MSCs Promote Autophagy to Alleviate Liver Injury in NASH by Regulating AMPK/mTOR Axis
-
摘要: 非酒精性脂肪性肝炎(nonalcoholic steatohepatitis,NASH)是代谢相关性脂肪肝病(metabolic associatedfattyliverdisease,MAFLD)肝脏特征性病理表现,是MAFLD从相对良性和可逆阶段向肝损伤甚至肝硬化和肝细胞癌发展的关键转折点。近年来研究表明,脂质沉积和氧化应激贯穿于MAFLD始终,而改善肝脂肪沉积和氧化应激是目前治疗和预防NASH疾病发生和发展的主要干预途径。一般来说,促进自噬水平可减少脂质积累(triglyceride,TG)和氧化应激(oxidative stress,OS)并促进肝细胞存活,而阻断自噬水平可能会加速NASH的进展。但自噬水平的激活与上游信号AMPK/mTOR/ULK1的活化及EI24的调控密不可分。其中一种与AMPK、mTOR通道活化密切相关的自噬跨膜蛋白依托泊苷诱导2.4蛋白(Etoposide-induced protein 2.4,EI24),可通过促进自噬溶酶体的降解加速自噬流的活化过程。同时,间充质干细胞(mesenchymal stem cells,MSCs)作为理想的自噬诱导体,凭借其激活AMPK/mTOR介导性自噬在治疗各种NASH炎症性疾病方面优异的治疗效果被广泛研究。因此,当采用MSCs以“药物作用”调控EI24/AMPK/mTOR轴促进自噬改善或逆转NASH脂肪堆积、氧化应激等肝损伤,以期为NASH相关发病机制的阐明和开发新的治疗策略提供依据。Abstract: NASH is the characteristic pathological manifestation of the liver in MAFLD, which is a key turning point in the development of MAFLD from a relatively benign and reversible stage to liver injury and even cirrhosis and hepatocellular carcinoma. Recent studies have shown that lipid deposition and oxidative stress run through MAFLD metabolic diseases, and improving hepatic lipid deposition and oxidative stress is the main intervention approach for the treatment and prevention of NASH disease. In general, promoting autophagy levels can reduce triglyceride (TG) accumulation and oxidative stress (OS) and promote hepatocyte survival, while blocking autophagy levels may accelerate the progression of NASH. However, the activation of autophagy levels is closely related to the activation of upstream signals AMPK/mTOR/ULK1 and the regulation of EI24. EI24, an essential autophagy protein closely related to the activation of AMPK and mTOR protein channels, can accelerate the activation of autophagy flow by promoting the degradation process of autophagy-lysosome. Meanwhile, mesenchymal stem cells (MSCs) as ideal autophagy inducers have been widely studied for their excellent therapeutic effects in treating various inflammatory diseases such as NAFLD through the activation of AMPK/mTOR-mediated autophagy. Therefore, “drug-acting” mesenchymal stem cells should be used to regulate the activation of autophagy level of EI24/AMPK/mTOR to promote autophagy, inhibit adipogenesis and reduce lipid deposition, and effectively alleviate or reverse NASH liver injury, to provide a basis for elucidating the pathogenesis of NASH related diseases and developing new therapeutic strategies.
