留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MSCs通过调控AMPK/mTOR促进自噬改善NASH肝损伤

梁晨晨 高建鹏

梁晨晨, 高建鹏. MSCs通过调控AMPK/mTOR促进自噬改善NASH肝损伤[J]. 昆明医科大学学报, 2023, 44(7): 162-167. doi: 10.12259/j.issn.2095-610X.S20230728
引用本文: 梁晨晨, 高建鹏. MSCs通过调控AMPK/mTOR促进自噬改善NASH肝损伤[J]. 昆明医科大学学报, 2023, 44(7): 162-167. doi: 10.12259/j.issn.2095-610X.S20230728
Chenchen LIANG, Jianpeng GAO. MSCs Promote Autophagy to Alleviate Liver Injury in NASH by Regulating AMPK/mTOR Axis[J]. Journal of Kunming Medical University, 2023, 44(7): 162-167. doi: 10.12259/j.issn.2095-610X.S20230728
Citation: Chenchen LIANG, Jianpeng GAO. MSCs Promote Autophagy to Alleviate Liver Injury in NASH by Regulating AMPK/mTOR Axis[J]. Journal of Kunming Medical University, 2023, 44(7): 162-167. doi: 10.12259/j.issn.2095-610X.S20230728

MSCs通过调控AMPK/mTOR促进自噬改善NASH肝损伤

doi: 10.12259/j.issn.2095-610X.S20230728
基金项目: 国家自然科学基金资助项目(81860424);深圳市科技攻关项目(202247)
详细信息
    作者简介:

    梁晨晨(1997~),女,安徽合肥人,在读硕士研究生,主要从事非酒精性脂肪肝病基础研究工作

    通讯作者:

    高建鹏,E-mail:gaojianpeng@kmmu.edu.cn

  • 中图分类号: R310

MSCs Promote Autophagy to Alleviate Liver Injury in NASH by Regulating AMPK/mTOR Axis

