Effect of Shen-ling-bai-zhu-san on Methamphetamine-Induced Gut Microbiota Change in Mice
-
摘要:
目的 探究参苓白术散(SLBZS)干预甲基苯丙胺(METH)诱导小鼠肠道微生物种群的作用机制。 方法 SPF级C57BL/6J小鼠,分为生理盐水组、METH组、SLBZS+METH组,后两组使用METH注射3周,以及METH注射后参苓白术散灌胃给药1周,随后测定小鼠外周血免疫生化指标,收集小肠粪便样本开展16S rRNA测序。 结果 相比METH组,SLBZS+METH组的小鼠提高白细胞、淋巴细胞百分比及数量(P < 0.05),降低中性粒细胞的数量(P < 0.05),说明SLBZS增强METH组小鼠的免疫力,降低了炎症反应。16S rRNA测序结果显示METH组小鼠肠道菌群操作分类单元(OTU)的数量降低,METH处理的小鼠出现奇异变形杆菌、芽孢杆菌、乙酸钙不动杆菌等致病菌。SLBZS给药METH处理的小鼠使其肠道菌群OTU的数量增加,并提高碳水化合物、辅因子和维生素、氨基酸的代谢、细胞活性以及适应环境功能的丰度。 结论 SLBZS能够改善METH处理小鼠免疫反应,以及肠道微生物种群组成和功能。 Abstract:Objective To explore the effect and regulatory mechanism of Shen-ling-bai-zhu-san (SLBZS), a traditional Chinese medicine, on methamphetamine (METH)-induced gut microbiota change in mice. Methods SPF C57BL/6J mice were divided into three groups: saline group, METH group, and SLBZS+METH group, the latter two groups of mice were intraperitoneal injected METH for three weeks and intragastric administration of SLBZS for one week after METH injection, the immunological and biochemical indexes of mice peripheral blood were examined, and intestinal fecal samples of mice were collected for 16S rRNA sequencing, and then subjected to bioinformatic analysis. Results Compared to METH group, the percentage and number of white blood cells and lymphocytes were significantly increased ( P < 0.05), while the number of neutrophils decreased in SLBZS+METH group (P < 0.05), which indicated that SLBZS can enhance immunity and reduce the inflammatory response of METH-treated mice. The data of 16S rRNA sequencing indicated that the number of Operational Taxonomic Unit (OTU) of gut microbiota decreased in the METH group, which was characterized by the presence of pathogenic bacteria including Proteus mirabilis, Bittarella_massiliensis, Acinetobacter calcoacetate, etc. SLBZS administration increased the OTU number of gut microbiota, functional abundance of metabolism related to carbohydrates, cofactors, vitamins, amino acids, cell activity, and environmental adaptation. Conclusion SLBZS improves the immune response and the composition and function of gut microbiota in METH-treated mice. -
Key words:
- Shen-ling-bai-zhu-san /