-
烧伤、创伤、感染等多种因素引起宿主反应失控的全身炎症反应综合症(systemic inflammatory response syndrome,SIRS)[1],也称为脓毒症,可发展为脓毒性休克、多器官功能衰竭等严重并发症,严重危害人类生命健康。虽然随着脓毒症研究不断深入,对脓毒症的治疗策略取得一定成效,但脓毒症患者死亡率仍然居高不下,脓毒症往往会引发脓毒症性心肌病[2]。目前,脓毒症心肌病病因尚未完全阐明,多以抗感染、改善心脏灌注等手段进行对症支持治疗[3]。心脉隆注射液是从蜚蠊体内提取富含核苷碱基、心血管活性肽和结合氨基酸等主要成分的国家二类新中药,目前主要用于治疗心力衰竭患者[4]。据报道,心脉隆注射液具有增强心肌收缩作用,在安全剂量范围内呈现量效关系,且作用半衰期较长。彭芳[5]研究提示心脉隆注射液能够促进心肌细胞外钙离子向心肌细胞内内流,到达增加心肌收缩力作用;其它研究[6]也表明心脉隆注射液能增加内源性超氧化物歧化酶大量释放,加强清除氧自由基,同时又能降低心律失常发生率,降低脓毒症患者病死率[7]。但目前关于心脉隆注射液对脓毒症性心肌病医学证据尚不完善[8]。因此,笔者通过心脉隆注射液对脓毒症性心肌病的治疗作用研究,进一步完善此药对脓毒症性心肌病治疗作用的医学证据。
1. 资料与方法
1.1 一般资料
2019年6月1日至2020年6月1日,昆明医科大学第一附属医院急诊ICU符合研究标准的43名患者。所有患者纳入前征得患者直系亲属或法定委托人同意接受临床试验,并签署之情同意书。有4名患者在收集数据过程中相应时间点因做临床必须治疗,与采样时间冲突,未采集到相应时间点数据,存在试验数据脱落或缺失,3名患者因为家庭经济原因自动出院,最终纳入36名患者进行分析。年龄28~76岁,男性21例(58.33%),女性15例(41.67%),试验组17例,对照组19例。
2组患者性别、年龄、身高、APACHEII评分、血液进化情况,差异无统计学意义(P > 0.05),见 表1。
表 1 2组患者基本情况比较( $ \bar x \pm s $)Table 1. Baseline Participant Characteristics ( $ \bar x \pm s $)指标 试验组 对照组 χ2/t P 性别(男/女) 10/7 11/8 0.003 0.955 年龄(岁) 54.65 ± 12.32 53.25 ± 11.87 0.297 0.803 身高(cm) 164.65 ± 12.31 166.87 ± 13.62 −0.212 0.832 APECHEII评分 19.12 ± 5.28 18.97 ± 5.59 1.766 0.079 血液净化(有/无) 15/2 16/3 0.122 0.726 1.1.1 纳入标准
(1) 符合脓毒症及脓毒性休克诊断标准(2018年版)[9]。(2)①既往无心脏病病史;②cTnI或 BNP升高;③心脏超声提示心脏收缩或舒张功能异常;④患者出现冷休克表现。(3)年龄 > 18岁。(4)家属同意参加心脉隆注射液对脓毒症心肌病的临床疗效观察研究并签署相应知情同意书。
1.1.2 排除标准
(1)心肺复苏术患者;(2)SOFA评分肝脏系统评分≥3分或SOFA评分肾脏系统评分≥3分;(3)免疫系统功能严重障碍或合并其他终末期疾病;(4)心脉隆皮试(+);(5)无法行深静脉穿刺术;(6)妊娠期妇女。
1.1.3 剔除标准
(1) 心脉隆用药期间放弃治疗或自动出院;(2)存在试验数据脱落或缺失。患者纳入过程,见图1。
1.2 研究方法
本实验为单中心、随机对照、单盲研究。利用随机表法把患者随机分成试验组和对照组。2组患者均按照2018年脓毒症指南规范化治疗[10],包括抗感染、液体复苏、器官功能支持等,使用去甲肾上腺素维持收缩压 > 90 mmHg,2组患者均静脉持续泵入多巴酚丁胺改善心功能2 μg/(kg·min)初始泵注速度,1 h后增加到4 μg/(kg·min)持续泵入,同时均予颈内静脉置管、股动脉穿刺置入PICCO导管,连接PICCO 监测仪进行监测。多巴酚丁胺使用剂量视患者具体病情调整,患者生命征平稳,减量致2 μg/(kg·min)可停用。实验组在此基础上加用心脉隆注射液5 mg/kg +0.9%氯化钠注射液200 mL静脉滴注,每天2次,2次间隔6 h以上,连续滴注5 d;对照组在与实验组同一时间给予0.9%氯化钠注射液200 mL 静脉滴注,每天2次,2次间隔6 h以上,连续滴注5 d,输入速度同心脉隆组。2组患者输注心脉隆及氯化钠注射液均计算入总输液量中。
1.3 实验试剂及设备
心脉隆注射液(云南腾药制药股份有限公司,批准文号:国药准字Z20060443);肝素钠注射液(天津生物化学制药有限公司);多普勒超声心动图仪(美国生产,型号:GELogiq E);血流动力及容量检测仪[PICCO(德国生产,型号:PC8500)];生命体征监测仪(美国生产,型号:Solar 8000M)。
1.4 观察指标
记录患者一般资料,包括性别、年龄、身高、APACHEII评分(acute physiology and chronic health evaluation II,APACHEII)、SOFA评分(sequential organ failure assessment,SOFA);是否行血液净化治疗。2组患者于治疗开始前、开始后第24 h、72 h、120 h抽取血检测B型脑利钠尿肽(brain natriuretic peptide,BNP)、肌钙蛋白I(calcitonin-i,cTnI);同时行多普勒超声心动图检查,评估左室射血分数(left ventricular ejection fraction,LVEF)、左室收缩/舒张末内径、二尖瓣血流频谱E/A峰、E峰减速时间(E peak deceleration time,EDT)、三尖瓣环收缩期偏移幅度(tricuspid annular plane systolic excursion,TAPSE);在相同时间点记录PICCO通过动脉轮廓分析法测每博量指数(stroke volume index,SVI)、外周血管阻力指数(systemic vascular resistance index,SVRI),经热稀释法得全心舒张末容积指数(global end-diastolic volume index,GEDI)、心功能指数(cardiac function index,CFI)。