  • 摘要: 非酒精性脂肪性肝炎(nonalcoholic steatohepatitis,NASH)是代谢相关性脂肪肝病(metabolic associatedfattyliverdisease,MAFLD)肝脏特征性病理表现,是MAFLD从相对良性和可逆阶段向肝损伤甚至肝硬化和肝细胞癌发展的关键转折点。近年来研究表明,脂质沉积和氧化应激贯穿于MAFLD始终,而改善肝脂肪沉积和氧化应激是目前治疗和预防NASH疾病发生和发展的主要干预途径。一般来说,促进自噬水平可减少脂质积累(triglyceride,TG)和氧化应激(oxidative stress,OS)并促进肝细胞存活,而阻断自噬水平可能会加速NASH的进展。但自噬水平的激活与上游信号AMPK/mTOR/ULK1的活化及EI24的调控密不可分。其中一种与AMPK、mTOR通道活化密切相关的自噬跨膜蛋白依托泊苷诱导2.4蛋白(Etoposide-induced protein 2.4,EI24),可通过促进自噬溶酶体的降解加速自噬流的活化过程。同时,间充质干细胞(mesenchymal stem cells,MSCs)作为理想的自噬诱导体,凭借其激活AMPK/mTOR介导性自噬在治疗各种NASH炎症性疾病方面优异的治疗效果被广泛研究。因此,当采用MSCs以“药物作用”调控EI24/AMPK/mTOR轴促进自噬改善或逆转NASH脂肪堆积、氧化应激等肝损伤,以期为NASH相关发病机制的阐明和开发新的治疗策略提供依据。
  • [1] 唐振霆,施晓雷. 间充质干细胞治疗非酒精性脂肪性肝炎的机制及进展[J]. 肝胆胰外科杂志,2019,31(8):504-508,513. doi: 10.11952/j.issn.1007-1954.2019.08.016
    [2] Wong M C S,Huang J L W,George J,et al. The changing epidemiology of liver diseases in the Asia-Pacific region[J]. Gastroenterol Hepatol,2019,16(1):57-73. doi: 10.1038/s41575-018-0055-0
    [3] Eslam M,Sanyal A J,George J. International consensus panel. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease[J]. Gastroenterology,2020,158(7):1999-2014. doi: 10.1053/j.gastro.2019.11.312
    [4] Li J,Zou B,Yeo Y H,et al. Prevalence,incidence,and outcome of non-alcoholic fatty liver disease in Asia,1999-2019: A systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol,2019,4(5):389-398. doi: 10.1016/S2468-1253(19)30039-1
    [5] Powell E E,Wong V W,Rinella M. Non-alcoholic fatty liver disease[J]. Lancet,2021,397(10290):2212-2224. doi: 10.1016/S0140-6736(20)32511-3
    [6] Komatsu M. Liver autophagy: Physiology and pathology[J]. Biochem,2012,152(1):5-15. doi: 10.1093/jb/mvs059
    [7] Ost A,Svensson K,Ruishalme I,et al. Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes[J]. Mol Med,2010,16(7-8):235-246. doi: 10.2119/molmed.2010.00023
    [8] Xie F,Jia L,Lin M,et al. ASPP2 attenuates triglycerides to protect against hepatocyte injury by reducing autophagy in a cell and mouse model of non-alcoholic fatty liver disease[J]. Cell Mol Med,2015,19(1):155-164. doi: 10.1111/jcmm.12364
    [9] Kitade H,Chen G,Ni Y,et al. Nonalcoholic fatty liver disease and insulin resistance: New insights and potential new treatments[J]. Nutrients,2017,9(4):387. doi: 10.3390/nu9040387
    [10] Li F,Guo D,Zhi S,et al. Etoposide-induced protein 2.4 ameliorates high glucose-induced epithelial-mesenchymal transition by activating adenosine monophosphate-activated protein kinase pathway in renal tubular cells[J]. Int Biochem Cell Biol,2022,142(4):106-117. doi: 10.1016/j.biocel.2021.106117
    [11] Zhou X,Fouda S,Zeng X Y,et al. Characterization of the therapeutic profile of albiflorin for the metabolic syndrome[J]. Front Pharmacol,2019,10(2):11-51. doi: 10.3389/fphar.2019.01151
    [12] Ebrahim N,Ahmed I A,Hussien N I,et al. Mesenchymal stem cell-derived exosomes ameliorated diabetic nephropathy by autophagy induction through the mTOR signaling pathway[J]. Cells,2018,7(12):226. doi: 10.3390/cells7120226
    [13] Martin S and S Louise. Consequences of stress in these cretory pathway: The ER stress response and its role in the metabolic syndrome. Methods in molecular biology[J]. Clifton,2010,6(4):4-8. doi: 10.1007/978-1-60761-756-3_3
    [14] Gai R. Resveratrol ameliorates diet-induced dysregulation of lipid metabolism in zebra fish[J]. PloSone,2017,12(7):231-251. doi: 10.1371/journal.pone.0180865
