留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

miR-149-5p通过MSH5/Wnt信号通路调控胶质瘤细胞恶性生物学行为

冯毅 王小峰 白西民 姚胜 党俊涛 赵云洁 蔡冰

冯毅, 王小峰, 白西民, 姚胜, 党俊涛, 赵云洁, 蔡冰. miR-149-5p通过MSH5/Wnt信号通路调控胶质瘤细胞恶性生物学行为[J]. 昆明医科大学学报, 2023, 44(8): 59-70. doi: 10.12259/j.issn.2095-610X.S20230823
引用本文: 冯毅, 王小峰, 白西民, 姚胜, 党俊涛, 赵云洁, 蔡冰. miR-149-5p通过MSH5/Wnt信号通路调控胶质瘤细胞恶性生物学行为[J]. 昆明医科大学学报, 2023, 44(8): 59-70. doi: 10.12259/j.issn.2095-610X.S20230823
Yi FENG, Xiaofeng WANG, Ximin BAI, Sheng YAO, Juntao DANG, Yunjie ZHAO, Bing CAI. miR-149-5p Regulates Malignant Biological Behavior of Glioma Cells Through MSH5/WNT Signaling Pathway[J]. Journal of Kunming Medical University, 2023, 44(8): 59-70. doi: 10.12259/j.issn.2095-610X.S20230823
Citation: Yi FENG, Xiaofeng WANG, Ximin BAI, Sheng YAO, Juntao DANG, Yunjie ZHAO, Bing CAI. miR-149-5p Regulates Malignant Biological Behavior of Glioma Cells Through MSH5/WNT Signaling Pathway[J]. Journal of Kunming Medical University, 2023, 44(8): 59-70. doi: 10.12259/j.issn.2095-610X.S20230823

miR-149-5p通过MSH5/Wnt信号通路调控胶质瘤细胞恶性生物学行为

doi: 10.12259/j.issn.2095-610X.S20230823
基金项目: 陕西省渭南市重点科技计划项目(2019-ZDYF-SFCX-13);陕西省渭南市首批自然科学和工程技术类青年人才支持项目
详细信息
    作者简介:

    冯毅(1978~),男,陕西西安人,副主任医师,主要从事颅脑肿瘤及脊柱脊髓相关疾病的诊治工作

    通讯作者:

    蔡冰,E-mail:caibing0101@163.com

  • 中图分类号: R739.41

miR-149-5p Regulates Malignant Biological Behavior of Glioma Cells Through MSH5/WNT Signaling Pathway

  • 摘要:   目的  探索miR-149-5p调控MSH5/Wnt信号通路影响胶质瘤细胞恶性生物学行为的具体作用机制。  方法  RT-qPCR检测miR-149-5p在胶质瘤组织和细胞系A172、U251、HS683、H4中的表达。CCK-8检测细胞活力,EDU染色检测细胞增殖,Transwell小室检测细胞的迁移和侵袭,流式细胞术检测细胞周期和细胞凋亡。双荧光素酶报告基因实验验证miR-149-5p和MSH5的靶向关系。Western blot检测MSH5、GAPDH、GSK3β、β-catenin、AXIN2的蛋白表达。  结果  miR-149-5p在胶质瘤组织(P < 0.0001)和细胞系中表达降低(P < 0.0001),过表达miR-149-5p可显著抑制A172细胞的增殖(P < 0.01)、迁移(P < 0.05)和侵袭(P < 0.01)、细胞周期(P < 0.01),并诱导凋亡(P < 0.01),敲降miR-149-5p则具有相反的作用。双荧光素酶报告基因实验证明miR-14-5p靶向MSH5。敲降miR-149-5p可逆转敲降MSH5对A172细胞恶性生物学行为的作用。过表达MSH5通过抑制GSK3β、激活β-catenin/AXIN2通路,促进A172细胞的增殖、迁移和侵袭和细胞周期,并抑制细胞凋亡。  结论  miR-149-5p通过靶向上调MSH5,抑制AXIN2表达激活β-catenin/AXIN2通路,从而抑制间质瘤细胞的恶性生物学行为。
  • 胶质瘤是常见的原发性脑肿瘤。据报道,每年约有14000例新增的胶质瘤患者[1],且老年人具有较高的发病率。尽管目前手术切除以及放化疗等医学技术取得了很大的进步,但患者的预后仍然较差,临床上仍无法彻底治愈恶性程度较高的胶质瘤。因此,探索胶质瘤的潜在发病机制,寻找新的预后标志物迫在眉睫。miRNA是由18~25个核苷酸组成的非编码RNA,已被广泛报道参与调节肿瘤细胞的生理过程[2-3],通过与靶mRNA的异常表达和交叉调节可作为肿瘤的诊断和预后标志物。例如:miR-4319在甲状腺癌组织和细胞中下调,抑制甲状腺癌细胞的增殖、迁移和上皮间质转化[4]。miR-149是肿瘤中具有广泛调控作用的miRNA,由2q37.3上的MIR149基因编码。Xu B等[5]报道,促进miR-149-5p表达可增强替莫唑胺对胶质瘤细胞的毒性。但miR-149-5p在胶质瘤中的作用机制尚不清楚。因此,本研究将探讨miR-149-5p对胶质瘤细胞恶性生物学行为的调控作用及其具体作用机制。