1.5 统计学处理
采用SPSS 26.0统计学软件包进行统计学分析,基本描述正态分布计量资料采用均数±标准差,计数资料采用例及构成比,计数资料用χ2检验,正态分布计量资料用两组间比较采用两独立样本t检验,重复测量资料采用重复测量的方差分析,P < 0.05 表示差异有统计学意义。
2. 结果
2.1 2组患者治疗前后实验室指标比较
经重复测量资料的方差分析:与对照组比较,在治疗后24 h、72 h、120 h试验组BNP及cTnI均明显下降,差异有统计学意义(P < 0.05)。试验组治疗24 h、72 h、120 h后BNP及cTnI均较实验前明显下降,差异有统计学意义( P < 0.05),见 表2。
表 2 2组患者不同时间点试验室指标比较( $ \bar x \pm s $)Table 2. Comparison of laboratory parameters between two groups of patients at different time points ( $ \bar x \pm s $)指标 试验前 试验24 h 试验72 h 试验120 h F P BNP(pg/mL) 试验组 885.76 ± 142.43 762.86 ± 143.54& 497.59 ± 132.37& 255.92 ± 46.43& 132.119 < 0.001 * 对照组 839.54 ± 231.43 759.63 ± 183.57 553.52 ± 142.65 480.76 ± 143.54 0.831 0.370 肌钙蛋白I(ng/mL) 试验组 4.37 ± 1.43 3.28 ± 1.09& 1.62 ± 0.78& 0.47 ± 0.16& 26.899 < 0.001 * 对照组 5.02 ± 2.82 4.88 ± 1.43 3.35 ± 1.02 1.77 ± 0.57 0.030 0.864 与实验前比较,&P < 0.05;不同时间点指标变化有趋势, *P < 0.05。 2.2 2组患者治疗前后超声心动图相关指标比较
经重复测量资料的方差分析:与对照组相比,试验组5 d内LVEF、TAPSE明显升高,EDT、E/A峰更趋于正常化,差异有统计学意义(P < 0.05)。2组患者治疗5 d左室舒张末内径、左室收缩末内径较实验前稍缩小,差异无计学意义( P > 0.05)。试验组治疗后24 h、72 h、120 h时LVEF、TAPSE均较试验前明显增加,EDT、E/A峰较前趋于正常,差异有统计学意义( P < 0.05),见 表3。
表 3 2组患者不同时间点心脏彩超相关指标比较( $ \bar x \pm s $)Table 3. Comparison of Echocardiography at different time points between two groups of patients ( $ \bar x \pm s $)指标 试验前 试验24 h 试验72 h 试验120 h F P 左室射血分数(%) 试验组 35.76 ± 4.54 42.54 ± 8.43& 49.56 ± 8.92&△ 51.32 ± 8.76&△# 4.836 0.081 对照组 36.32 ± 5.42 39.52 ± 4.32 45.72 ± 10.87 49.76 ± 10.42 0.681 0.417 左室舒张末内经 (mm) 试验组 68.32 ± 7.55 67.27 ± 7.12 65.28 ± 6.84 64.33 ± 7.62 8.095 0.009* 对照组 68.47 ± 8.21 65.54 ± 7.36 66.78 ± 7.52 66.13 ± 7.01 0.013 0.911 左室收缩末内经 (mm) 试验组 59.77 ± 10.46 57.92 ± 11.34 57.38 ± +9.27 56.79 ± 11.66 8.707 0.007* 对照组 59.67 ± 10.28 57.32 ± 10.39 56.48 ± 10.99 57.24 ± 10.31 0.287 0.594 二尖瓣血流频谱E/A峰 试验组 3.36 ± 0.52 0.92 ± 0.28& 0.72 ± 0.32&△ 1.49 ± 0.34&△# 10.397 0.003* 对照组 3.95 ± 0.58 1.32 ± 0.31 0.66 ± 0.23 1.01 ± 0.31 0.110 0.741 E峰减速时间(ms) 试验组 133.62 ± 25.32 169.47 ± 43.76& 256.87 ± 80.92&△ 205.53 ± 86.54&△# 26.899 < 0.001 * 对照组 129.53 ± 35.72 148.93 ± 69.42 289.06 ± 76.43 244.65 ± 73.52 0.555 0.458 三尖瓣环收缩期偏移幅度(mm) 试验组 11.33 ± 2.87 13.75 ± 5.42& 15.87 ± 4.72&△ 16.89 ± 3.72&△# 10.542 0.002* 对照组 12.17 ± 3.72 12.98 ± 3.92 13.37 ± 3.31 14.28 ± 3.09 1.173 0.283 与试验前比较,&P < 0.05;与试验后24 h比较, △P < 0.05; 与试验后72 h比较, #P < 0.05;不同时间点指标变化有趋势, *P < 0.05。 2.3 2组患者治疗前后血流动力学相关指标比较
经重复测量资料的方差分析:与对照组相比,试验组SVI、CFI均有明显升高,SVRI明显下降,差异有统计学意义(P < 0.05)。试验组治疗24 h、72 h、120 h与治疗前相比SVI、CFI、GEDI均有所升高,SVRI下降,差异有统计学意义( P < 0.05)。试验组和对照组间GEDI差异无统计学意义( P > 0.05),见 表4。
