Research Progress of Perilipin Family of Lipid Droplet Surface Proteins in Cancer
-
摘要: 随着癌症逐渐的年轻化,以及日益增加的发生率与死亡率,人们越来越关注其的发生发展。不可忽视的是目前全球肥胖人口也处于上升趋势,越来越多的研究发现肥胖会导致患癌症的风险增加,脂质代谢异常更是癌症中突出的代谢改变之一。故而,关注脂质代谢在癌症中所扮演的角色显得格外重要。近些年,随着人们深入学习了解脂质代谢,发现了脂滴表面蛋白Perilipin家族,其功能不仅仅是脂滴的结构蛋白,其与癌细胞的增殖、侵袭及转移等都密切相关。因此,Perilipin家族可能成为癌症治疗的一个潜在的有希望的靶点。主要综述了Perilipin家族各成员最新发现的在癌症中的作用及相关机制,这些研究将加深对Perilipin家族在癌症进展过程中的功能的认识,为更好预防控制癌症提供新的切入点。
-
关键词:
- 癌症 /
- 脂滴 /
- 脂滴表面蛋白Perilipin家族 /
- 脂质代谢
Abstract: With cancer becoming increasingly prevalent and affecting younger populations, there is growing concern about its development and progression. It is worth noting that the global population of obese individuals is also on the rise, and numerous studies have found that obesity increases the risk of developing cancer. Abnormal lipid metabolism is one of the prominent metabolic changes in cancer development. Therefore, it is crucial to pay attention to the role of lipid metabolism in cancer. In recent years, as researchers have delved deeper into the study of lipid metabolism, the perilipin family of lipid droplet surface proteins has been discovered. These proteins not only serve as structural proteins for lipid droplets, but they are also closely associated with cancer cell proliferation, invasion, and metastasis. Therefore, the perilipin family may represent a potential and promising target for cancer treatment. This review primarily focuses on the latest findings regarding the roles and mechanisms of the perilipin family members in cancer. These studies will deepen our understanding of the functions of the perilipin family in the progression of cancer and provide new insights for better cancer prevention and control. -
《中国心血管健康与疾病报告2019概要》[1]表明高血压的患病率呈逐年上升趋势,从 2012~2015年的调查数据显示,18岁及以上居民高血压患病粗率为 27.9%,标准化率为23.2%,并且患病率随年龄的增加而升高,平均患病年龄逐渐年轻化。心脑血管疾病的发病率和死亡风险与自身的血压水平之间存在密切的关系,血压升高会使心血管疾病的患病风险增高,进而造成患者过早死亡。相关研究显示,如果高血压能够得到有效的控制,心血管事件的发生率将显著降低,但目前我国居民对高血压疾病的认识还不全面,高血压疾病的控制率、治疗率还很低,如何降低我国心血管病的发生,降压治疗是核心内容和基本策略。
原发性高血压发病机制复杂,但大多数原发性高血压患者的病因仍不明确,心钠肽(atrial natriuretic peptide,ANP)由于利尿和高血压本身的相关作用而成为明显的候选者。笔者团队的前期研究[2]表明NPR-C 基因 A-55C 位点处于基因表达调控区,推测该位点多态性有可能影响 NPR-C 的表达,进而影响其对配体ANP的清除,或影响 NPR-C及其配体结合后的信号通路。国外学者对NPR-C的配体ANP的关注度较高,而我国对此方面鲜见报道。
本研究以云南原发性高血压患者和体检中心健康者作为研究对象,预探索原发性高血压患者血清中ANP水平变化与原发性高血压发生机制之间的关系,以期为临床高血压的发病提供一定的实验室数据。
1. 对象与方法
1.1 研究对象