    收集在渭南市中心医院就诊并确诊为胶质瘤患者的肿瘤组织样本30例,在距肿瘤组织2 cm处获得相邻的癌旁组织样本(即对照组),在收样前患者知情并签署知情同意书。采集样本的患者除手术治疗外未接受其他治疗。本研究工作遵循世界医学协会赫尔辛基宣言进行,同时获得了渭南市中心医院伦理委员会的批准(2023研004-3)。

    胶质瘤细胞系A172(货号:CL-0012,Pricella,武汉)、U251(货号:CL-0237,Pricella,武汉)、HS683(货号:CL-0362,Pricella,武汉)、H4(货号:CBP60590,Cobioer,南京)。人正常星形胶质细胞HA1800(货号:AC340443)和293T细胞(货号:KMCC-001-0255)购自上海中乔新舟生物科技有限公司。

    90%高糖DMEM培养基、DMEM培养基购自上海中乔新舟生物科技有限公司。PrimeScript™ RT试剂盒和gDNA Eraser购自Takara。NC mimic、miR-149-5p mimic、NC inhibitor和miR-149-5p inhibitor序列合成由吉玛基因提供技术支持。MSH5抗体购自ThermoFisher Scientific。GAPDH、GSK3β、β-catenin、AXIN2一抗购自Abcam。Annexin V-FITC/PI凋亡试剂盒、胰蛋白酶、CCK-8试剂盒和双荧光素酶报告基因检测试剂盒购自北京Solarbio。Hoechst33342试剂、Wnt通路抑制剂Triptonide以及Wnt通路激活剂HLY78购自MedChemExpress。荧光显微镜购自莱卡。离心机购自深圳瑞沃德。细胞培养箱购自Eppendorf。Bio-RAD蛋白成像系统购自上海艾研。

    A172、U251、HS683、H4细胞分别接种于含10% FBS、1% P/SH的DMEM培养基。A1800细胞接种于含10% FBS的高糖DMEM培养基中。293T细胞培养在含10% FBS、1% Glutamax和1%双抗的DMEM培养基内。培养基置于37 ℃、5% CO2的细胞培养箱中。

    取生长良好的A172细胞,经胰蛋白酶消化后接种于不含抗生素的培养基中。次日,根据Lipofectamine 2000脂质体转染试剂盒说明书,分别将NC mimic、miR-149-5p mimic、NC inhibitor和miR-149-5p inhibitor、sh-NC、sh-MSH5、sh-MSH5+miR-149-5pinhibitor以及pcDNA-MSH5分别转染至A172细胞。待细胞培养48 h后,分别检测转染效率,成功转染的细胞用于后续实验。转染的pcDNA-MSH5的A172细胞再根据试剂说明分别用Triptonide和HLY78处理。

    TRIzol试剂提取总RNA,并使用PrimeScript™ RT试剂盒和gDNA Eraser将1000 ng RNA逆转录为cDNA。使用SYBR® Premix Ex Taq™ II和Applied Biosystems 7500实时PCR系统进行实时聚合酶链式反应。2-ΔΔCt法计算目标基因的相对表达。U6作为miRNA的内参。引物序列见表1

    表  1  引物序列
    Table  1.  Primer sequences
    目的基因引物序列 (F:正向序列,R:反向序列,5′-3′)
    miR-149-5p F: CTCTGGCTCCGTGTCTTCAC
    R: CTGCCCCAGCACAGCC
    U6 F: TGCGGGTGCTCGCTTCGGCAGC
    R: CCAGTGCAGGGTCCGAGGT
    下载: 导出CSV 
    | 显示表格

    CCK-8用于测定细胞活力。调整细胞密度,向96孔板的每孔中接种1000个A172细胞,每孔100 μL。培养板置于5% CO2细胞培养箱中培养。在培养的第0、24、48、72、96 h向每孔中添加10 μL CCK-8试剂,通过酶标仪测定细胞的光密度值。

    细胞在冰上含有蛋白酶抑制剂的RIPA溶液中裂解。BCA试剂盒检测蛋白质的浓度。将分离的蛋白质进行SDS-PAGE凝胶电泳,随后转移至PVDF膜上。将膜与一抗(MSH5:0.05 μg/mL;GAPDH:1∶2000;GSK3β:1∶2000;β-catenin:1∶4000;AXIN2:1 μg/mL)进行过夜孵育,再与辣根过氧化物酶偶联的二抗孵育2 h。经ECL化学发光底物曝光后用蛋白成像系统采集图像。Image J软件用于分析条带灰度值。