表 4 2组患者不同时间点血流动力学相关指标比较( $ \bar x \pm s $)Table 4. Comparison of hemodynamic related parameters between two groups of patients at different time points ( $ \bar x \pm s $)指标 试验前 试验24 h 试验72 h 试验120 h F P 每搏量指数(mL/m2) 试验组 34.20 ± 9.87 38.32 ± 11.77& 44.81 ± 10.62&△ 52.45 ± 9.42&△# 29.843 < 0.001 * 对照组 35.61 ± 13.33 36.67 ± 11.24 40.12 ± 10.74 45.32 ± 9.38 0.107 0.745 外周血管阻力指数(dyn*s*cm−5*m2) 试验组 2632.4 ± 314.3 2457.64 ± 367.3& 1989.4 ± 344.7&△ 1682.7 ± 276.5&△# 131.768 < 0.001 * 对照组 2790.6 ± 267.7 2637.2 ± 268.3 2293.2 ± 275.7 1983.2 ± 256.2 0.121 0.742 全心舒张末容积指数(mL/m2) 试验组 945.2 ± 203.6 908.9 ± 197.3& 809.3 ± 184.9&△ 779.6 ± 191.7&△# 78.608 < 0.001 * 对照组 949.3 ± 233.5 891.7 ± 186.3 822.2 ± 191.4 793.6 ± 205.2 4.937 0.071 心功能指数(L/min·m2) 试验组 3.21 ± 0.56 3.87 ± 0.71& 4.94 ± 0.85&△ 5.32 ± 0.78&△# 9.095 0.005* 对照组 3.17 ± 0.47 3 .54 ± 0.72 4.58 ± 0.88 4.91 ± 0.69 1.103 0.261 与试验前比较,&P < 0.05;与试验后24 h比较, △P < 0.05; 与试验后72 h比较, #P < 0.05;不同时间点指标变化有趋势, *P < 0.05 。 2.4 药物不良反应
试验组出现1例心动过速,为窦性心动过速,降低滴速后心率恢复至正常速率。
3. 讨论
脓毒症发生率高,全球每年有超过1800万严重脓毒症病例[11],并且每年脓毒症患者上升速度为1.5%~8.0%[12]。脓毒症治疗花费高,医疗资源消耗大,严重影响人类的生活质量,已经对人类健康造成巨大威胁[13]。脓毒症合并心肌抑制严重程度与脓毒症死亡率呈明显正相关。脓毒症性心肌抑制临床表现并无特异性,仅表现为心肌酶谱升高,心肌收缩功能减弱,射血分数降低,对容量负荷反应差等临床症状[14]。且有研究表明既往没有心脏疾病的脓毒症及脓毒性休克患者更容易导致脓毒性心肌病[15]。有研究证实了脓毒症可引起心肌损伤,主要特点表现为心肌对容量负荷收缩反应减弱,心肌收缩功能、收缩峰值压力/收缩末期容积比值及左室射血分数下降[16]。虽然有研究表明脓毒性心肌病在脓毒症得到有效控制后, 通常5~7 d可自行缓解。但部分脓毒症患者在出现脓毒性心肌病后,由于心脏功能严重受损或难以纠正的休克及恶性心脏事件发生,从而导致脓毒性心肌病病死率高达70%。
cTn是由3种不同基因的亚基组成:心肌肌钙蛋白T(calcitonin-t,cTnT)、心肌肌钙蛋白I(cTn I)和肌钙蛋白C(calcitonin-c,TnC),是诊断心肌损伤的主要指标之一[17]。来源于心室的BNP是诊断心衰的主要指标[18-19]。2016年脓毒症国际指南指出诊断脓毒性心肌病主要是在脓毒症的基础上结合cTnI、BNP等指标进行临床诊断[20]。此次研究着眼于脓毒症患者心肌损伤标记物cTnI和BNP的水平变化来筛选研究对象,并进行治疗效果评价。
经过临床对比观察,笔者的临床试验结果显示:诊断脓毒性心肌病的患者随着治疗的干预,对照组和试验组cTnI和BNP的水平均呈现一定程度的下降。通过临床治疗,患者心肌损伤得到有效控制。特别是使用心脉隆注射液的试验组患者在用药24 h后上述指标对比对照组患者,下降趋势明显。在观察终点 (120 h)时,指标较对照组下降幅度显著。不难看出心脉隆注射液在逆转脓毒性心肌损伤方面有显著的效果。
另外,临床用于判断脓毒性心肌病发生的临床指标之一为左室收缩功能下降[21]。有研究表明脓毒性心肌病表现为心室扩大或伴不同程度舒张功能障碍、射血分数降低。本次研究的36例患者中,纳入初期均出现不同程度射血分数降低,三尖瓣环收缩期偏移幅度明显降低,提示双心室收缩功能障碍。脉隆治疗组患者,在治疗后24 h反应心脏收缩功能的左室射血分数、二尖瓣血流频谱E/A峰、E峰减速时间等指标均有一定程度改善;但室舒张末内径、左室收缩末内径变化暂未显示统计学差异。进行标准化治疗的对照组患者上述指标改善不如试验组明显。进一步提示,心脉隆注射液在改善左心收缩功能方面具有明显临床效果。
本研究同时利用PICCO观察CFI、SVI、GEDI、SVRI,可以全面地评估脓毒症心肌病患者心脏功能及前后负荷变化情况。研究中,脓毒性心肌病患者SVI、CFI明显降低,提示心脏收缩功能障碍,GEDI、SVRI升高,提示前后负荷增加。试验组患者较对照组患者,在治疗后各个时间点明显表现出SVI、CFI升高和GEDI、SVRI下降。2组患者治疗前后前负荷均有所降低,心脉隆组患者下降更为明显,推测是心脉隆使心脏收缩功能增强有关。
综上所述,在脓毒性休克诊疗规范治疗的基础上加用心脉隆注射液能有效降低脓毒性心肌病患者的BNP、cTnI水平,可以逆转心肌损伤并且改善心脏收缩功能,降低心脏前后负荷,对脓毒性心肌病有明显治疗作用。但由于本次试验样本量有限,且为单中心、小样本单盲研究,在研究过程中有1名患者发生心动过速,对于心脉隆注射液的用药安全性、能否改善脓毒症患者预后还需大规模临床试验考证。
-