2019年6月至9月在昆明市第一人民医院心内科住院诊断为原发性高血压的患者44例,设为病例组,另外收集同期昆明市第一人民医院体检中心的健康体检患者44例,作为健康对照组。
1.2 纳入标准
云南汉族的界定:父系,母系三代均为汉族,均居住云南境内。高血压的诊断标准:参照2019年发布的《中国高血压防治指南(2018年修订版)》,用以下标准筛选:(1)在未使用降压药物的情况下,非同日3次测量血压,收缩压≥140 mmHg和(或)舒张压≥90 mmHg;患者既往有高血压史,现正在服用降压药物,血压低于140/90 mmHg,仍诊断为高血压;动态血压监测的高血压诊断标准为:平均SBP/DBP24h≥130/80 mmHg;白天≥135/85 mmHg;夜间≥120/70 mmHg。家庭血压监测的高血压诊断标准为≥135/85 mmHg。高血压患者年龄选择:高血压患者的年龄在40~80岁之间。研究对象之间的关系:研究对象个体间无血缘关系。本实验标本的收集、使用均通过患者和家属签字确认同意,并通过医院伦理审查委员会批准。
1.3 排除标准
(1)临床资料不全者;(2)研究对象的民族界定不清或基本特征指标信息不清者;(3)观察指标检测失败者;(4)有临床或实验室信息提示为继发性高血压可能者;(5)患有影响检测结果的疾病。
1.4 研究方法与试剂
研究对象的观察指标: 年龄、性别、体重、身高 、BMI、心钠肽(ANP)、收缩压(Systolic blood pressure,SBP)、舒张压(Diastolic blood pressure,DBP)。 ELISA法检测血清中ANP的水平。主要试剂Artrial Natruireitc Peptide购自Biovision公司。
1.5 统计学处理
使用SPSS Statistics 17.0统计学软件对数据进行统计分析。ANP水平的数据呈偏态分布,采用四分位间距表示研究对象血清ANP浓度水平,使用秩和检验分析2组间差异的统计学意义。以高血压病发生与否为因变量,以血清ANP为自变量进行Logistic回归分析。SBP和DBP的数据呈正态分布,分别采用t-检验分析2组间差异的统计学意义,最后采用person相关性分析ANP与SBP/DBP之间的统计学意义。
2. 结果
2.1 ANP浓度水平检测标准曲线
标准曲线根据标准品浓度绘制,见图1。
2.2 研究对象年龄、性别、体重、身高、BMI分析结果
病例组与对照组年龄、性别、体重、身高、BMI统计学没有意义(P > 0.05),2组之间有可比性,结果见 表1。
表 1 研究对象年龄、性别 、体重、身高、BMI分析结果($\bar x \pm s $ )Table 1. Results of age,sex,weight,height,and BMI of the study subjects ($\bar x \pm s $ )组别 性别(男/女) 年龄(岁) 体重(kg) 身高(cm) BMI(kg/m2) 病例组 20/24 66.57 ± 9.35 66.48 ± 11.68 162.64 ± 7.60 25.02 ± 3.43 对照组 24/20 63.68 ± 8.41 64.39 ± 11.75 163.45 ± 8.99 23.97 ± 3.08 t/Z 0.847 1.523 0.837 −0.461 1.508 P 0.400 0.132 0.405 −0.818 0.135 2.3 SBP、DBP及ANP浓度水平
病例组与对照组SBP、DBP统计学有显著差异(P < 0.05),具有统计学意义;病例组血清ANP浓度水平低于对照组,z值为−4.978,差异有统计学意义( P < 0.05),见 表2。
表 2 研究对象SBP、DBP和ANP浓度水平($\bar x \pm s $ )Table 2. The concentration of SBP,DBP and ANP of the study subjects ($\bar x \pm s $ )组别 SBP(mmHg) DBP(mmHg) ANP(ng/mL) 病例组 167.95 ± 23.96 102.57 ± 15.99 52.21(38.80,56.70) 对照组 118.34 ± 14.13 75.59 ± 8.96 65.87(57.70,74.97) t/Z 11.832 9.760 −4.978 P 0.000* 0.000* 0.000* *P < 0.05。 2.4 高血压病发生因素的logistic回归分析
以高血压病发生与否为因变量,以血清ANP为自变量进行logistic回归分析,结果显示ANP与高血压偏回归系数为0.071,P值为0.002(P < 0.05),具有统计学意义。
2.5 ANP与SBP/DBP相关性分析
采用person相关性分析分别对ANP与SBP/DBP进行分析,结果显示ANP与SBP的相关系数为-0.374,P值为0.000(P < 0.05);ANP与DBP的相关系数为−0.331, P值为0.002(P < 0.05),都具有统计学意义,但相对于DBP,ANP与SBP的相关性更显著。
3. 讨论
高血压是一种常见的慢性疾病,是世界范围内导致死亡的主要危险因素。根据2019年发布的《中国高血压防治指南》[3] 1958年,1979年,1991年,2002年,2012年和2015年我国进行的6次大规模高血压患病率调查中,报告的高血压患病率分别为5.1%,7.7%,13.6%,18.8%,25.2%和27.9%,虽然各次调查研究的总人数、诊断标准不完全一致,但是总体来看高血压的患病率呈现逐年上升的趋势。目前大量的研究文献表明,高血压的发病机制包括遗传、精神、神经作用、RAAS系统平衡失调、胰岛素抵抗、肥胖等[4]。