    收集对数生长期的细胞培养在96孔板中,用100 μL含20 μmol/L EdU的培养基处理。在37 ℃、5% CO2环境中孵育2 h,用4%多聚甲醛分别固定各组细胞30 min,再置于含0.5% Triton-X-100的PBS溶液中孵育20 min。Hoechst33342溶液染细胞核。荧光显微镜观察染色结果并拍照记录。

    成功转染的细胞经胰蛋白酶消化后,收集细胞并计数。将4×104个细胞用100 μL无血清培养基悬浮制得细胞悬液并接种至Transwell小室上室,将含10% FBS的完全培养基加至小室下室。Transwell小室置于细胞培养箱中培养48 h。随后用4%多聚甲醛固定细胞0.1%结晶紫溶液染色。显微镜拍照并计数。侵袭实验接种细胞前在小室上室中加入稀释后的Matrigel基质胶,胶凝固后再接种细胞,其余步骤与迁移实验相同。

    取生长良好的各组细胞,经0.25%胰蛋白酶消化后,重悬于PBS中。然后在冰冷的70%乙醇中过夜固定。随后,1000 r/min条件下将细胞离心5 min,并重悬在50 μL RNase A中,于37 ℃下孵育30 min。将400 μL碘化丙啶(PI)细胞悬液中混匀,孵育30 min,通过流式细胞仪进行检测。

    采用双染法Annexin V-FITC/PI凋亡检测试剂盒检测细胞凋亡率。将转染后的细胞接种至6孔板中,加入完全培养基培养24 h。收集细胞与Annexin V-FITC试剂在常温中避光孵育15 min,然后再与PI溶液避光孵育15 min。通过流式细胞仪测定细胞凋亡率。

    经PCR扩增MSH5的3′-UTR(MSH5-WT)并插入p-GL3报告载体中,同时构建与miR-149-5p具有靶向结合位点的MSH5 3′-UTR突变序列(MSH5-MUT),并转入p-GL3报告载体。将NC mimic或miR-149-5p mimic分别与MSH5-WT或MSH5-MUT经Lipofectamine 2000共转染至293T细胞中。转染48 h后,通过双荧光素酶测定法分析荧光素酶活性。海肾荧光素酶活性作为内部参照。

    每组实验均进行3次重复。GraphPad Prism8.0用于数据分析并作图。来自三个及以上独立重复实验的数据均表示为“均数±标准差”。非配对t检验用于分析2组间的差异。单因素方差分析用于分析多组间的差异,Tukey检验用于多组间的两两比较。P < 0.05为差异具有统计学意义。

    收集胶质瘤患者的肿瘤组织及其对应的癌旁组织,通过RT-qPCR检测显示,miR-149-5p肿瘤组织中的表达显著低于癌旁组织(图1AP < 0.0001)。此外,miR-149-5p在人胶质瘤细胞系A172、U251、HS683、H4中的表达明显低于人正常星形胶质细胞HA1800(图1BP < 0.0001)。由此,推测miR-149-5p在胶质瘤组织和细胞系中的低表达与胶质瘤的发展密切相关。

    图  1  miR-149-5p在胶质瘤组织和细胞中的表达
    A:RT-qPCR检测胶质瘤组织中miR-149-5p的表达,与Para-cancer组相比,****P < 0.0001;B:RT-qPCR检测miR-149-5p在人正常星形胶质细胞阿和人胶质瘤细胞中的表达,与HA1800组相比,**P < 0.01,****P < 0.0001。
    Figure  1.  miR-149-5p was downregulated in glioma tissues and cells

    为进一步探索miR-149-5p对胶质瘤细胞的作用机制,分别在A172细胞中转染NC mimic、miR-149-5p mimic、NC inhibitor和miR-149-5p inhibitor。检测显示,转染miR-149-5pmimic明显增加miR-149-5p的表达,转染miR-149-5p inhibitor组中miR-149-5p表达降低。CCK-8、EDU、Transwell以及流式细胞术检测表明,过表达miR-149-5p明显抑制A172细胞的增殖(图2B、2C和2F,P < 0.01)、迁移(图2D和2G,P < 0.05)和侵袭(图2E2HP < 0.01),促进G1期细胞比例(图3A3BP < 0.01)以及凋亡率(图3C3DP < 0.01)。与NC inhibitor组相比,敲降miR-149-5p组中细胞的增殖活力(P < 0.05)、迁移(P < 0.05)和侵袭(P < 0.05)能力显著升高,G1期细胞比例(P < 0.05)以及凋亡水平(P < 0.05)降低。综上可知。过表达miR-149-5p可显著抑制A172细胞的增殖、转移和细胞周期,诱导细胞凋亡。敲降miR-149-5p可明显促进A172细胞的恶性生物学行为。

