome miR-1246 Regulates the Growth and Invasion of Gastric Cancer Cells
-
摘要:
目的 探讨M2巨噬细胞来源的外泌体miR-1246对胃癌AGS细胞增殖,凋亡和侵袭的影响。 方法 采用IL-4和IL-13诱导M2巨噬细胞后,分离其外泌体,并通过透射电镜和免疫印迹法进行鉴定。M2巨噬细胞分别转染NC inhibitor和miR-1246 inhibitor后,分离对应外泌体与AGS细胞共培养,并采用CCK-8,Annexin V-FITC/PI和Transwell分别检测AGS细胞增殖,凋亡和侵袭。TargetScan数据库预测miR-1246下游靶标,并通过双荧光素酶报告基因实验对miR-1246和GSK3B的靶向关系进行验证。 结果 M2巨噬细胞中分离的外泌体大小为50~150 nm,且表达ALIX,CD63和TSG101。M2巨噬细胞来源外泌体增加AGS细胞活力(P < 0.05)和侵袭细胞数(P < 0.01),并降低其凋亡比例(P < 0.01)。敲低外泌体中miR-1246的表达,AGS细胞的表型变化得到回复(P < 0.01)。外泌体miR-1246靶向GSK3B,并调控β-catenin和c-Myc的表达,M2巨噬细胞来源外泌体miR-1246靶向GSK3B促进胃癌细胞增殖和侵袭、并抑制其凋亡(P < 0.001)。 结论 M2巨噬细胞来源外泌体miR-1246靶向GSK3B介导Wnt通路激活促进胃癌细胞增殖和侵袭,并抑制其凋亡。 Abstract:Objective To investigate the effects of M2 macrophage-derived exosome miR-1246 on the proliferation, apoptosis and invasion of AGS cells. Methods After induction of M2 macrophages using LPS and IFN-γ, their exosomes were isolated and identified by transmission electron microscopy and western blot. After M2 macrophages were transfected with NC inhibitor and miR-1246 inhibitor respectively, the corresponding exosomes were isolated and co-cultured with AGS cells, and proliferation, apoptosis, and invasion of AGS cells were detected by CCK-8, Annexin V-FITC/PI and Transwell, respectively. TargetScan database predicted miR-1246 downstream targets and the targeting relationship between miR-1246 and GSK3B was validated by dual-luciferase reporter gene assays. Results The exosomes isolated from M2 macrophages were 30-150 nm in size and expressed ALIX, CD63 and TSG101. M2 macrophage-derived exosomes increased the viability and invasive cell count of AGS cells and decreased their apoptotic ratio. Phenotypic changes in AGS cells were reverted by knocking down the expression of miR-1246 in exosomes. Exosome miR-1246 targets GSK3B and upregulated the expression of β-catenin and c-Myc. Conclusion M2 macrophage-derived exosome miR-1246 mediates Wnt pathway activation to promote proliferation and invasion of gastric cancer cells and inhibit their apoptosis via targeting GSK3B. -
Key words:
- Gastric cancer /
- Macrophages /
- Exosomes /
- miR-1246 /
- Wnt signaling pathway
-