[1] 唐振霆,施晓雷. 间充质干细胞治疗非酒精性脂肪性肝炎的机制及进展[J]. 肝胆胰外科杂志,2019,31(8):504-508,513. doi: 10.11952/j.issn.1007-1954.2019.08.016 [2] Wong M C S,Huang J L W,George J,et al. The changing epidemiology of liver diseases in the Asia-Pacific region[J]. Gastroenterol Hepatol,2019,16(1):57-73. doi: 10.1038/s41575-018-0055-0 [3] Eslam M,Sanyal A J,George J. International consensus panel. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease[J]. Gastroenterology,2020,158(7):1999-2014. doi: 10.1053/j.gastro.2019.11.312 [4] Li J,Zou B,Yeo Y H,et al. Prevalence,incidence,and outcome of non-alcoholic fatty liver disease in Asia,1999-2019: A systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol,2019,4(5):389-398. doi: 10.1016/S2468-1253(19)30039-1 [5] Powell E E,Wong V W,Rinella M. Non-alcoholic fatty liver disease[J]. Lancet,2021,397(10290):2212-2224. doi: 10.1016/S0140-6736(20)32511-3 [6] Komatsu M. Liver autophagy: Physiology and pathology[J]. Biochem,2012,152(1):5-15. doi: 10.1093/jb/mvs059 [7] Ost A,Svensson K,Ruishalme I,et al. Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes[J]. Mol Med,2010,16(7-8):235-246. doi: 10.2119/molmed.2010.00023 [8] Xie F,Jia L,Lin M,et al. ASPP2 attenuates triglycerides to protect against hepatocyte injury by reducing autophagy in a cell and mouse model of non-alcoholic fatty liver disease[J]. Cell Mol Med,2015,19(1):155-164. doi: 10.1111/jcmm.12364 [9] Kitade H,Chen G,Ni Y,et al. Nonalcoholic fatty liver disease and insulin resistance: New insights and potential new treatments[J]. Nutrients,2017,9(4):387. doi: 10.3390/nu9040387 [10] Li F,Guo D,Zhi S,et al. Etoposide-induced protein 2.4 ameliorates high glucose-induced epithelial-mesenchymal transition by activating adenosine monophosphate-activated protein kinase pathway in renal tubular cells[J]. Int Biochem Cell Biol,2022,142(4):106-117. doi: 10.1016/j.biocel.2021.106117 [11] Zhou X,Fouda S,Zeng X Y,et al. Characterization of the therapeutic profile of albiflorin for the metabolic syndrome[J]. Front Pharmacol,2019,10(2):11-51. doi: 10.3389/fphar.2019.01151 [12] Ebrahim N,Ahmed I A,Hussien N I,et al. Mesenchymal stem cell-derived exosomes ameliorated diabetic nephropathy by autophagy induction through the mTOR signaling pathway[J]. Cells,2018,7(12):226. doi: 10.3390/cells7120226 [13] Martin S and S Louise. Consequences of stress in these cretory pathway: The ER stress response and its role in the metabolic syndrome. Methods in molecular biology[J]. Clifton,2010,6(4):4-8. doi: 10.1007/978-1-60761-756-3_3 [14] Gai R. Resveratrol ameliorates diet-induced dysregulation of lipid metabolism in zebra fish[J]. PloSone,2017,12(7):231-251. doi: 10.1371/journal.pone.0180865 [15] Miura S,Suzuki A. Induction of steatohepatitis and liver tumorigenesis by enforced snail expression in hepatocytes[J]. Pathol,2020,190(6):1271-1283. doi: 10.1016/j.ajpath.2020.02.005 [16] Arab H H,Al-Shorbagy M Y,Saad