- Methamphetamine /
- Gut microbiota
-
甲基苯丙胺(methamphetamine,METH)俗称冰毒,是一种人工化学合成的新型毒品,METH在中国滥用的人数则最多,占中国总体吸毒人员数量的55.2%,METH滥用使吸食者产生兴奋和致幻的症状[1-2],并对吸食者的神经系统、心血管系统、消化系统造成严重损伤[3],因此,METH滥用成为了医疗界和社会需迫切解决的问题[4]。
胃肠道疾病是METH滥用吸食者显著的临床共发病之一,人体的肠道微生物种群在协助肠道消化和维持免疫平衡中起到关键的调节作用。METH滥用破坏了吸食者的肠屏障系统,增加肠道通透性以及肠道炎症[3, 5-6],使得吸食者的肠内大分子、微生物种群以及产物可穿过肠屏障结构,在循环系统介导下从肠道进入大脑,引起外周和中枢神经系统炎症反应,促进个体出现抑郁、焦虑、认知功能障碍等精神症状[7]。
参苓白术散(Shen-ling-bai-zhu-san,SLBZS)是治疗胃肠道疾病一种中成复方药物,主要包括莲子、薏苡仁、砂仁、桔梗、白扁豆、茯苓、甘草、山药、党参和大枣等成分。其在减轻患者的炎症反应,治疗结肠道疾病具有明显效果,并能够改善患者的肠道菌群失衡[8]。本文通过研究SLBZS干预METH处理小鼠对小鼠为外周血免疫生化指标以及肠道微生物种群的影响,探讨SLBZS对小鼠肠道疾病的改善机制,以期为广大METH滥用吸食者治疗胃肠道疾病提供借鉴。
1. 材料与方法
1.1 实验材料
8周龄SPF级C57BL/6J小鼠(雄性),体重22-25 g;参苓白术散(同仁堂);甲基苯丙胺(METH);SPF级实验鼠维持饲料;SPF级实验用玉米芯垫料;生理盐水;琼脂糖;EZNA®粪便DNA试剂盒;建库试剂盒;测序试剂盒。
1.2 实验方法
1.2.1 小鼠分组及模型构建
将小鼠分为3个组,分别为生理盐水组(saline)、甲基苯丙胺组(METH)以及SLBZS给药甲基苯丙胺组(SLBZS+METH),用于外周血免疫生化指标分析实验的小鼠模型每组5只;用于16S rRNA测序以及数据分析的小鼠模型每组6只。saline组接受200 μL的生理盐水腹腔注射,METH以及SLBZS+METH组小鼠接受200 μL的METH腹腔注射,从2.5 mg/(kg·只)小鼠的剂量起始,1~7 d每天注射1次,8~21 d每天注射2次,每次间隔8 h,每1次注射相比前1次递增0.1 mg/kg的剂量,腹腔注射持续到21天。
1.2.2 SLBZS给药及样本收集
SLBZS在成人中的常用剂量为6~9 g/d(标准体重按70 kg来界定),根据《不同动物间药物剂量交换算法》(人鼠之间药物剂量交换算法为9.1),小鼠体内SLBZS低剂量为0.86 g/kg,根据之前的研究报道,高剂量(最低剂量的4倍)的SLBZS对小鼠有更好的治疗效果[9],因此本研究SLBZS针对METH小鼠治疗浓度为3.44 g/kg。在METH腹腔注射小鼠21 d后,将将SLBZS在使用前将其溶解在无菌蒸馏水中,随后对METH+SLBZS组小鼠灌胃,每天1次,每次体积为200 μL,连续灌胃7 d,随后将小鼠从眼眶采血0.5 mL至装有EDTA-2K的离心管中,迅速颠倒混匀后使用全自动血常规检测仪检测小鼠外周血免疫和生化指标;将采血后的小鼠采取颈椎脱臼处死,收集小鼠的小肠部位的粪便样本,以备后续实验。
1.2.3 小鼠粪便DNA的提取及16S rRNA测序
将小鼠粪便样本使用Omega公司的EZNA®粪便DNA试剂盒提取DNA,使用特定引物扩增16S rRNA Bac 16S基因:V3~V4片段,扩增得到的PCR产物用1%的琼脂糖凝胶电泳检测,根据GeneTools分析软件v4.03.05.0(SynGene)以等密度比例混合,然后使用EZNA凝胶提取试剂盒纯化PCR混合产物。使用NEBNext® Ultra™ DNA Library Prep Kit for Illumina®生成测序文库,并添加索引代码。使用赛默飞Qubit@2.0荧光计和Agilent Bioanalyzer 2100系统评估文库质量。最后,该文库在Illumina Hiseq 2500平台上测序,产生250 bp的双端读数,根据测序文库分析肠道菌群信息。
1.3 统计学处理
对于小鼠外周血免疫和生化指标的结果,组与组之间的比较分析通过Graphpad Prism 8.4.2使用one-way ANOVA分析完成,P < 0.05为差异有统计学意义,P < 0.01为差异有显著统计学意义。小鼠肠道微生物16S rRNA测序结果通过有效数据的分类操作单元(Operational Taxonomic Unit,OTU)聚类分析,再对所获得的OTU进行Alpha多样性的计算,结合秩和检验,以P < 0.05为阈值得出代表序列的物种注释、物种信息和基于物种的丰度分布情况。
2. 结果
2.1 小鼠外周血免疫生化指标