系统性红斑狼疮(systemic lupus erythematosus,SLE)是一种慢性自身免疫性疾病,临床表现多样,可累及多个器官系统,包括肾脏、皮肤、关节、血液系统以及神经精神系统等[1-2]。肾脏损伤是系统性红斑狼疮最常见、最严重的表现之一。合并肾脏损伤的SLE患者可高达60%,未及时诊治可进展为严重性肾损伤和急慢性肾功能衰竭,导致SLE患者死亡率升高[3-4]。SLE合并肾损伤的临床表现包括蛋白尿、血尿以及肾功能不全等,其诊断金标准为肾脏活检。SLE肾损伤的发病机制包括先天性和适应性免疫系统的激活、自身抗体直接攻击、抗dsDNA抗体等形成的免疫复合物沉积于肾脏等[5]。本研究对296例SLE患者进行抗dsDNA抗体等自身抗体及其他实验室指标的检测,分析比较其差异,探讨各项指标在SLE肾损伤患者中的临床应用价值。
1. 资料与方法
1.1 一般资料
选取2014年至2019年昆明医科大学第一附属医院收治的SLE患者共296例,男性25例,女性271例,平均(36.51±13.98)岁。分为SLE合并肾损伤组和未合并肾损伤组,SLE合并肾损伤组患者74例,男性6例,女性68例,平均(35.09±14.46)岁;未合并肾损伤组患者222例,男性19例,女性203例,平均(36.98±13.81)岁。两组间年龄、性别比较,差异无统计学意义(P > 0.05)。
1.2 纳入和排除标准
纳入标准:所有患者符合1997年美国风湿病协会(american college of rheumatology,ACR)修订的SLE分类诊断标准[6]。
排除标准:妊娠和哺乳期、合并严重感染、合并其他自身免疫性疾病、合并严重脏器功能不全、恶性肿瘤等患者。
1.3 方法
患者入院后,取空腹静脉血2~3 mL,低温离心取上清,保存于−20 ℃备用。采用间接免疫荧光法以及免疫印迹法测量自身抗体;采用自动生化分析仪检测血常规、肝肾功能指标、免疫球蛋白IgG、IgM、IgA及补体C3、C4等实验室指标。
1.4 统计学处理
采用SPSS软件进行统计分析。呈正态分布或近似正态分布的计量资料以均数±标准差(
$\bar x \pm s $ )表示,两组间比较采用独立样本t检验;非正态分布的计量资料以四分位数表示,两组间比较采用非参数检验;计数资料以率(%)表示,采用χ2检验。P < 0.05为差异有统计学意义。2. 结果
2.1 自身抗体阳性率比较
SLE合并肾损伤组血清抗dsDNA抗体、抗核小体抗体及抗组蛋白抗体的阳性率显著高于未合并肾损伤组,差异有统计学意义(P < 0.05),抗U1-RNP抗体的阳性率显著低于未合并肾损伤组,差异有统计学意义(P < 0.05),两组血清ANA抗体、抗SmD1抗体、抗SSA-RO 60KD抗体、抗SSA-RO 52KD抗体及抗SSB-La抗体比较,差异无统计学意义(P > 0.05),见表1。
表 1 两组自身抗体阳性率比较[n(%)]Table 1. Comparison of the positive rate of autoantibodies between the two groups [n(%)]检测指标 SLE合并肾损伤组阳性例数 未合并肾损伤组阳性例数 χ2 P ANA抗体(n = 296) 73(98.6) 215(96.8) 0.171 0.679 抗dsDNA抗体(n = 296) 42(56.8) 73(32.9) 13.315 0.000 抗核小体抗体(n = 224) 41(69.5) 81(49.1) 7.293 0.007 抗组蛋白抗体(n = 224) 40(67.8) 81(49.1) 6.122 0.013 抗SmD1抗体(n = 296) 42(56.8) 124(55.9) 0.018 0.892 抗U1-RNP抗体(n = 296) 25(33.8) 107(48.2) 4.667 0.031 抗SSA-RO 60KD抗体(n = 296) 51(68.9) 139(62.6) 0.960 0.327 抗SSA-RO 52KD抗体(n = 296) 28(37.8) 101(45.5) 1.324 0.250 抗SSB-La抗体(n = 296) 16(21.6) 54(24.3) 0.225 0.636 2.2 其他各项实验室指标水平的比较
2.2.1 血液学检查指标水平比较
SLE合并肾损伤组血清白细胞、中性粒细胞水平显著高于未合并肾损伤组,差异有统计学意义(P < 0.05),红细胞、血红蛋白水平显著低于未合并肾损伤组,差异有统计学意义(P < 0.05),淋巴细胞、血小板水平比较,差异无统计学意义(P > 0.05),见表2。
表 2 两组血液学检查指标水平比较[M(P25,P75)]Table 2. Comparison of hematological indexes between the two groups [M(P25,P75)]检测指标 SLE合并肾损伤组(n = 74) 未合并肾损伤组(n = 222) Z/t P 白细胞(×109/L) 5.45(3.90,7.42) 4.52(3.18,5.91) −2.536 0.011 中性粒细胞(×109/L) 4.08(2.50,5.61) 2.97(1.85,4.33) −3.443 0.001 淋巴细胞(×109/L) 1.01(0.57,1.48) 1.05(0.67,1.45) −0.438 0.661 红细胞(×1012/L) 3.75(3.16,4.21) 4.02(3.54,4.48) −2.523 0.012 血红蛋白(g/L) 106(89,124.25) 115(97,130) −2.262 0.024 血小板[×109/L,($\bar x\pm s $)] 173.05 ± 83.72 187.19 ± 82.96 −1.267 0.206 2.2.2 其他实验室指标水平比较