    图  2  miR-149-5p对A172细胞恶性生物学行为的影响
    A:RT-qPCR检测miR-149-5p的表达;B:CCK-8检测细胞活力;C和F:EDU检测细胞增殖;D和G:Transwell检测细胞迁移能力;E和H:Transwell检测细胞侵袭能力;与NC mimic组相比,*P < 0.05,**P < 0.01,****P < 0.000 1;与NC inhibitor组相比,#P < 0.05。
    Figure  2.  Effect of miR-149-5p on malignant biological behavior of A172 cells
    图  3  miR-149-5p对A172细胞恶性生物学行为的影响
    A和B:流式细胞术检测细胞周期;C和D:流式细胞术检测细胞凋亡率;与NC mimic组相比,**P < 0.01;与NC inhibitor组相比,#P < 0.05。
    Figure  3.  Effect of miR-149-5p on malignant biological behavior of A172 cells

    通过starbase数据库预测发现,MSH5与miR-149-5p具有靶向结合序列,见图4A。双荧光素酶报告基因实验验证证实,过表达miR-149-5p可明显抑制MSH5野生型载体的荧光素酶活性见图4BP < 0.05),而对MSH5突变型载体的荧光素酶活性无显著作用(P > 0.05。通过GEPIA数据库预测显示,MSH5在胶质瘤组织中表达降低(图4CP < 0.01)。RT-qPCR发现,过表达miR-149-5p可抑制MSH5的蛋白表达(图4DP < 0.01),而敲降miR-149-5p组A172细胞中MSH5表达显著增加(图4EP < 0.01)。由此证实,miR-149-5p靶向负调控MSH5。

    图  4  miR-149-5p靶向MSH5
    A:starbase数据库预测miR-149-5p和MSH5的结合序列;B:双荧光素酶报告基因实验验证miR-149-5p和MSH5的靶向关系,与NC mimic组相比,*P < 0.05;C:GEPIA数据库预测MSH5在胶质瘤组织中的表达,与Para-cancer组相比,**P < 0.01;D:Western blot检测MSH5的蛋白表达,与NC组相比,**P < 0.01。
    Figure  4.  miR-149-5p targeted MSH5

    为进一步探索miR-149-5p调控MSH5对A172细胞恶性生物学行为的影响,分别在A172细胞中转染sh-NC、sh-MSH5和sh-MSH5+miR-149-5pinhibitor。Western blot结果见图5A5B,转染sh-MSH5组A172细胞中MSH5的蛋白表达低于sh-NC组(P < 0.001),转染sh-MSH5+miR-149-5pinhibitor组中MSH5的蛋白表达高于sh-MSH5转染组(P < 0.05)。通过CCK-8、EDU、Tranwell和流式细胞术检测表明,敲降MSH5可显著抑制A172细胞的增殖活力(图5C5E,均P < 0.01)、迁移(图5F5GP < 0.01)和侵袭(图5H5IP < 0.05),促进G1期细胞比例(图6A6BP < 0.01)以及细胞凋亡率(图6C6DP < 0.001)。同时敲降miR-149-5p和MSH5组中细胞的增殖(P < 0.05)、迁移(P < 0.05)和侵袭(P < 0.05)能力高于敲降MSH5组,G1期细胞比例(P < 0.05)和凋亡(P < 0.05)水平低于仅敲降MSH5组。综上所述,敲降miR-149-5p靶向MSH5,可逆转敲降MSH5对A172细胞恶性生物学行为的抑制作用。

    图  5  miR-149-5p靶向MSH5调控A172细胞的恶性生物学行为
    A和B:Western blot检测MSH5蛋白表达;C:CCK-8检测细胞活力;D和E:EDU实验检测细胞增殖;F和G:Tranwell实验检测细胞迁移能力;H和I:Tranwell实验检测细胞侵袭能力;与sh-NC组相比,*P < 0.05,**P < 0.01,***P < 0.001;与sh-MSH5组相比,#P < 0.05。
    Figure  5.  miR-149-5p targeted MSH5 to regulate the malignant biological behavior of A172 cells
    图  6  miR-149-5p靶向MSH5调控A172细胞的恶性生物学行为
    A和B:流式细胞术检测细胞周期;C和D:流式细胞术检测细胞凋亡率;与sh-NC组相比,**P < 0.01,***P < 0.001;与sh-MSH5组相比,#P < 0.05。
    Figure  6.  miR-149-5p targeted MSH5 to regulate the malignant biological behavior of A172 cells