近年来,钠尿肽家族及其受体基因调控的信号通路在心血管疾病的病理生理中发挥的作用越来越来受到广大学者的关注。ANP主要由心房产生和分泌,心室肥厚也可以促进心室肌细胞分泌ANP并且直接释放到外周血中。据报道[5]ANP的过度表达能减轻高血压的发生,LUIS G. MELO等人的研究[6]表明过表达ANP的转基因小鼠相对于其非转基因对照同窝仔小鼠降压(25±30) mmHg,而ANP基因敲除小鼠与野生型对照小鼠相比血压高(20±30) mmHg,与本次实验原发性高血压患者的外周血中的ANP水平显著低于正常人的结果相一致。Li等人的研究[7]表明ANP水平的升高,可以使原发性高血压大鼠的血压降低,此外,段翔等的研究[8]表明高盐组血液中ANP基因表达水平(1.82±0.11)明显高于中盐组(1.43±0.09),中盐组血液中ANP基因表达水平明显高于低盐组(0.95±0.08),这也更加证实了ANP与高血压之间有联系。有研究表明[9]ANP升高后会通过舒张血管、促进肾脏对水和钠的排泄来使血压降低。此外ANP还可以抑制ET的合成和分泌,拮抗ET的生物学效应,减弱血管紧张素Ⅱ的升压作用,从而有效的控制血压的升高[10]。本次实验结果显示ANP与SBP/DBP具有相关性,且与DBP比较,ANP与SBP的相关性更显著。有研究报道[11]收缩压(SBP)是心血管疾病的重要危险因子,随着SBP水平的升高,患者心、肾不良事件发生风险持续增加。由此可推测ANP可降低SBP值,减少患者患心血管疾病的风险。据Shravya Vinnakota等[12]的报道,目前已经研究了合成的ANP应用在高血压的治疗中,并且正在进行着有希望的实验。
综上所述,本文得出如下结论:(1)外周血中ANP浓度水平低与血压升高密切相关;(2)NPR-C基因配体ANP参与了原发性高血压的发病机制;(3)ANP浓度水平影响着SBP/DBP值的变化,与DBP比较,ANP对SBP的影响更为显著。
基于以上信息,提示血浆中的ANP在原发性高血压的发生、发展中可能发挥着重要的作用,但其确切的机制还有待进一步研究探讨。虽然本次实验研究观察的指标比较单一,但是也为高血压的发病机制研究与治疗提供了一种新思路。本次初步探究所观察的标本量较少,还存在着一定的局限性,后期课题组会加大研究标本量进行进一步的探究。
-
表 1 PLINs在不同癌症中的作用及其机制
Table 1. The role and mechanism of PLINs in different cancers
PLINs 癌症类型 作用 潜在机制及通路 参考文献 PLIN1 乳腺癌 抑癌 ARAP1-AS1经miR-2110/HDAC2/PLIN1轴加速乳腺癌细胞增殖和迁移 [14] 脂肪肉瘤 促癌 -- [17] PLIN2 肾透明细胞癌 抑癌 -- [18] 肝细胞癌 促癌 PLIN2通过抑制HCC细胞中AMPK/ULK1/自噬途径的活性调节HIF-1α,
从而促进肝细胞癌细胞增殖[21] 恶性黑色素瘤 促癌 -- [34] 肺腺癌 促癌 -- [35] 子宫平滑肌瘤 促癌 PLIN2耗竭导致平滑肌瘤细胞内的线粒呼吸和糖酵解增加,
从而诱导平滑肌瘤细胞增殖[36] PLIN3 肾透明细胞癌 促癌 -- [24] 前列腺癌 促癌 ACSS3将AIP4 E3泛素连接酶募集到滴上,以调节PLIN3的泛素化水,
抑制前列腺癌的进展[25] 脂肪肉瘤 促癌 -- [16] 肝细胞癌 促癌 -- [26] PLIN4 乳腺癌 促癌 -- [28] PLIN5 肝细胞癌 促癌 -- [32] 胃癌 促癌 -- [37] 胰腺癌 促癌 -- [38] 注:ARAP1-AS1为长链非编码RNA(lncRNA);HDAC2为组蛋白脱乙酰基酶2;HCC为肝细胞癌;AMPK为AMP激活蛋白激酶;ULK1为自噬启动蛋白1;HIF-1α为低氧诱导因子-1(HIF-1)的调节亚基。 -
[1] Sung H,Ferlay J,Siegel R L,et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin,2021,71(3):209-249. doi: 10.3322/caac.21660 [2] Balaban S,Shearer R F,Lee LS,et al. Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration[J]. Cancer Metab,2017,5:1. doi: 10.1186/s40170-016-0163-7 [3] Pascual G,Avgustinova A,Mejetta S,et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36[J]. Nature,2017,541(7635):41-45. doi: 10.1038/nature20791 [4] Roberts M A,Olzmann J A. Protein quality control and lipid droplet metabolism[J]. Annu Rev Cell Dev Biol,2020,36:115-139. doi: 10.1146/annurev-cellbio-031320-101827 [5] Zadoorian