SLE合并肾损伤组尿素、肌酐、尿酸、钾、氯、钙离子水平显著高于未合并肾损伤组,差异有统计学意义(P < 0.05),SLE合并肾损伤组总蛋白、白蛋白、球蛋白、ALT、AST、总胆红素、直接胆红素、间接胆红素、钠离子、免疫球蛋白IgG、IgA及补体C3水平显著低于未合并肾损伤组,差异有统计学意义(P < 0.05),IgM、C4,差异无统计学意义(P > 0.05),见表3。
表 3 两组其他实验室指标水平比较[M(P25,P75)]Table 3. Comparison of other laboratory indexes between the two groups [M(P25,P75)]检测指标 SLE合并肾损伤组(n = 74) 未合并肾损伤组(n = 222) Z P 总蛋白(g/L) 60.15(48.38,68.63) 67.30(58.98,73.68) −4.357 0.000 白蛋白(g/L) 27.05(22.33,34.10) 33.95(27.48,37.90) −5.001 0.000 球蛋白(g/L) 30.90(24.15,36.23) 32.05(27.40,38.30) −2.052 0.04 ALT(IU/L) 11.85(7.68,21.28) 15.40(10.59,26.05) −2.545 0.011 AST(IU/L) 18.10(13.28,27.65) 19.95(14.60,28.58) −1.368 0.171 总胆红素(μmol/L) 5.65(3.38,7.53) 6.65(4.70,9.88) −2.865 0.004 直接胆红素(μmol/L) 2.35(1.50,3.28) 3.00(2.18,4.70) −3.274 0.001 间接胆红素(μmol/L) 3.05(1.80,4.43) 3.40(2.20,5.33) −2.127 0.033 尿素(μmol/L) 6.78(4.24,11.88) 4.39(3.11,6.51) −4.686 0.000 肌酐(μmol/L) 79.15(59.43,144.58) 62.45(53.68,80.15) −4.235 0.000 尿酸(μmol/L) 391(301.55,506.33) 303.60(248.80,368.65) −4.909 0.000 钾(mmol/L) 3.99(3.76,4.54) 3.74(3.51,4.00) −5.034 0.000 钠(mmol/L) 139.55(136.55,142.33) 140.15(137.90,142.73) −1.384 0.166 氯(mmol/L) 106.85(104.05,110.08) 105.70(103.60,108.03) −2.059 0.039 钙(mmol/L) 2.05(1.95,2.18) 2.17(2.06,2.26) −3.969 0.000 IgG(g/L) 12(8.10,15.50) 13.80(10.10,18.80) −2.564 0.010 IgM(g/L) 0.96(0.69,1.41) 1.02(0.64,1.52) −0.542 0.588 IgA(g/L) 2.13(1.39,3.22) 2.22(1.58,3.29) −0.878 0.38 C3(g/L) 0.50(0.31,0.70) 0.65(0.43,0.86) −3.412 0.001 C4(g/L) 0.08(0.04,0.14) 0.10(0.05,0.16) −1.789 0.074 3. 讨论
SLE是一种累及多器官系统的自身免疫性疾病,肾脏受累最为常见。肾脏损伤是SLE最严重的表现之一,可出现肾小球、肾小管间质和肾脏血管的永久性损害,最终进展为终末期肾病[7]。早期的诊断和免疫抑制剂的治疗对于SLE肾损伤患者的预后起到关键性作用。SLE合并肾损伤的主要特征包括自身抗体的产生、免疫复合物沉积以及免疫介导的肾脏损伤,导致细胞增殖和凋亡增加,并诱发破坏正常肾单位的炎症和纤维化过程。自身抗体是SLE的重要临床特征,抗dsDNA抗体是SLE的特异性抗体,约70%的SLE患者可表现为阳性,而健康人群及其他自身免疫性疾病患者阳性率小于0.5%[8-9]。抗dsDNA抗体常与SLE肾损伤的发生相关,其水平通常与疾病活动相关[10-11]。有报道表明,在SLE患者中,针对核成分的自身抗体,抗dsDNA、抗核小体和抗组蛋白抗体同时阳性与SLE肾损伤的发病和活动性显著相关,可作为提示肾脏受累的一个重要性指标[12-13],与本研究结果一致。SLE合并肾损伤的患者体内产生抗dsDNA抗体,其通过与肾脏细胞表面蛋白结合,激活下游信号通路,释放炎症和纤维化介质,诱导炎症和纤维化过程[14-15]。有研究基于动物模型和SLE患者的数据,证实只有抗核小体抗体复合物,特别是抗DNA抗体复合物,而不是单一特异性抗体,才能在体内结合肾小球基底膜并诱发蛋白尿[16-17]。MRL/lpr狼疮小鼠肾小球沉积抗体的洗脱IgG中含有抗dsDNA、抗核小体和抗组蛋白抗体,这些抗体的数量与蛋白尿的发生呈正相关[18]。