    Wnt信号通路被报道在胶质瘤的发展进程中发挥着重要作用,因此,笔者进一步探讨miR-149-5p/MSH5分子轴是否通过Wnt信号通路而调控胶质瘤的进程。分别用Wnt通路抑制剂Triptonide以及Wnt通路激活剂HLY78处理转染pcDNA-MSH5的A172细胞。检测结果见图7A,与pcDNA-NC作用相比,pcDNA-MSH5组中MSH5(图7BP < 0.001)、GSK3β表达降低(图7CP < 0.001),β-catenin(图7DP < 0.05)和AXIN2(图7EP < 0.01)表达升高。与pcDNA-MSH5组相比,pcDNA-MSH5+Triptonide组中GSK3β表达升高(P < 0.001),β-catenin(P < 0.05)和AXIN2(P < 0.01)表达降低;而pcDNA-MSH5+HLY78组中GSK3β表达降低(P < 0.001),β-catenin(P < 0.05)和AXIN2(P < 0.05)表达升高。过表达MSH5且经Triptonide处理可显著下调过表达MSH5对A172细胞的增殖(图7F~7H,均P < 0.01)、迁移(图7I~7JP < 0.01)和侵袭(图7K~7LP < 0.01)的促进作用以及对A172细胞的G1期细胞比例(图8A~8BP < 0.05)和凋亡水平(图8C~8DP < 0.05)的抑制作用。过表达MSH5且经HLY78处理可显著上调过表达MSH5对A172细胞的增殖(均P < 0.05)、迁移(P < 0.05)和侵袭(P < 0.05)的促进作用以及对A172细胞的G1期细胞比例(P < 0.05)和凋亡水平(P < 0.05)的抑制作用。综上表明,过表达MSH5通过激活Wnt信号通路促进A172细胞的恶性表型。

    图  7  MSH5调控Wnt信号通路对A172细胞的作用
    A:Western blot检测MSH5,B:GSK3β,C:β-catenin,D:和AXIN2,E:的蛋白表达;F:CCK-8检测细胞活力;G和H:EDU检测细胞增殖;I和J:Transwell检测细胞迁移能力;K和L:Transwell检测细胞迁移能力;与pcDNA-NC组相比,*P < 0.05,**P < 0.01,***P < 0.001;与pcDNA-MSH5组相比,#P < 0.05,##P < 0.01,###P < 0.001。
    Figure  7.  Effect of MSH5 regulating Wnt signaling pathway on A172 cells
    图  8  MSH5调控Wnt信号通路对A172细胞的作用
    A和B:流式细胞术检测细胞周期;C和D:流式细胞术检测细胞凋亡率;与pcDNA-NC组相比,*P < 0.05;与pcDNA-MSH5组相比,#P < 0.05。
    Figure  8.  Effect of MSH5 regulating Wnt signaling pathway on A172 cells

    胶质瘤占原发性脑肿瘤的80%,由于有空间占位效应,使患者的颅内压升高,可能导致患者呕吐、视力丧失或出现癫痫症状[6]。同时,胶质瘤具有较强的侵袭性,手术很难将病灶完全切除[7]。因此,越来越多的研究者开始研究靶向治疗,以期通过寻找有效的生物标志物为胶质瘤提供新的治疗方案。

    miRNA在基因表达中具有重要的调控作用,据估计,约有三分之一的蛋白表达受miRNA的调控[8-9]。miR-149-5p被证实在多种肿瘤细胞中作为抑癌因子抑制肿瘤的进程。Li Q等[10]证明,在胃癌组织和细胞系中miR-149-5p低表达,过表达miR-149-5p显著抑制胃癌细胞的增殖和转移并诱导细胞凋亡。在乳腺癌细胞中,circ-0072995通过靶向下调miR-149-5p可促进乳腺癌细胞的恶性表型和无氧糖酵解[11]。miR-149-5p靶向下调RGS17,抑制前列腺癌细胞的活力、增殖和迁移[12]。在本研究中,笔者发现miR-149-5p在胶质瘤组织和细胞系中表达降低,过表达miR-149-5p显著抑制胶质瘤A172细胞的增殖、迁移和侵袭,促进细胞G1期的比例并诱导细胞凋亡。而敲降miR-149-5p可促进A172细胞的增殖和转移,抑制G1期细胞比例以及细胞凋亡率。此外,miR-149-5p也被报道参与炎症及代谢类疾病的调控[13-15]。例如:miR-149-5p可抑制骨关节炎和类风湿性关节炎中促炎细胞因子IL-1β、IL-6和TNF-α的水平[15]。黄芪多糖通过上调miR-149-5p的表达,改善高糖和棕榈酸诱导的小鼠胰腺β细胞的增殖和胰岛素的分泌[13]。过表达miR-149-5p显著聚集尿酸诱导的干细胞中甘油三酯的积累[16]

    MutS同源物5(MutS Homolog 5,MSH5)是MutS蛋白家族的成员,与MSH4形成异二聚体复合物,参与DNA配错修复和减数分裂重组,在DNA双链断裂的同源重组修复过程中发挥重要作用[17]。研究发现,MSH4和MSH5中的遗传变异是男性不育的相关原因[18]。MSH5突变可损害DNA同源重组修复,可能导致非综合性原发性卵巢功能不全[19]。敲低lncRNA HCP5抑制YB1与MSH启动子在的结合,抑制MSH5的转录激活,进而抑制DNA双链断裂的修复过程,促进卵巢颗粒细胞的凋亡[20]。本研究中,笔者发现MSH5是miR-149-5p的靶基因,MSH5在胶质瘤组织和细胞中高表达,敲降miR-149-5p靶向上调MSH5促进A172细胞恶性表型。