    [15] Miura S,Suzuki A. Induction of steatohepatitis and liver tumorigenesis by enforced snail expression in hepatocytes[J]. Pathol,2020,190(6):1271-1283. doi: 10.1016/j.ajpath.2020.02.005
    [16] Arab H H,Al-Shorbagy M Y,Saad M A. Activation of autophagy and suppression of apoptosis by dapagliflozin attenuates experimental inflammatory bowel disease in rats: Targeting AMPK/mTOR,HMGB1/RAGE and Nrf2/HO-1 pathways[J]. Chem Biol Interact,2021,335:109-368. doi: 10.1016/j.cbi.2021.109368
    [17] Bu H,Liu D,Zhang G,et al. AMPK/mTOR/ULK1 Axis-Mediated pathway participates in apoptosis and autophagy induction by oridonin in colon cancer DLD-1 cells[J]. Onco Targets Ther,2020,13(4):8533-8545. doi: 10.2147/OTT.S262022
    [18] Wang H,Liu Y,Wang D,et al. The upstream pathway of mTOR-Mediated autophagy in liver diseases[J]. Cells,2019,8(12):1597. doi: 10.3390/cells8121597
    [19] 张子婷,叶卓淼,陈永欣. AMPK信号通路在非酒精性脂肪肝病中的研究进展[J]. 南京医科大学学报,2019,39(8):1252-1256.
    [20] 许银丰,汪倩,钱楚莹,等. mTORC1信号通路调控细胞自噬的研究进展[J]. 中国科学与生命科学,2022,52(2):266-272.
    [21] Zachari M,Ganley I G. The mammalian ULK1 complex and autophagy initiation[J]. Essays Biochem,2017,61(6):585-596. doi: 10.1042/EBC20170021
    [22] Xiao Y. Identification of matrine as a promising novel drug for hepatic steatosis and glucosein tolerance with HSP72 as an upstream target[J]. Britishjournalofpharmacology,2015,172(17):650-672. doi: 10.1111/bph.13209
    [23] Li Y. Termination of autophagy and reformation of lysosomes regulated by mTOR[J]. Nature,2010,465(7300):451-459. doi: 10.1038/nature09076
    [24] Valerie S. Fructose leads to hepatic steatosis inzebrafish that is reversed by mechanistic target of rapamycin (mTOR) inhibition[J]. Hepatology,2014,60(5):637-641. doi: 10.1002/hep.27284
    [25] Li J,Fan Y,Zhang Y,et al. Resveratrol induces autophagy and apoptosis in non-small-cell lung cancer cells by activating the NGFR-AMPK-mTOR pathway[J]. Nutrients,2022,14(12):2413-2416. doi: 10.3390/nu14122413
    [26] 荆西民,岳静静,吴卫东,等. 有氧运动对非酒精性脂肪肝大鼠肝组织AMPK蛋白活性的影响[J]. 中国运动医学杂志,2015,34(7):653-657.
    [27] Tian Y,Ma J,Wang W,et al. Resveratrol supplement in-hibited the NF-κB inflammation pathway through activat-ing AMPKα-SIRT1 pathway in mice with fatty liver[J]. Mol Cell Biochem,2016,422(12):75-84. doi: 10.1007/s11010-016-2807-x
    [28] Yuan L,Liu Q,Wang Z,Hou J,Xu P. EI24 tethers endoplasmic reticulum and mitochondria to regulate autophagy flux[J]. Cell Mol Life Sci,2020,77(8):1591-1606. doi: 10.1007/s00018-019-03236-9
    [29] Devkota S,Sung Y H,Choi J M,et al. Ei24-deficiency attenuates protein kinase Cα signaling and skin carcinogenesis in mice[J]. Biochem Cell Biol,2012,44(11):1887-96. doi: 10.1016/j.biocel.2012.06.034
    [30] Hwang M,Jun D W,Kang E H,et al. EI24,as a Component of Autophagy,is involved in pancreatic cell proliferation[J]. Front Oncol,2019,9(4):6-52. doi: 10.3389/fonc.2019.00652
    [31] Zhang X,Mao Y,Peng W,et al. Autophagy-related protein EI24 delays the development of pulmonary fibrosis by promoting autophagy[J]. Life Sci,2021,264(4):118664. doi: 10.1016/j.lfs.2020.118664
    [32] Zhao Y G,Zhao H,Miao L,et al. The p53-induced gene Ei24 is an essential component of the basal autophagy pathway[J]. Biol Chem,2012,287(50):53-63. doi: 10.1074/jbc.M112.415968
    [33] Filomeni G,De Z D,Cecconi F. Oxidative stress and autophagy: The clash between damage and metabolic needs[J]. Cell Death Differ,2015,22(3):377-388. doi: 10.3390/ijms21020474