A,Du X,Yang H. Lipid droplet biogenesis and functions in health and disease[J]. Nat Rev Endocrinol,2023,19(8):443-459. doi: 10.1038/s41574-023-00845-0 [6] Bersuker K,Peterson C W H,To M,et al. A Proximity Labeling Strategy Provides Insights into the Composition and Dynamics of Lipid Droplet Proteomes[J]. Dev Cell,2018,44(1):97-112. doi: 10.1016/j.devcel.2017.11.020 [7] Olzmann J A,Carvalho P. Dynamics and functions of lipid droplets[J]. Nat Rev Mol Cell Biol,2019,20(3):137-155. doi: 10.1038/s41580-018-0085-z [8] Li Z,Liu H,Luo X. Lipid droplet and its implication in cancer progression[J]. Am J Cancer Res,2020,10(12):4112-4122. [9] Schulze R J,McNiven M A. Lipid Droplet Formation and Lipophagy in Fatty Liver Disease[J]. Semin Liver Dis,2019,39(3):283-290. doi: 10.1055/s-0039-1685524 [10] Luo W,Wang H,Ren L,et al. Adding fuel to the fire: The lipid droplet and its associated proteins in cancer progression[J]. Int J Biol Sci,2022,18(16):6020-6034. doi: 10.7150/ijbs.74902 [11] Cruz A L S,Barreto E A,Fazolini N P B,et al. Lipid droplets: platforms with multiple functions in cancer hallmarks[J]. Cell Death Dis,2020,11(2):105. doi: 10.1038/s41419-020-2297-3 [12] Zhang Q,Zhang P,Li B,et al. The Expression of Perilipin Family Proteins can be used as Diagnostic Markers of Liposarcoma and to Differentiate Subtypes[J]. J Cancer,2020,11(14):4081-4090. doi: 10.7150/jca.41736 [13] Zhang X,Su L,Sun K. Expression status and prognostic value of the perilipin family of genes in breast cancer[J]. Am J Transl Res,2021,13(5):4450-4463. [14] Lu C,Wang X,Zhao X,et al. Long non-coding RNA ARAP1-AS1 accelerates cell proliferation and migration in breast cancer through miR-2110/HDAC2/PLIN1 axis[J]. Biosci Rep,2020,40(4):20191764. [15] Zhai G,Pang Y,Zou Y,et al. Effects of PLIN1 Gene Knockout on the Proliferation,Apoptosis,Differentiation and Lipolysis of Chicken Preadipocytes[J]. Animals (Basel),2022,13(1):92. doi: 10.3390/ani13010092 [16] Straub B K,Witzel H R,Pawella L M,et al. Perilipin 1 Expression Differentiates Liposarcoma from Other Types of Soft Tissue Sarcoma[J]. Am J Pathol,2019,189(8):1547-1558. doi: 10.1016/j.ajpath.2019.04.017 [17] Meng L X,Zheng Y X,He M L,et al. Silencing of perilipin by short hairpin RNA inhibits proliferation and induces apoptosis in liposarcoma cells[J]. Mol Med Rep,2018,18(5):4571-4576. [18] Cao Q,Ruan H,Wang K,et