M A. Activation of autophagy and suppression of apoptosis by dapagliflozin attenuates experimental inflammatory bowel disease in rats: Targeting AMPK/mTOR,HMGB1/RAGE and Nrf2/HO-1 pathways[J]. Chem Biol Interact,2021,335:109-368. doi: 10.1016/j.cbi.2021.109368 [17] Bu H,Liu D,Zhang G,et al. AMPK/mTOR/ULK1 Axis-Mediated pathway participates in apoptosis and autophagy induction by oridonin in colon cancer DLD-1 cells[J]. Onco Targets Ther,2020,13(4):8533-8545. doi: 10.2147/OTT.S262022 [18] Wang H,Liu Y,Wang D,et al. The upstream pathway of mTOR-Mediated autophagy in liver diseases[J]. Cells,2019,8(12):1597. doi: 10.3390/cells8121597 [19] 张子婷,叶卓淼,陈永欣. AMPK信号通路在非酒精性脂肪肝病中的研究进展[J]. 南京医科大学学报,2019,39(8):1252-1256. [20] 许银丰,汪倩,钱楚莹,等. mTORC1信号通路调控细胞自噬的研究进展[J]. 中国科学与生命科学,2022,52(2):266-272. [21] Zachari M,Ganley I G. The mammalian ULK1 complex and autophagy initiation[J]. Essays Biochem,2017,61(6):585-596. doi: 10.1042/EBC20170021 [22] Xiao Y. Identification of matrine as a promising novel drug for hepatic steatosis and glucosein tolerance with HSP72 as an upstream target[J]. Britishjournalofpharmacology,2015,172(17):650-672. doi: 10.1111/bph.13209 [23] Li Y. Termination of autophagy and reformation of lysosomes regulated by mTOR[J]. Nature,2010,465(7300):451-459. doi: 10.1038/nature09076 [24] Valerie S. Fructose leads to hepatic steatosis inzebrafish that is reversed by mechanistic target of rapamycin (mTOR) inhibition[J]. Hepatology,2014,60(5):637-641. doi: 10.1002/hep.27284 [25] Li J,Fan Y,Zhang Y,et al. Resveratrol induces autophagy and apoptosis in non-small-cell lung cancer cells by activating the NGFR-AMPK-mTOR pathway[J]. Nutrients,2022,14(12):2413-2416. doi: 10.3390/nu14122413 [26] 荆西民,岳静静,吴卫东,等. 有氧运动对非酒精性脂肪肝大鼠肝组织AMPK蛋白活性的影响[J]. 中国运动医学杂志,2015,34(7):653-657. [27] Tian Y,Ma J,Wang W,et al. Resveratrol supplement in-hibited the NF-κB inflammation pathway through activat-ing AMPKα-SIRT1 pathway in mice with fatty liver[J]. Mol Cell Biochem,2016,422(12):75-84. doi: 10.1007/s11010-016-2807-x [28] Yuan L,Liu Q,Wang Z,Hou J,Xu P. EI24 tethers endoplasmic reticulum and mitochondria to regulate autophagy flux[J]. Cell Mol Life Sci,2020,77(8):1591-1606. doi: 10.1007/s00018-019-03236-9 [29] Devkota S,Sung Y H,Choi J M,et al. Ei24-deficiency attenuates protein kinase Cα signaling and skin carcinogenesis in mice[J]. Biochem Cell Biol,2012,44(11):1887-96. doi: 10.1016/j.biocel.2012.06.034 [30] Hwang M,Jun D W,Kang E H,et al. EI24,as a Component of Autophagy,is involved in pancreatic cell proliferation[J]. Front Oncol,2019,9(4):6-52. doi: 10.3389/fonc.2019.00652 [31] Zhang X,Mao Y,Peng W,et al. Autophagy-related protein EI24 delays the development