SLE的发生和进展与机体的细胞免疫及体液免疫失衡相关,当机体免疫调节失衡时,机体的炎症指标、补体水平等实验室指标出现异常。许多研究结果表明,肾功能指标如血尿酸、肌酐与SLE肾损伤的发生呈正相关,其他免疫相关成分如补体C3、C4与其呈负相关[19-20]。本研究结果表明,SLE合并肾损伤组血清尿素、肌酐及尿酸水平显著高于未合并肾损伤组,补体C3水平显著低于未合并肾损伤组,可能对SLE的肾损伤的发生和预后评价起到重要作用。尿素、肌酐及尿酸等作为肾功能的主要检测指标可以直接、有效地反映SLE患者肾脏累及程度,但其对于早期肾脏损伤的提示不佳,易延误诊治[19]。补体C3是血清中含量最高的补体成分,主要是由巨噬细胞、淋巴组织等合成,与SLE的病情活动相关,SLE合并肾损伤组补体C3水平下降,机制可能为机体免疫失衡时,补体被激活,其与自身抗原抗体复合物结合并沉积,导致机体内补体被大量消耗[21]。
综上所述,抗dsDNA、抗核小体、抗组蛋白等自身抗体、补体C3及多项实验室指标水平与SLE患者肾损伤的发生密切相关,可作为评估SLE肾损伤的免疫学指标。
-
图 2 M2巨噬细胞来源外泌体促进AGS细胞增殖和侵袭,并抑制其凋亡
A:CCK-8检测M2巨噬细胞来源外泌体对AGS细胞活力的影响;B:Annexin V-FITC/PI检测AGS细胞凋亡的流式结果;C:Transwell检测AGS细胞侵袭的代表性图片和统计分析(×40);D:RT-qPCR检测M2巨噬细胞来源外泌体对AGS细胞中miR-1246表达的影响;E:Western blot 检测凋亡相关蛋白claved-caspase3,BAX以及BCL2表达。相较于NC组,*P < 0.05,**P < 0.01,***P < 0.001。
Figure 2. M2 macrophage-derived exosomes promoted the proliferation and invasion of AGS cells,and inhibited their apoptosis
图 3 M2巨噬细胞来源外泌体miR-1246促进AGS细胞增殖和侵袭,并抑制其凋亡
A:RT-qPCR检测各组AGS细胞中miR-1246的表达变化;B:由CCK-8试剂盒检测得到的AGS细胞活力变化;C:Western blot 检测凋亡相关蛋白claved-caspase3,BAX以及BCL2表达;D:AGS细胞凋亡比例的流式代表性图片和统计分析结果;E:Transwell检测AGS细胞的侵袭变化(×40)。相较于NC组,*P < 0.05,**P < 0.01,***P < 0.001;相较于M2-exo/NCinhibitor组,#P < 0.05,##P < 0.01,###P < 0.001。
Figure 3. M2 macrophage-derived exosome miR-1246 promoted the proliferation and invasion of AGS cells,and inhibited their apoptosis
图 4 miR-1246靶向调控Wnt信号通路
A:TargetScan数据库预测得到的miR-1246与GSK3B的潜在结合序列;B:双荧光素酶报告基因实验验证miR-1246与GSK3B的靶向关系;C:WB检测M2巨噬细胞来源外泌体miR-1246对AGS细胞中GSK3B蛋白表达的影响;D:WB检测M2巨噬细胞来源外泌体miR-1246对AGS细胞中Wnt信号通路的影响。相较于NCmimic组,**P < 0.01;相较于NC组,aP < 0.05,aaP < 0.01;相较于M2-exo/NCinhibitor组,bP < 0.05,bbP < 0.01;ns表示差异无统计学意义。
Figure 4. miR-1246 targets the Wnt signaling pathway
图 5 M2巨噬细胞来源外泌体miR-1246靶向GSK3B促进胃癌细胞增殖和侵袭、并抑制其凋亡
A:由CCK-8试剂盒检测得到的AGS细胞活力变化;B:AGS细胞凋亡比例的统计分析结果;C:Transwell检测AGS细胞的侵袭变化统计分析结果;D:AGS细胞凋亡比例的流式代表性图片;E:Transwell检测AGS细胞的侵袭变化代表性图片(×40);F:Western blot 检测凋亡相关蛋白claved-caspase3,BAX以及BCL2表达。相较于NC组,aP < 0.05,aaP < 0.01,aaaP < 0.001;相较于M2-exo/NCinhibitor组,bP < 0.05,bbP < 0.01;ns表示差异无统计学意义。
Figure 5. M2 macrophage-derived exosome miR-1246 targets GSK3B to promote proliferation and invasion and inhibit apoptosis of gastric cancer cells
-