al. Overexpression of PLIN2 is a prognostic marker and attenuates tumor progression in clear cell renal cell carcinoma[J]. Int J Oncol,2018,53(1):137-147. [19] Hashimoto Y,Ishida M,Ryota H,et al. Adipophilin expression is an indicator of poor prognosis in patients with pancreatic ductal adenocarcinoma: An immunohistochemical analysis[J]. Pancreatology,2019,19(3):443-448. doi: 10.1016/j.pan.2019.03.001 [20] Hu R,Gupta R,Wang Z,et al. Bioplasmonic paper-based assay for perilipin-2 non-invasively detects renal cancer[J]. Kidney Int,2019,96(6):1417-1421. doi: 10.1016/j.kint.2019.08.020 [21] Liu W,Liu X,Liu Y,et al. PLIN2 promotes HCC cells proliferation by inhibiting the degradation of HIF1α[J]. Exp Cell Res,2022,418(1):113244. doi: 10.1016/j.yexcr.2022.113244 [22] Roberts M A,Deol K K,Mathiowetz A J,et al. Parallel CRISPR-Cas9 screens identify mechanisms of PLIN2 and lipid droplet regulation[J]. Dev Cell,2023,5807(23):331-333. [23] Gu Y,Yang Y,Cao X,et al. Plin3 protects against alcoholic liver injury by facilitating lipid export from the endoplasmic reticulum[J]. J Cell Biochem,2019,120(9):16075-16087. doi: 10.1002/jcb.28889 [24] Yao D,Xia S,Jin C,et al. Feedback activation of GATA1/miR-885-5p/PLIN3 pathway decreases sunitinib sensitivity in clear cell renal cell carcinoma[J]. Cell Cycle,2020,19(17):2195-2206. doi: 10.1080/15384101.2020.1801189 [25] Zhou L,Song Z,Hu J,et al. ACSS3 represses prostate cancer progression through downregulating lipid droplet-associated protein PLIN3[J]. Theranostics,2021,11(2):841-860. doi: 10.7150/thno.49384 [26] Zhang Y,Liang X,Lian Q,et al. Transcriptional analysis of the expression and prognostic value of lipid droplet-localized proteins in hepatocellular carcinoma[J]. BMC Cancer,2023,23(1):677. doi: 10.1186/s12885-023-10987-z [27] Zhu L,Hu F,Li C,et al. Perilipin 4 protein: an impending target for amyotrophic lateral sclerosis[J]. Mol Neurobiol,2021,58(4):1723-1737. doi: 10.1007/s12035-020-02217-5 [28] Sirois I,Aguilar-Mahecha A,Lafleur J,et al. A unique morphological phenotype in chemoresistant triple-negative breast cancer reveals metabolic reprogramming and PLIN4 expression as a molecular vulnerability[J]. Mol Cancer Res,2019,17(12):2492-2507. doi: 10.1158/1541-7786.MCR-19-0264 [29] Krizanac M,Mass Sanchez P B,et al. Lipid-Independent Regulation of PLIN5 via IL-6 through the JAK/STAT3 