of pulmonary fibrosis by promoting autophagy[J]. Life Sci,2021,264(4):118664. doi: 10.1016/j.lfs.2020.118664 [32] Zhao Y G,Zhao H,Miao L,et al. The p53-induced gene Ei24 is an essential component of the basal autophagy pathway[J]. Biol Chem,2012,287(50):53-63. doi: 10.1074/jbc.M112.415968 [33] Filomeni G,De Z D,Cecconi F. Oxidative stress and autophagy: The clash between damage and metabolic needs[J]. Cell Death Differ,2015,22(3):377-388. doi: 10.3390/ijms21020474 [34] Mao Y,Zhang X,Peng W,et al. EI24 alleviates renal interstitial fibrosis through inhibition of epithelial-mesenchymal transition and fibroblast activation[J]. FASEB,2021,35(1):221-239. doi: 10.1096/fj.202002089R [35] 张小欢. EI24调控AMPK/mTOR通路促进细胞自噬减轻小鼠肺纤维化的作用及机制研究[D]. 贵阳: 贵州医科大学, 2021. [36] Amiri F,Molaei S,Bahadori M,et al. Autophagy-Modulated human bone marrow-derived mesenchymal stem cells accelerate liver restoration in mouse models of acute liver failure[J]. Iran Biomed,2016,20(3):135-144. doi: 10.7508/ibj.2016.03.002 [37] 张高飞,王迪,李佳美,等. 间充质干细胞通过调控自噬促进创面愈合[J]. 中国组织工程研究,2022,26(25):4058-4063. doi: 10.12307/2022.414 [38] Centeno C,Markle J,Dodson E,et al. Treatment of lumbar degenerative disc disease-associated radicular pain with culture-expanded autologous mesenchymal stem cells: a pilot study on safety and efficacy[J]. Transl Med,2017,15(1):19-27. doi: 10.1186/s12967-017-1300-y [39] Yang R,Wang J,Chen X,et al. Epidermal stem cells in wound healing and regeneration.[J]. Stem Cells Int,2020,20(20):14-19. doi: 10.1155/2020/9148310 [40] Oh E J,Lee H W,Kalimuthu S,et al. In vivo migration of mesenchymal stem cells to burn injury sites and their therapeutic effects in a living mouse model[J]. Control Release,2018,27(9):79-88. doi: 10.1016/j.jconrel.2018.04.020 [41] Ceccariglia S,Cargnoni A,Silini A R,et al. Autophagy: A potential key contributor to the therapeutic action of mesenchymal stem cells[J]. Autophagy,2020,16(1):28-37. doi: 10.1080/15548627.2019.1630223 [42] Saleh F,Itani L,Calugi S,et al. Adipose-derived mesenchymal stem cells in the treatment of obesity: A systematic review of longitudinal studies on preclinical evidence[J]. Curr Stem Cell Res Ther,2018,13(6):466-475. doi: 10.2174/1574888X13666180515160008 [43] El B H,Demerdash Z,Kamel M,et al. Transplant of hepatocytes,undifferentiated mesenchymal stem cells,and in vitro hepatocyte-differentiated mesenchymal stem cells in a chronic liver failure experimental model: A comparative study[J]. Exp Clin Transplant,2018,16(1):81-89. doi: 10.6002/ect.2016.0226 [44] Zare H,Jamshidi S,Dehghan M M,et al. Bone marrow or adipose tissue mesenchymal stem cells: Comparison of the therapeutic potentials in mice model of acute liver