    糖原合成酶激酶3-β(glycogen Synthase Kinase 3-β,GSK3β)是GSK3的两种异构体之一,可通过介导Wnt/β-catenin信号通路参与调节糖原合成、蛋白质合成、细胞增殖、细胞分化以及免疫功能和炎症等过程[21-23]。本研究中,笔者证明,过表达MSH5通过抑制GSK3β,促进β-catenin和AXIN2表达,从而促进胶质瘤细胞的增殖、迁移和侵袭,抑制细胞凋亡。

    综上所述,本研究发现miR-149-5p在胶质瘤组织和细胞系中低表达,敲降miR-149-5p通过靶向上调MSH5,抑制GSK3β,促进β-catenin和AXIN2通路蛋白表达,进而促进胶质瘤细胞的生长和转移,并抑制细胞凋亡。

  • 图  1  miR-149-5p在胶质瘤组织和细胞中的表达

    A:RT-qPCR检测胶质瘤组织中miR-149-5p的表达,与Para-cancer组相比,****P < 0.0001;B:RT-qPCR检测miR-149-5p在人正常星形胶质细胞阿和人胶质瘤细胞中的表达,与HA1800组相比,**P < 0.01,****P < 0.0001。

    Figure  1.  miR-149-5p was downregulated in glioma tissues and cells

    图  2  miR-149-5p对A172细胞恶性生物学行为的影响

    A:RT-qPCR检测miR-149-5p的表达;B:CCK-8检测细胞活力;C和F:EDU检测细胞增殖;D和G:Transwell检测细胞迁移能力;E和H:Transwell检测细胞侵袭能力;与NC mimic组相比,*P < 0.05,**P < 0.01,****P < 0.000 1;与NC inhibitor组相比,#P < 0.05。

    Figure  2.  Effect of miR-149-5p on malignant biological behavior of A172 cells

    图  3  miR-149-5p对A172细胞恶性生物学行为的影响

    A和B:流式细胞术检测细胞周期;C和D:流式细胞术检测细胞凋亡率;与NC mimic组相比,**P < 0.01;与NC inhibitor组相比,#P < 0.05。

    Figure  3.  Effect of miR-149-5p on malignant biological behavior of A172 cells

    图  4  miR-149-5p靶向MSH5

    A:starbase数据库预测miR-149-5p和MSH5的结合序列;B:双荧光素酶报告基因实验验证miR-149-5p和MSH5的靶向关系,与NC mimic组相比,*P < 0.05;C:GEPIA数据库预测MSH5在胶质瘤组织中的表达,与Para-cancer组相比,**P < 0.01;D:Western blot检测MSH5的蛋白表达,与NC组相比,**P < 0.01。

    Figure  4.  miR-149-5p targeted MSH5

    图  5  miR-149-5p靶向MSH5调控A172细胞的恶性生物学行为

    A和B:Western blot检测MSH5蛋白表达;C:CCK-8检测细胞活力;D和E:EDU实验检测细胞增殖;F和G:Tranwell实验检测细胞迁移能力;H和I:Tranwell实验检测细胞侵袭能力;与sh-NC组相比,*P < 0.05,**P < 0.01,***P < 0.001;与sh-MSH5组相比,#P < 0.05。

    Figure  5.  miR-149-5p targeted MSH5 to regulate the malignant biological behavior of A172 cells

    图  6  miR-149-5p靶向MSH5调控A172细胞的恶性生物学行为

    A和B:流式细胞术检测细胞周期;C和D:流式细胞术检测细胞凋亡率;与sh-NC组相比,**P < 0.01,***P < 0.001;与sh-MSH5组相比,#P < 0.05。

    Figure  6.  miR-149-5p targeted MSH5 to regulate the malignant biological behavior of A172 cells

    图  7  MSH5调控Wnt信号通路对A172细胞的作用

    A:Western blot检测MSH5,B:GSK3β,C:β-catenin,D:和AXIN2,E:的蛋白表达;F:CCK-8检测细胞活力;G和H:EDU检测细胞增殖;I和J:Transwell检测细胞迁移能力;K和L:Transwell检测细胞迁移能力;与pcDNA-NC组相比,*P < 0.05,**P < 0.01,***P < 0.001;与pcDNA-MSH5组相比,#P < 0.05,##P < 0.01,###P < 0.001。

    Figure  7.  Effect of MSH5 regulating Wnt signaling pathway on A172 cells

    图  8  MSH5调控Wnt信号通路对A172细胞的作用

    A和B:流式细胞术检测细胞周期;C和D:流式细胞术检测细胞凋亡率;与pcDNA-NC组相比,*P < 0.05;与pcDNA-MSH5组相比,#P < 0.05。

