留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DNA甲基化与精神分裂症的研究进展

尹文卅 卢玉梅 佟金莲 聂胜洁 阮冶

尹文卅, 卢玉梅, 佟金莲, 聂胜洁, 阮冶. DNA甲基化与精神分裂症的研究进展[J]. 昆明医科大学学报, 2023, 44(8): 145-150. doi: 10.12259/j.issn.2095-610X.S20230811
引用本文: 尹文卅, 卢玉梅, 佟金莲, 聂胜洁, 阮冶. DNA甲基化与精神分裂症的研究进展[J]. 昆明医科大学学报, 2023, 44(8): 145-150. doi: 10.12259/j.issn.2095-610X.S20230811
Wensa YIN, Yumei LU, Jinlian TONG, shengjie NIE, Ye RUAN. Research Progress of DNA Methylation and Schizophrenia[J]. Journal of Kunming Medical University, 2023, 44(8): 145-150. doi: 10.12259/j.issn.2095-610X.S20230811
Citation: Wensa YIN, Yumei LU, Jinlian TONG, shengjie NIE, Ye RUAN. Research Progress of DNA Methylation and Schizophrenia[J]. Journal of Kunming Medical University, 2023, 44(8): 145-150. doi: 10.12259/j.issn.2095-610X.S20230811

DNA甲基化与精神分裂症的研究进展

doi: 10.12259/j.issn.2095-610X.S20230811
基金项目: 国家自然科学基金资助项目(31860300);昆明市卫生健康委员会卫生科研课题项目(2022-03-09-002)
详细信息
    作者简介:

    尹文卅(1987~),男,云南昆明人,医学硕士,主治医师,主要从事精神疾病的诊断、治疗与研究工作

    通讯作者:

    佟金莲,E-mail:bbyhyx@126.com

  • 中图分类号: R749.3

Research Progress of DNA Methylation and Schizophrenia

  • 摘要: 精神分裂症是一种以认知、思维、情感、行为等多方面显著异常为特征的精神疾病,是最常见的重性精神疾病之一,给个人、家庭以及社会带来严重困扰。近年来针对精神分裂症患者的表观遗传学研究,DNA甲基化是主要的研究方向之一。综述近年来DNA甲基化与精神分裂症的研究进展,以期为精神分裂症症的进一步研究提供新的思路及参考价值。
  • [1] Fonseka L N,Woo B. Wearables in Schizophrenia: Update on Current and Future Clinical Applications[J]. JMIR Mhealth Uhealth,2022,10(4):356-362.
    [2] Sadeghi D,Shoeibi A,Ghassemi N,et al. An overview of artificial intelligence techniques for diagnosis of Schizophrenia based on magnetic resonance imaging modalities: Methods,challenges,and future works[J]. Comput Biol Med,2022,146:105-155.
    [3] Zamanpoor M. Schizophrenia in a genomic era: a review from the pathogenesis,genetic and environmental etiology to diagnosis and treatment insights[J]. Psychiatr Genet,2020,30(1):1-9. doi: 10.1097/YPG.0000000000000245
    [4] Cromby J,Chung E,Papadopoulos D,et al. Reviewing the epigenetics of schizophrenia[J]. J Ment Health,2019,28(1):71-79. doi: 10.1080/09638237.2016.1207229
    [5] Lisoway A J,Chen C C,Zai C C,et al. Toward personalized medicine in schizophrenia: Genetics and epigenetics of antipsychotic treatment[J]. Schizophr Res,2021,232:112-124. doi: 10.1016/j.schres.2021.05.010
    [6] Richetto J,Meyer U. Epigenetic Modifications in Schizophrenia and Related Disorders: Molecular Scars of Environmental Exposures and Source of Phenotypic Variability[J]. Biol Psychiatry,2021,89(3):215-226. doi: 10.1016/j.biopsych.2020.03.008
    [7] Khavari B,Cairns M J. Epigenomic Dysregulation in Schizophrenia: In Search of Disease Etiology and Biomarkers[J]. Cells,2020,9(8):1837-1864. doi: 10.3390/cells9081837
    [8] Wang M,Ngo V,Wang W. Deciphering the genetic code of DNA methylation[J]. Brief Bioinform,2021,22(5):424-434. doi: 10.1093/bib/bbaa424
    [9] Shirvani-Farsani Z,Maloum Z,Bagheri-Hosseinabadi Z,et al. DNA methylation signature as a biomarker of major neuropsychiatric disorders[J]. J Psychiatr Res,2021,141:34-49. doi: 10.1016/j.jpsychires.2021.06.013
    [10] Skvortsova K,Bogdanovic O. TAB-seq and ACE-seq Data Processing for Genome-Wide DNA hydroxymethylation Profiling[J]. Methods Mol Biol,2021,2272:163-178.
    [11] De Borre M,Branco M R. Oxidative Bisulfite Sequencing: An Experimental and Computational Protocol[J]. Methods Mol Biol,2021,2198:333-348.
    [12] Kouter K,Šalamon Arčan I,Videtič Paska A. Epigenetics in psychiatry: Beyond DNA methylation[J]. World J Psychiatry,2023,13(6):319-330. doi: 10.5498/wjp.v13.i6.319
    [13] Snajder R,Leger A,Stegle O,et al. pycoMeth: a toolbox for differential methylation testing from Nanopore methylation calls[J]. Genome Biol,2023,24(1):83-102. doi: 10.1186/s13059-023-02917-w
    [14] Shen L,Lv X,Huang H,et al. Genome-wide analysis of DNA methylation in 106 schizophrenia family trios in Han Chinese[J]. E Bio Medicine,2021,72:103609-103618. doi: 10.1016/j.ebiom.2021.103609
    [15] Perzel Mandell K A,Eagles N J,Wilton R,et al. Genome-wide sequencing-based identification of methylation quantitative trait loci and their role in schizophrenia risk[J]. Nat Commun,2021,12(1):5251-5263. doi: 10.1038/s41467-021-25517-3
    [16] Berdenis van Berlekom A,Notman N,Sneeboer M A,et al. DNA methylation differences in cortical grey and white matter in schizophrenia[J]. Epigenomics,2021,13(15):1157-1169. doi: 10.2217/epi-2021-0077
    [17] Chen J,Zang Z,Braun U,et al. Association of a Reproducible Epigenetic Risk Profile for Schizophrenia With Brain Methylation and Function[J]. JAMA Psychiatry,2020,77(6):628-636. doi: 10.1001/jamapsychiatry.2019.4792
    [18] Jauhar S,Johnstone M,McKenna P J. Schizophrenia[J]. Lancet,2022,399(10323):473-486. doi: 10.1016/S0140-6736(21)01730-X
    [19] Blokhin I O,Khorkova O,Saveanu R V,et al. Molecular mechanisms of psychiatric diseases[J]. Neurobiol Dis,2020,146:105-136.
    [20] Wawrzczak-Bargieła A,Bilecki W,Maćkowiak M. Epigenetic Targets in Schizophrenia Development and Therapy[J]. Brain Sci,2023,13(3):426-447. doi: 10.3390/brainsci13030426