Axis in Hep3B Cells[J]. Int J Mol Sci,2023,24(8):7219. doi: 10.3390/ijms24087219 [30] Zhang E,Cui W,Lopresti M,et al. Hepatic PLIN5 signals via SIRT1 to promote autophagy and prevent inflammation during fasting[J]. J Lipid Res,2020,61(3):338-350. doi: 10.1194/jlr.RA119000336 [31] Di J,Chai Y,Yang X,et al. ELP6 and PLIN5 mutations were probably prognostic biomarkers for patients with gastric cancer[J]. Front Med (Lausanne),2022,9:803617. doi: 10.3389/fmed.2022.803617 [32] Asimakopoulou A,Vucur M,Luedde T,et al. Perilipin 5 and lipocalin 2 expression in hepatocellular carcinoma[J]. Cancers (Basel),2019,11(3):385. doi: 10.3390/cancers11030385 [33] Najt C P, Devarajan M, Mashek D G. Perilipins at a glance [J]. J Cell Sci, 2022, 135(5): 110. [34] Fujimoto M,Matsuzaki I,Nishitsuji K,et al. Adipophilin expression in cutaneous malignant melanoma is associated with high proliferation and poor clinical prognosis[J]. Lab Invest,2020,100(5):727-737. doi: 10.1038/s41374-019-0358-y [35] Alabiad M A,Harb O A,Abozaid M,et al. The diagnostic and prognostic roles of combined expression of novel biomarkers in lung adenocarcinoma and lung squamous cell carcinoma: An immunohistochemical study[J]. Iran J Pathol,2021,16(2):162-173. doi: 10.30699/ijp.2020.130944.2452 [36] Okeigwe I,Bulun S,Liu S,et al. PLIN2 functions as a novel link between progesterone signaling and metabolism in uterine leiomyoma cells[J]. J Clin Endocrinol Metab,2019,104(12):6256-6264. [37] Burlaka A P,Ganusevich I I,Vovk A V,et al. Redox state of adipose tissue for patients with gastric cancer and its connection with the body mass index and distance from the tumor[J]. Obes Res Clin Pract,2020,14(1):34-38. doi: 10.1016/j.orcp.2019.10.003 [38] Bai R,Rebelo A,Kleeff J,et al. Identification of prognostic lipid droplet-associated genes in pancreatic cancer patients via bioinformatics analysis[J]. Lipids Health Dis,2021,20(1):58. doi: 10.1186/s12944-021-01476-y [39] Martínez-Reyes I,Chandel N S. Cancer metabolism: looking forward[J]. Nat Rev Cancer,2021,21(10):669-680. doi: 10.1038/s41568-021-00378-6 [40] Bian X, Liu R, Meng Y, et al. Lipid metabolism and cancer [J]. J Exp Med, 2021, 218(1): 64. [41] Broadfield L A,Pane A A,Talebi A,et al. Lipid metabolism in cancer: New perspectives and emerging mechanisms[J]. Dev Cell,2021,56(10):1363-1393. doi: 10.1016/j.devcel.2021.04.013 -