    Figure  8.  Effect of MSH5 regulating Wnt signaling pathway on A172 cells

    表  1  引物序列

    Table  1.   Primer sequences

    目的基因引物序列 (F:正向序列,R:反向序列,5′-3′)
    miR-149-5p F: CTCTGGCTCCGTGTCTTCAC
    R: CTGCCCCAGCACAGCC
    U6 F: TGCGGGTGCTCGCTTCGGCAGC
    R: CCAGTGCAGGGTCCGAGGT
    下载: 导出CSV
  • [1] Diaz M,Jo J,Smolkin M,et al. Risk of venous thromboembolism in grade II-IV gliomas as a function of molecular subtype[J]. Neurology,2021,96(7):e1063-e1069. doi: 10.1212/WNL.0000000000011414
    [2] Arghiani N,Matin M M. miR-21:A key small molecule with great effects in combination cancer therapy[J]. Nucleic Acid Ther,2021,31(4):271-283. doi: 10.1089/nat.2020.0914
    [3] Favero A,Segatto I,Perin T,et al. The many facets of miR-223 in cancer: Oncosuppressor,oncogenic driver,therapeutic target,and biomarker of response[J]. Wiley Interdiscip Rev RNA,2021,12(6):e1659.
    [4] Bian S. miR-4319 inhibited the development of thyroid cancer by modulating FUS-stabilized SMURF1[J]. J Cell Biochem,2020,121(1):174-182. doi: 10.1002/jcb.29026
    [5] Xu B,Luo X,Ning X,et al. miR-149 rs2292832 C allele enhances the cytotoxic effect of temozolomide against glioma cells[J]. Neuroreport,2020,31(6):498-506. doi: 10.1097/WNR.0000000000001440
    [6] Wang Y,Du J. miR-378a-3p regulates glioma cell chemosensitivity to cisplatin through IGF1R[J]. Open Life Sci,2021,16(1):1175-1181. doi: 10.1515/biol-2021-0117
    [7] Ostrom Q T,Bauchet L,Davis F G,et al. The epidemiology of glioma in adults: a "state of the science" review[J]. Neuro Oncol,2014,16(7):896-913. doi: 10.1093/neuonc/nou087
    [8] Mishra S,Sarkar S,Pandey A,et al. Crosstalk between miRNA and protein expression profiles in nitrate-exposed brain cells[J]. Mol Neurobiol,2023,60(7):3855-3872. doi: 10.1007/s12035-023-03316-9
    [9] Csordás I B,Rutten E A,Szatmári T,et al. The miRNA content of bone marrow-derived extracellular vesicles contributes to protein pathway alterations involved in ionising radiation-induced bystander responses[J]. Int J Mol Sci,2023,24(10):8607. doi: 10.3390/ijms24108607
    [10] Li Q,Zhang D,Wang H,et al. SLCO4A1-AS1 facilitates the malignant phenotype via miR-149-5p/STAT3 axis in gastric cancer cells[J]. J Oncol,2021,2021:1698771.
    [11] Qi C,Qin X,Zhou Z,et al. Circ_0072995 promotes cell carcinogenesis via up-regulating miR-149-5p-Mediated SHMT2 in breast cancer[J]. Cancer Manag Res,2020,12:11169-11181. doi: 10.2147/CMAR.S272274
    [12] Ma J,Wei H,Li X,et al. Hsa-miR-149-5p suppresses prostate carcinoma malignancy by suppressing RGS17[J]. Cancer Manag Res,2021,13:2773-2783. doi: 10.2147/CMAR.S281968
    [13] Deng S,Yang L,Ma K,et al. Astragalus polysaccharide improve the proliferation and insulin secretion of mouse pancreatic β cells induced by high glucose and palmitic acid partially through promoting miR-136-5p and miR-149-5p expression[J]. Bioengineered,2021,12(2):9872-9884. doi: 10.1080/21655979.2021.1996314
    [14] Guo H,Khan R,Abbas Raza S H,et al. RNA-Seq reveals function of bta-mir-149-5p in the regulation of bovine adipocyte differentiation[J]. Animals (Basel),2021,11(5):1207.
    [15] Law Y Y,Lee W F,Hsu C J,et al. miR-let-7c-5p and miR-149-5p inhibit proinflammatory cytokine production in osteoarthritis and rheumatoid arthritis synovial fibroblasts[J]. Aging (Albany NY),2021,13(13):17227-17236. doi: 10.18632/aging.203201
    [16] Chen S,Chen D,Yang H,et al. Uric acid induced hepatocytes lipid accumulation through regulation of miR-149-5p/FGF21 axis[J]. BMC Gastroenterol,2020,20(1):39. doi: 10.1186/s12876-020-01189-z