[1] Thrift A P,El-Serag H B. Burden of gastric cancer[J]. Clin Gastroenterol Hepatol,2020,18(3):534-542. doi: 10.1016/j.cgh.2019.07.045 [2] Fitzmaurice C,Abate D,Abbasi N,et al. Global,regional,and national cancer incidence,mortality,years of life lost,years lived with disability,and disability-adjusted life-years for 29 cancer groups,1990 to 2017: A systematic analysis for the global burden of disease study[J]. JAMA Oncol,2019,5(12):1749-1768. doi: 10.1001/jamaoncol.2019.2996 [3] 曹毛毛,李贺,孙殿钦,等. 2000—2019年中国胃癌流行病学趋势分析[J]. 中华消化外科杂志,2021,20(1):8. [4] Sung H,Ferlay J,Siegel R L,et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2021,71(3):209-249. doi: 10.3322/caac.21660 [5] Arnold M,Abnet C C,Neale R E,et al. Global burden of 5 major types of gastrointestinal cancer[J]. Gastroenterology,2020,159(1):335-349.e15. doi: 10.1053/j.gastro.2020.02.068 [6] Hegde P S,Chen D S. Top 10 challenges in cancer immunotherapy[J]. Immunity,2020,52(1):17-35. doi: 10.1016/j.immuni.2019.12.011 [7] Vitale I,Manic G,Coussens L M,et al. Macrophages and metabolism in the tumor microenvironment[J]. Cell Metab,2019,30(1):36-50. doi: 10.1016/j.cmet.2019.06.001 [8] 王一晨,杨文山,董宪喆,等. 肿瘤相关巨噬细胞的作用综述[J]. 解放军医学院学报,2021,42(12):1315-1321. doi: 10.3969/j.issn.2095-5227.2021.12.017 [9] Xia Y,Rao L,Yao H,et al. Engineering macrophages for cancer immunotherapy and drug delivery[J]. Adv Mater,2020,32(40):e2002054. doi: 10.1002/adma.202002054 [10] Mohapatra S,Pioppini C,Ozpolat B,et al. Non-coding RNAs regulation of macrophage polarization in cancer[J]. Mol Cancer,2021,20(1):24. doi: 10.1186/s12943-021-01313-x [11] 谢玙玙,段昕所. 肿瘤微环境下巨噬细胞的极化和靶向治疗意义[J]. 华西医学,2021,36(5):679-685. [12] Kalluri R,Lebleu V S. The biology,function,and biomedical applications of exosomes[J]. Science,2020,367(6478):eaau6977. [13] 王莹,杨婷蓉,陈雅,等. 外泌体的生物学特征及其作为靶向药物载体在恶性肿瘤的应用[J]. 肿瘤代谢与营养电子杂志,2021,8(6):6. [14] 徐锋,张真发. 肿瘤源性外泌体调节肺癌免疫微环境及作为肺癌生物标志物的应用[J]. 癌症,2021,40(9):6. [15] Mao X,Xu J,Wang W,et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives[J]. Mol Cancer,2021,20(1):131. doi: 10.1186/s12943-021-01428-1 [16] Wei L,Sun J,Zhang N,et al. Noncoding RNAs in gastric cancer: implications for drug resistance[J]. Mol Cancer,2020,19(1):62. doi: 10.1186/s12943-020-01185-7 [17] Shi Y,Wang Z,Zhu X,et al. Exosomal miR-1246 in serum as a potential biomarker for early diagnosis of gastric cancer[J]. Int J Clin Oncol,2020,25(1):89-99. doi: 10.1007/s10147-019-01532-9 [18] Qian X,Xie F,Wei H,et al. Identification of key