    [34] Mao Y,Zhang X,Peng W,et al. EI24 alleviates renal interstitial fibrosis through inhibition of epithelial-mesenchymal transition and fibroblast activation[J]. FASEB,2021,35(1):221-239. doi: 10.1096/fj.202002089R
    [35] 张小欢. EI24调控AMPK/mTOR通路促进细胞自噬减轻小鼠肺纤维化的作用及机制研究[D]. 贵阳: 贵州医科大学, 2021.
    [36] Amiri F,Molaei S,Bahadori M,et al. Autophagy-Modulated human bone marrow-derived mesenchymal stem cells accelerate liver restoration in mouse models of acute liver failure[J]. Iran Biomed,2016,20(3):135-144. doi: 10.7508/ibj.2016.03.002
    [37] 张高飞,王迪,李佳美,等. 间充质干细胞通过调控自噬促进创面愈合[J]. 中国组织工程研究,2022,26(25):4058-4063. doi: 10.12307/2022.414
    [38] Centeno C,Markle J,Dodson E,et al. Treatment of lumbar degenerative disc disease-associated radicular pain with culture-expanded autologous mesenchymal stem cells: a pilot study on safety and efficacy[J]. Transl Med,2017,15(1):19-27. doi: 10.1186/s12967-017-1300-y
    [39] Yang R,Wang J,Chen X,et al. Epidermal stem cells in wound healing and regeneration.[J]. Stem Cells Int,2020,20(20):14-19. doi: 10.1155/2020/9148310
    [40] Oh E J,Lee H W,Kalimuthu S,et al. In vivo migration of mesenchymal stem cells to burn injury sites and their therapeutic effects in a living mouse model[J]. Control Release,2018,27(9):79-88. doi: 10.1016/j.jconrel.2018.04.020
    [41] Ceccariglia S,Cargnoni A,Silini A R,et al. Autophagy: A potential key contributor to the therapeutic action of mesenchymal stem cells[J]. Autophagy,2020,16(1):28-37. doi: 10.1080/15548627.2019.1630223
    [42] Saleh F,Itani L,Calugi S,et al. Adipose-derived mesenchymal stem cells in the treatment of obesity: A systematic review of longitudinal studies on preclinical evidence[J]. Curr Stem Cell Res Ther,2018,13(6):466-475. doi: 10.2174/1574888X13666180515160008
    [43] El B H,Demerdash Z,Kamel M,et al. Transplant of hepatocytes,undifferentiated mesenchymal stem cells,and in vitro hepatocyte-differentiated mesenchymal stem cells in a chronic liver failure experimental model: A comparative study[J]. Exp Clin Transplant,2018,16(1):81-89. doi: 10.6002/ect.2016.0226
    [44] Zare H,Jamshidi S,Dehghan M M,et al. Bone marrow or adipose tissue mesenchymal stem cells: Comparison of the therapeutic potentials in mice model of acute liver failure[J]. Cell Biochem,2018,119(7):5834-5842. doi: 10.1002/jcb.26772
    [45] Xie J,Liu B,Chen J,et al. Umbilical cord-derived mesenchymal stem cells alleviated inflammation and inhibited apoptosis in interstitial cystitis via AKT/mTOR signaling pathway[J]. Biochem Biophys Res Commun,2018,495(1):546-552. doi: 10.1016/j.bbrc.2017.11.072
    [46] Gan L,Shen H,Li X,et al. Mesenchymal stem cells promote chemoresistance by activating autophagy in intrahepatic cholangiocarcinoma[J]. Oncol Rep,2021,45(1):107-118. doi: 10.3892/or.2020.7838
    [47] He H,Zeng Q,Huang G,et al. Bone marrow mesenchymal stem cell transplantation exerts neuroprotective effects following cerebral ischemia/reperfusion injury by inhibiting autophagy via the PI3K/Akt pathway[J]. Brain Res,2019,1707(9):124-132. doi: 10.1016/j.brainres.2018.11.018
    [48] Wang B,Jia H,Zhang B,et al. Pre-incubation with hucMSC-exosomes prevents cisplatin-induced nephrotoxicity by activating autophagy[J]. Stem Cell Res Ther,2017,8(1):75. doi: 10.1186/s13287-016-0463-4
    [49] Zhu H X,Gao J L,Zhao M M,et al. Effects of bone marrow-derived mesenchymal stem cells on the autophagic activity of alveolar macrophages in a rat model of silicosis[J]. Exp Ther Med,2016,11(6):2577-2582. doi: 10.3892/etm.2016.3200