    [21] Ni P,Zhou C,Liang S,et al. YBX1-Mediated DNA Methylation-Dependent SHANK3 Expression in PBMCs and Developing Cortical Interneurons in Schizophrenia[J]. Adv Sci (Weinh),2023,10(20):455-469.
    [22] Labonté B,Abdallah K,Maussion G,et al. Regulation of impulsive and aggressive behaviours by a novel lncRNA[J]. Mol Psychiatry,2021,26(8):3751-3764. doi: 10.1038/s41380-019-0637-4
    [23] Ikegame T,Bundo M,Okada N,et al. Promoter Activity-Based Case-Control Association Study on SLC6A4 Highlighting Hypermethylation and Altered Amygdala Volume in Male Patients With Schizophrenia[J]. Schizophr Bull,2020,46(6):1577-1586. doi: 10.1093/schbul/sbaa075
    [24] Gao S,Cheng J,Li G,et al. Catechol-O-methyltransferase gene promoter methylation as a peripheral biomarker in male schizophrenia[J]. Eur Psychiatry,2017,44:39-46. doi: 10.1016/j.eurpsy.2017.03.002
    [25] Hu Y,Li C,Wang Y,et al. Analysis of COMT Val158Met polymorphisms and methylation in Chinese male schizophrenia patients with homicidal behavior[J]. Int J Legal Med,2018,132(6):1537-1544. doi: 10.1007/s00414-018-1773-0
    [26] Magwai T,Shangase K B,Oginga F O,et al. DNA Methylation and Schizophrenia: Current Literature and Future Perspective[J]. Cells,2021,10(11):289-300.
    [27] Walton E,Liu J,Hass J,et al. MB-COMT promoter DNA methylation is associated with working-memory processing in schizophrenia patients and healthy controls[J]. Epigenetics,2014,9(8):1101-1107. doi: 10.4161/epi.29223
    [28] Ghit A,Assal D,Al-Shami A S,et al. GABA(A) receptors: structure,function,pharmacology,and related disorders[J]. J Genet Eng Biotechnol,2021,19(1):123-138. doi: 10.1186/s43141-021-00224-0
    [29] Zong L,Zhou L,Hou Y,et al. Genetic and epigenetic regulation on the transcription of GABRB2: Genotype-dependent hydroxymethylation and methylation alterations in schizophrenia[J]. J Psychiatr Res,2017,88:9-17. doi: 10.1016/j.jpsychires.2016.12.019
    [30] Linde J,Zimmer-Bensch G. DNA Methylation-Dependent dysregulation of GABAergic interneuron functionality in neuropsychiatric diseases[J]. Front Neurosci,2020,14:133-141. doi: 10.3389/fnins.2020.00133
    [31] Yamamoto Y,Kida H,Kagawa Y,et al. FABP3 in the anterior cingulate cortex modulates the methylation status of the glutamic acid decarboxylase (67) promoter region[J]. J Neurosci,2018,38(49):10411-10423. doi: 10.1523/JNEUROSCI.1285-18.2018
    [32] Tao R,Davis K N,Li C,et al. GAD1 alternative transcripts and DNA methylation in human prefrontal cortex and hippocampus in brain development,schizophrenia[J]. Mol Psychiatry,2018,23(6):1496-1505.
    [33] Hwang I,Ahn J Y. Dysregulation of epigenetic control contributes to schizophrenia-like behavior in Ebp1(+/-) mice[J]. Int J Mol Sci,2020,21(7):2609-2629. doi: 10.3390/ijms21072609
    [34] Fachim H A,Corsi-Zuelli F,Loureiro C M,et al. Early-life stress effects on BDNF DNA methylation in first-episode psychosis and in rats reared in isolation[J]. Prog Neuropsychopharmacol Biol Psychiatry,2021,108:110-168.
    [35] Nieto R R,Carrasco A,Corral S,et al. BDNF as a biomarker of cognition in schizophrenia/psychosis: an updated review[J]. Front Psychiatry,2021,12:407-413.
    [36] Ho N F,Tng J,Wang M,et al. Plasticity of DNA methylation,functional brain connectivity and efficiency in cognitive remediation for schizophrenia[J]. J Psychiatr Res,2020,126:122-133. doi: 10.1016/j.jpsychires.2020.03.013
    [37] Ursini G,Cavalleri T,Fazio L,et al. BDNF rs6265 methylation and genotype interact on risk for schizophrenia[J]. Epigenetics,2016,11(1):11-23. doi: 10.1080/15592294.2015.1117736
    [38] Keller S,Errico F,Zarrilli F,et al. DNA methylation state of BDNF gene is not altered in prefrontal cortex and striatum of schizophrenia subjects[J]. Psychiatry Res,2014,220(3):1147-1150. doi: 10.1016/j.psychres.2014.08.022
    [39] Mohammadi A,Rashidi E,Amooeian V G. Brain,blood,cerebrospinal fluid,and serum biomarkers in schizophrenia[J]. Psychiatry Res,2018,265:25-38. doi: 10.1016/j.psychres.2018.04.036
    [40] Armstrong N C,Anderson R C,McDermott K W. Reelin: Diverse roles in central nervous system development,health and disease[J]. Int J Biochem Cell Biol,2019,112:72-75. doi: 10.1016/j.biocel.2019.04.009