circulating exosomal microRNAs in gastric cancer[J]. Front Oncol,2021,11(1):693360. doi: 10.3389/fonc.2021.693360 [19] Yang Y,Guo Z,Chen W,et al. M2 macrophage-derived exosomes promote angiogenesis and growth of pancreatic ductal adenocarcinoma by targeting E2F2[J]. Mol Ther,2021,29(3):1226-1238. doi: 10.1016/j.ymthe.2020.11.024 [20] Wortzel I,Dror S,Kenific C M,et al. Exosome-mediated metastasis: communication from a distance[J]. Dev Cell,2019,49(3):347-360. doi: 10.1016/j.devcel.2019.04.011 [21] Doyle L M,Wang M Z. Overview of extracellular vesicles,their origin,composition,purpose,and methods for exosome isolation and analysis[J]. Cells,2019,8(7):727. [22] Pittet M J,Michielin O,Migliorini D. Clinical relevance of tumour-associated macrophages[J]. Nat Rev Clin Oncol,2022,19(6):402-421. doi: 10.1038/s41571-022-00620-6 [23] Zheng P,Chen L,Yuan X,et al. Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells[J]. J Exp Clin Cancer Res,2017,36(1):53. doi: 10.1186/s13046-017-0528-y [24] Yang X,Cai S,Shu Y,et al. Exosomal miR-487a derived from m2 macrophage promotes the progression of gastric cancer[J]. Cell Cycle,2021,20(4):434-444. doi: 10.1080/15384101.2021.1878326 [25] Lin S S,Peng C Y,Liao Y W,et al. MiR-1246 targets CCNG2 to enhance cancer stemness and chemoresistance in oral carcinomas[J]. Cancers (Basel),2018,10(8):272. [26] Xu X,Cao L,Zhang Y,et al. MicroRNA-1246 inhibits cell invasion and epithelial mesenchymal transition process by targeting CXCR4 in lung cancer cells[J]. Cancer Biomark,2018,21(2):251-260. doi: 10.3233/CBM-170317 [27] Zhang Y,Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer[J]. J Hematol Oncol,2020,13(1):165. doi: 10.1186/s13045-020-00990-3 [28] Yu F,Yu C,Li F,et al. Wnt/β-catenin signaling in cancers and targeted therapies[J]. Signal Transduct Target Ther,2021,6(1):307. doi: 10.1038/s41392-021-00701-5 [29] Zhang X,Zhong S,Xu Y,et al. MicroRNA-3646 contributes to docetaxel resistance in human breast cancer cells by GSK-3β/β-catenin signaling pathway[J]. PLoS One,2016,11(4):e0153194. doi: 10.1371/journal.pone.0153194 [30] Yang F,Xiong H,Duan L,et al. MiR-1246 promotes metastasis and invasion of A549 cells by targeting GSK-3β‒mediated Wnt/β-catenin pathway[J]. Cancer Res Treat,2019,51(4):1420-1429. doi: 10.4143/crt.2018.638 -