    [50] Liu L,Jin X,Hu CF,et al. Exosomes derived from mesenchymal stem cells rescue myocardial Ischaemia/ Reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways[J]. Cell Physiol Biochem,2017,43(1):52-68. doi: 10.1159/000480317
    [51] Wang X,Wang S,Zhou Y,et al. BM-MSCs protect against liver ischemia/reperfusion injury via HO-1 mediated autophagy[J]. Mol Med Rep,2018,18(2):2253-2262. doi: 10.3892/mmr.2018.9207
    [52] 华天桢,马雨诗,房贺. 干细胞在肝损伤治疗中的应用与机制[J]. 实用医学杂志,2021,37(7):839-844.
    [53] Hua T,Yang M,Song H,et al. Huc-MSCs-derived exosomes attenuate inflammatory pain by regulating microglia pyroptosis and autophagy via the miR-146a-5p/TRAF6 axis[J]. Nanobiotechnology,2022,20(1):3-24. doi: 10.1186/s12951-022-01522-6
    [54] Tian J,Kou X,Wang R,et al. Autophagy controls mesenchymal stem cell therapy in psychological stress colitis mice[J]. Autophagy,2021,17(9):2586-2603. doi: 10.1080/15548627.2020.1821547
    [55] Zhao Y,Guo C,Zeng L,et al. Mesenchymal stem cells ameliorate fibrosis by enhancing autophagy via inhibiting galectin-3/Akt/mTOR pathway and by alleviating the EMT via inhibiting galectin-3/Akt/GSK3β/Snail pathway in NRK-52E fibrosis[J]. Stem Cells,2023,16(1):52-65. doi: 10.15283/ijsc22014
  • [1] 李媛媛, 宋亚贤, 徐玉善, 曾晓甫, 袁惠, 徐兆, 江艳.  肠道菌群代谢物TMAO与非酒精性脂肪性肝病的关系, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240210
    [2] 陈杭, 崔琦, 黄敏杉, 刘建军, 马岚青.  miRNA在非酒精性脂肪性肝病中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240101
    [3] 张学敏, 田云粉.  胆汁酸代谢异常在非酒精性脂肪性肝病发展中的作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231125
    [4] 李露, 田云粉.  肠道菌群与儿童非酒精性脂肪性肝病的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230708
    [5] 吴长勇, 王睿, 保苏丽, 李锐洁, 孙煌, 叶雨佳, 徐菲, 彭云珠.  运动康复对心肌梗死大鼠心脏纤维化及心功能的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231004
    [6] 杨诗媛, 张昊, 胡图强.  扁塑藤素通过调节自噬对口腔鳞状细胞癌细胞CAL-27增殖的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231024
    [7] 陈怡璇, 王琳, 夏秀宏, 彭在坤, 丁奕, 史润娇, 雷学芬.  自噬在肝细胞癌中的作用机制研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230416
    [8] 张雪莎, 周杰, 李彩琳, 吴定宇, 彭芳.  美洲大蠊提取物对肝癌皮下移植瘤裸鼠自噬和侵袭转移的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231018
    [9] 陈诗, 付什, 谭智勇, 王剑松, 王海峰.  自噬在膀胱癌发展和治疗中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230503
    [10] 张紫微, 郑甲林, 许晓宇, 王红.  二甲双胍通过AMPK/PPAR-γ通路诱导自噬抑制高糖对血管平滑肌细胞的增殖作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231026
    [11] 杨永锐, 王丽媛, 李海雯, 赵智蓉, 普瑞, 吴贵帅, 李树德.  灯盏乙素抑制NOX的表达改善非酒精性脂肪性肝病肝脏纤维化的研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220721
    [12] 王子涵, 叶改映, 赵涛, 张俊, 胡瑜.  mTOR在SD大鼠TMJOA髁突软骨中表达变化的实验研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221033
    [13] 徐永芳, 吴娜, 胡月新, 赵永美, 郑绍鼎, 危玲, 郑思佳, 刘建军.  GW7647对大鼠非酒精性脂肪性肝病(NAFLD)的治疗作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210804
    [14] 刘永骏, 王颖, 杨眉, 殷娥高, 李婷, 董昭兴.  氢气水调控自噬对百草枯中毒大鼠肺纤维化的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210918
    [15] 薛平燕, 江艳, 徐玉善, 袁惠, 李璇, 宋亚贤, 刘华.  肠道菌群结构在非酒精性脂肪性肝病患者中的改变, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201120
    [16] 沈宝玉, 杨根梦, 李媛媛, 刘柳, 黄俭, 曾晓锋, 李利华.  可卡因诱导神经细胞自噬的研究进展, 昆明医科大学学报.
    [17] 朱为梅, 华鹏, 罗宇超, 杨红玲, 李亚山, 赵红宇.  低铅染毒抑制非酒精性脂肪性肝病大鼠脂肪酸分解加重其肝脏损伤, 昆明医科大学学报.
    [18] 李晶, 雷雯, 邓树豪, 樊都, 普玲, 杨冬梅, 赵晓远, 李洋, 董昭兴.  不同浓度百草枯对人支气管上皮细胞自噬的影响, 昆明医科大学学报.
    [19] 叶秋文, 邹天宁, 李诚成, 宋婷婷, 谭晶.  MiR-30d表达变化与HER2阳性乳腺癌赫赛耐药相关性, 昆明医科大学学报.
    [20] 江艳.  非酒精性脂肪性肝患者的代谢紊乱分析, 昆明医科大学学报.
  • 加载中
计量
  • 文章访问数:  2134
  • HTML全文浏览量:  1535
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-16
  • 网络出版日期:  2023-08-08
  • 刊出日期:  2023-07-25

目录

    /

    返回文章
    返回