failure[J]. Cell Biochem,2018,119(7):5834-5842. doi: 10.1002/jcb.26772 [45] Xie J,Liu B,Chen J,et al. Umbilical cord-derived mesenchymal stem cells alleviated inflammation and inhibited apoptosis in interstitial cystitis via AKT/mTOR signaling pathway[J]. Biochem Biophys Res Commun,2018,495(1):546-552. doi: 10.1016/j.bbrc.2017.11.072 [46] Gan L,Shen H,Li X,et al. Mesenchymal stem cells promote chemoresistance by activating autophagy in intrahepatic cholangiocarcinoma[J]. Oncol Rep,2021,45(1):107-118. doi: 10.3892/or.2020.7838 [47] He H,Zeng Q,Huang G,et al. Bone marrow mesenchymal stem cell transplantation exerts neuroprotective effects following cerebral ischemia/reperfusion injury by inhibiting autophagy via the PI3K/Akt pathway[J]. Brain Res,2019,1707(9):124-132. doi: 10.1016/j.brainres.2018.11.018 [48] Wang B,Jia H,Zhang B,et al. Pre-incubation with hucMSC-exosomes prevents cisplatin-induced nephrotoxicity by activating autophagy[J]. Stem Cell Res Ther,2017,8(1):75. doi: 10.1186/s13287-016-0463-4 [49] Zhu H X,Gao J L,Zhao M M,et al. Effects of bone marrow-derived mesenchymal stem cells on the autophagic activity of alveolar macrophages in a rat model of silicosis[J]. Exp Ther Med,2016,11(6):2577-2582. doi: 10.3892/etm.2016.3200 [50] Liu L,Jin X,Hu CF,et al. Exosomes derived from mesenchymal stem cells rescue myocardial Ischaemia/ Reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways[J]. Cell Physiol Biochem,2017,43(1):52-68. doi: 10.1159/000480317 [51] Wang X,Wang S,Zhou Y,et al. BM-MSCs protect against liver ischemia/reperfusion injury via HO-1 mediated autophagy[J]. Mol Med Rep,2018,18(2):2253-2262. doi: 10.3892/mmr.2018.9207 [52] 华天桢,马雨诗,房贺. 干细胞在肝损伤治疗中的应用与机制[J]. 实用医学杂志,2021,37(7):839-844. [53] Hua T,Yang M,Song H,et al. Huc-MSCs-derived exosomes attenuate inflammatory pain by regulating microglia pyroptosis and autophagy via the miR-146a-5p/TRAF6 axis[J]. Nanobiotechnology,2022,20(1):3-24. doi: 10.1186/s12951-022-01522-6 [54] Tian J,Kou X,Wang R,et al. Autophagy controls mesenchymal stem cell therapy in psychological stress colitis mice[J]. Autophagy,2021,17(9):2586-2603. doi: 10.1080/15548627.2020.1821547 [55] Zhao Y,Guo C,Zeng L,et al. Mesenchymal stem cells ameliorate fibrosis by enhancing autophagy via inhibiting galectin-3/Akt/mTOR pathway and by alleviating the EMT via inhibiting galectin-3/Akt/GSK3β/Snail pathway in NRK-52E fibrosis[J]. Stem Cells,2023,16(1):52-65. doi: 10.15283/ijsc22014 期刊类型引用(2)
1. 张文鑫,袁玉丰,张强. 基于“方证对应”理论辨治脓毒症心肌损伤的研究进展. 中国中医急症. 2024(02): 369-372 . 百度学术
2. 吴广平,尹鑫,何健卓,郭力恒. 心脉隆注射液对脓毒症休克患者微循环的影响. 实用医学杂志. 2024(05): 627-631 . 百度学术
其他类型引用(0)
-

计量
- 文章访问数: 2695
- HTML全文浏览量: 2185
- PDF下载量: 25
- 被引次数: 2