    [17] Shinohara M,Shinohara A. The Msh5 complex shows homeostatic localization in response to DNA double-strand breaks in yeast meiosis[J]. Front Cell Dev Biol,2023,11:1170689. doi: 10.3389/fcell.2023.1170689
    [18] Wyrwoll M J,Van Walree E S,Hamer G,et al. Bi-allelic variants in DNA mismatch repair proteins MutS Homolog MSH4 and MSH5 cause infertility in both sexes[J]. Hum Reprod,2021,37(1):178-189. doi: 10.1093/humrep/deab230
    [19] Guo T,Zhao S,Zhao S,et al. Mutations in MSH5 in primary ovarian insufficiency[J]. Hum Mol Genet,2017,26(8):1452-1457. doi: 10.1093/hmg/ddx044
    [20] Wang X,Zhang X,Dang Y,et al. Long noncoding RNA HCP5 participates in premature ovarian insufficiency by transcriptionally regulating MSH5 and DNA damage repair via YB1[J]. Nucleic Acids Res,2020,48(8):4480-4491. doi: 10.1093/nar/gkaa127
    [21] Tsai H P,Lin C J,Lieu A S,et al. Galectin-3 mediates tumor progression in astrocytoma by regulating glycogen synthase kinase-3β activity[J]. Curr Issues Mol Biol,2023,45(4):3591-3602. doi: 10.3390/cimb45040234
    [22] Yan N,Xie F,Tang L Q,et al. Synthesis and biological evaluation of thieno[3,2-c]pyrazol-3-amine derivatives as potent glycogen synthase kinase 3β inhibitors for Alzheimer's disease[J]. Bioorg Chem,2023,138:106663. doi: 10.1016/j.bioorg.2023.106663
    [23] Zhang H,Ni M,Wang H,et al. Gsk3β regulates the resolution of liver ischemia/reperfusion injury via MerTK[J]. JCI Insight,2023,8(1):e151819. doi: 10.1172/jci.insight.151819
  • [1] 周锟, 刘亚丽, 李自良, 钱丽萍, 冉丽权, 任娅岚.  miR-34a对人牙周膜干细胞增殖和成骨分化的影响, 昆明医科大学学报.
    [2] 姜右川, 余妍, 赵国, 李世存, 丁鹏.  过表达三结构域蛋白48调控p-ERK1/2抑制胶质瘤生长的作用机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240505
    [3] 郭小兵, 李晓文, 李恒希, 曹艳, 李坪.  miR-212-3p靶向调控NAP1L1抑制胶质瘤细胞增殖、迁移和上皮-间充质转化, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241104
    [4] 吴华杰, 屠德桢, 李磊, 乔涵, 李国萍.  白藜芦醇对鼻咽癌转移能力的影响及其分子机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230220
    [5] 刘邦卿, 李剑锋, 刘晓辉, 张劲男, 梁金屏.  miR-196b靶向ERG促进肺腺癌的增殖和迁移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231023
    [6] 蔡冰, 张伟, 刘静, 刘屹.  miR-218-5p通过调控LAYN抑制结肠癌发展的机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231206
    [7] 张梁, 王保全, 雷喜锋, 王旭, 柯阳, 张玮.  miR-29c-3p/IGF1分子轴对肝星状细胞活化,增殖和凋亡的作用机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230926
    [8] 张晔琳, 马丽娅, 彭旭晖, 杨禾丰, 佘睿.  hsa-let-7a-5p调控牙周膜干细胞增殖及凋亡, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231028
    [9] 张明, 于成龙, 曹锦鹏.  ZNF384调控GCLM对肝细胞癌转移的机制研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231108
    [10] 赵斌, 段元鹏, 张国颖, 毕城伟, 杨李波, 施致裕, 杨勇, 张建朋, 高婷.  CircRNA EZH2通过调控miR-30c-5p促进前列腺癌细胞增殖和迁移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220731
    [11] 张玮, 王保全, 雷喜锋, 王旭, 张梁.  miR-125b-5p调控HK2抑制胆囊癌细胞增殖和糖酵解, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221206
    [12] 王保全, 张伟, 田园, 雷喜锋, 王旭.  miR-142-5p通过CCND1调控胆囊癌细胞的增殖和转移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220223
    [13] 陈希, 许智星, 刘旭杰, 田锦涛, 牛小群, 蒲军.  洛哌丁胺体外对胶质瘤干细胞的杀伤作用, 昆明医科大学学报.
    [14] 冯毅, 蔡冰, 王峰, 王茂德.  MSH5抑制对恶性胶质瘤细胞表型的影响, 昆明医科大学学报.
    [15] 朱宇, 何易晓, 杨丽娟, 王芳.  钙离子稳态失调与癌症增殖转移关系的研究进展, 昆明医科大学学报.
    [16] 贾楠楠.  Gnaq对SH-SY5Y细胞增殖的作用及机制, 昆明医科大学学报.
    [17] 刘立鑫.  二甲双胍对肝癌细胞HCCLM3生物学行为的影响, 昆明医科大学学报.
    [18] 熊伟.  奥沙利铂化疗对荧光HepG2肝癌细胞裸鼠原位移植瘤侵袭转移潜能的影响, 昆明医科大学学报.
    [19] 周喆焱.  E-cadherin对非小细胞肺癌的转移和靶向治疗的影响, 昆明医科大学学报.
    [20] 刘佳鑫.  SDF-1/CXCR4在恶性胶质瘤细胞体外增殖、迁移及侵袭中的作用, 昆明医科大学学报.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1532
  • HTML全文浏览量:  923
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-13
  • 网络出版日期:  2023-09-04
  • 刊出日期:  2023-08-30

目录

/

返回文章
返回