    [41] Hattori M,Kohno T. Regulation of reelin functions by specific proteolytic processing in the brain[J]. J Biochem,2021,169(5):511-516. doi: 10.1093/jb/mvab015
    [42] Jossin Y. Reelin Functions,Mechanisms of action and signaling pathways during brain development and maturation[J]. Biomolecules,2020,10(6):964-995. doi: 10.3390/biom10060964
    [43] Dong E,Locci V,Gatta E,et al. N-phthalyl-l-tryptophan (RG108),like clozapine (CLO),induces chromatin remodeling in brains of prenatally stressed mice[J]. Mol Pharmacol,2019,95(1):62-69. doi: 10.1124/mol.118.113415
    [44] Saxena S,Maroju P A,Choudhury S,et al. Analysis of transcript levels of a few schizophrenia candidate genes in neurons from a transgenic mouse embryonic stem cell model overexpressing DNMT1[J]. Gene,2020,757:449-455.
    [45] Alfimova M V,Kondratiev N V,Golov A K,et al. Methylation of the reelin gene promoter in peripheral blood and its relationship with the cognitive function of schizophrenia patients[J]. Mol Biol (Mosk),2018,52(5):782-792.
    [46] Kho S H,Yee J Y,Puang S J,et al. DNA methylation levels of RELN promoter region in ultra-high risk,first episode and chronic schizophrenia cohorts of schizophrenia[J]. Schizophrenia (Heidelb),2022,8(1):81-90. doi: 10.1038/s41537-022-00278-0
    [47] Terry A V Jr,Callahan P M. α7 nicotinic acetylcholine receptors as therapeutic targets in schizophrenia: Update on animal and clinical studies and strategies for the future[J]. Neuropharmacology,2020,170:108053-108063. doi: 10.1016/j.neuropharm.2020.108053
    [48] Misiak B,Samochowiec J,Konopka A,et al. Clinical correlates of the NR3C1 gene methylation at various stages of psychosis[J]. Int J Neuropsychopharmacol,2021,24(4):322-332. doi: 10.1093/ijnp/pyaa094
    [49] Qing L,Liu L,Zhou L,et al. Sex-dependent association of mineralocorticoid receptor gene (NR3C2) DNA methylation and schizophrenia[J]. Psychiatry Res,2020,292:113318-113324. doi: 10.1016/j.psychres.2020.113318
    [50] Liu L,Hu Y,Lu Y,et al. Sex-dependent DNA hypermethylation of SLC6A4 in patients with schizophrenia[J]. Neurosci Lett,2022,769:136394-136399. doi: 10.1016/j.neulet.2021.136394
  • [1] 刘华, 岳万远, 邵帅, 孙家平, 杨莹, 代晓明.  基因体甲基化在舌粘膜癌变中的变化, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240704
    [2] 朱东平, 李海峰, 冯俊飞, 汤秋恒, 冷静.  肺部结节或肿块患者肺泡灌洗液SHOX2和RASSF1A基因甲基化在肺癌诊断中的价值, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240316
    [3] 程甜甜, 尹文卅, 王佳, 卢玉梅, 陈炫羽, 聂胜洁, 刘林林.  TMTC1基因多态性与精神分裂症的关联性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231014
    [4] 邹超杰, 唐义凯, 杜书文, 程宇琪.  调控海马神经元中CDC42蛋白活性对小鼠记忆和焦虑行为影响的研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221105
    [5] 毛俊鸿, 鲁丹枫, 徐玉, 代毅聪, 张哲瑞, 李悦, 王昆华.  甲基苯丙胺改变成瘾小鼠突触可塑性基因的甲基化修饰, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220121
    [6] 曾迪, 邵汉瑞, 邹英鹰, 阮永华.  孤儿受体GPR88在相关疾病中研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210723
    [7] 高庆, 谢星, 罗莉.  利培酮、奥氮平、帕利哌酮对首发女性精神分裂症患者腰围和相关代谢指标的影响, 昆明医科大学学报.
    [8] 冯梓乔, 张云桥, 游旭, 张闻宇, 龙青, 滕兆伟, 曾勇.  IL-6在精神分裂症中的研究进展, 昆明医科大学学报.
    [9] 吴杰, 张云桥, 滕兆伟, 游旭, 刘子君, 马语晗, 张闻宇, 冯梓乔, 龙青, 曾勇.  长链非编码RNA与精神分裂症相关性的研究进展, 昆明医科大学学报.
    [10] 刘畅, 沈宗霖, 程宇琪, 许秀峰.  精神分裂症、双相情感障碍、抑郁症静息态功能磁共振研究的异同, 昆明医科大学学报.
    [11] 陈思宇, 杨乐, 陈黄鸿, 付帅, 吴勇.  醋酸棉酚对人舌鳞癌Cal-27细胞ER基因甲基化和mRNA表达的影响, 昆明医科大学学报.
    [12] 林媛媛, 元静, 曾雷, 卫芋君, 张艳, 徐莉, 杨建中.  神经调节素1基因多态性位点rs35753503、rs3924999与利培酮治疗精神分裂症的关联, 昆明医科大学学报.
    [13] 姜红燕, 冉柳毅, 吴桂霞, 许秀峰, 于黎.  NDST3基因多态性与云南汉族精神分裂症的关联, 昆明医科大学学报.
    [14] 赵斐, 姜焰凌, 张寿勋, 夏生, 鲍建军, 张柠, 杨晓佩, 钟树荣.  DNA甲基化的焦磷酸测序通过率, 昆明医科大学学报.
    [15] 雷杰鹏, 杨丽, 罗诚, 张体苑, 吕鑫, 李胜巧, 林海波.  帕利哌酮与利培酮在治疗首发儿童青少年精神分裂症的临床对照, 昆明医科大学学报.
    [16] 杨晓佩, 姜焰凌, 阮冶, 张寿勋, 赵斐, 张柠, 夏生, 钟树荣.  OPRM1基因DNA甲基化在物质依赖中的研究进展, 昆明医科大学学报.
    [17] 冯国华, 卫芋君, 元静, 张艳, 曾雷, 杨建中.  DRD2和DRD3基因多态性与利培酮治疗精神分裂症疗效的关联性, 昆明医科大学学报.
    [18] 张明谦.  ANKRD18B基因在大肠癌中的甲基化与表达, 昆明医科大学学报.
    [19] 岳万远.  醋酸棉酚对人腺样囊性癌ACC-M细胞P16基因甲基化及mRNA表达的影响及其意义, 昆明医科大学学报.
    [20] 杜兴华.  ALX4基因在肿瘤中的甲基化与表达, 昆明医科大学学报.
  • 加载中
计量
  • 文章访问数:  1786
  • HTML全文浏览量:  929
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-11
  • 网络出版日期:  2023-09-09
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回