分析小鼠的外周血免疫生化指标(表1),发现METH组白细胞数量为3.31(2.42~5.29)×109/L,显著低于saline组6.22(5.73~8.57)和SLBZS+METH组6.82 (4.76~7.50),差异有统计学意义(P < 0.01和P < 0.05)、中性粒细胞的数量在METH组为0.67 (0.44~0.92),高于saline组0.25(0.16~0.32),P < 0.05以及SLBZS+METH组0.40(0.10~0.64),P < 0.01。METH组淋巴细胞百分比89.60(85.00~90.90)以及淋巴细胞数量3.01(2.22~4.88),比saline组的淋巴细胞百分比94.50(92.90~94.80)以及淋巴细胞数量5.86(5.24~8.11)显著降低(P < 0.05),该结果显示相比METH组,SLBZS+METH组小鼠提高了白细胞、淋巴细胞的数量及百分比,降低了中性粒细胞的数量,其它诸如血细胞、血红蛋白以及血小板相关生化指标在3组小鼠之间无明显差异(P > 0.05),仅大型血小板比率在METH组5.10(4.00~6.40)高于saline组4.70(3.90~5.80),P < 0.05以上结果说明SLBZS增强METH处理后小鼠的免疫力,降低小鼠体内的炎症反应。
表 1 小鼠外周血免疫和生化指标的变化(中位数(范围),n = 5)Table 1. The change of immune and biochemical indices in three mice groups (Medians with range,n = 5)检测指标 saline组 METH组 SLBZS + METH组 P
(saline vs
METH)P
(saline vs
SLBZS+
METH)P
(METH vs
SLBZS+
METH)白细胞 (×109/L) 6.22 (5.73~8.57) 3.31 (2.42~5.29) 6.82 (4.76~7.50) 0.004** 0.728 0.015* 中性粒细胞 (%) 5.50 (5.20~7.10) 10.30 (8.10~15.00) 9.30 (2.10~15.10) 0.024 0.467 0.340 中性粒细胞 (×109/L) 0.25 (0.16~0.32) 0.67 (0.44~0.92) 0.40 (0.10~0.64) 0.021* 0.380 0.008** 淋巴细胞 (%) 94.50 (92.90~94.80) 89.60 (85.00~90.90) 90.70 (84.60~97.50) 0.012* 0.457 0.546 淋巴细胞 (×109/L) 5.86 (5.24~8.11) 3.01 (2.22~4.88) 4.77 (3.32~6.80) 0.020* 0.310 0.161 红细胞 (×1012/L) 12.34 (11.21~12.67) 11.85 (11.78~12.10) 12.13 (11.70~13.07) 0.580 0.783 0.332 血红蛋白浓度 (g/L) 177 (173~188) 175 (169~177) 180 (170~187) 0.368 0.998 0.515 红细胞比容 (L/L) 0.69 (0.62~0.73) 0.67 (0.63~0.68) 0.66 (0.65~0.70) 0.571 0.876 0.625 红细胞压积 (Fl) 55.70 (55.20~57.50) 56.00 (53.20~56.50) 64.60 (53.60~55.70) 0.656 0.117 0.317 平均血红蛋白量 (pg) 14.40 (14.30~14.80) 14.50 (14.30~14.80) 14.50 (14.30~14.80) 0.987 0.615 0.989 红细胞血红蛋白浓度 (g/L) 259 (253~263) 258 (257~268) 264 (261~272) 0.887 0.062 0.445 红细胞体积分布宽度 (CV %) 21 (20~21) 21 (21~22) 21 (21~23) 0.334 0.178 0.382 红细胞体积分布宽度 (SD %) 25 (23~27) 27 (25~29) 25 (24~27) 0.264 0.966 0.303 血小板 (×109/L) 1217 (1073-1640) 1270 (1126-1412) 1222 (950-1386) 0.996 0.602 0.589 降钙素原 (%) 0.90 (0.62~1.15) 0.85 (0.78~1.00) 0.76 (0.62~0.82) 0.998 0.331 0.175 血小板平均容积 (fL) 6.70 (6.70~7.50) 6.90 (6.70~7.10) 6.50 (5.50~6.80) 0.959 0.243 0.147 血小板体积分布宽度 (fL) 7.20 (7.10~8.60) 7.30 (7.20~7.70) 7.10 (6.80~7.10) 0.769 0.208 0.143 大型血小板比率 (%) 4.70 (3.90~5.80) 5.10 (4.00~6.40) 3.80 (3.10~4.40) 0.911 0.010* 0.140 *P < 0.05,**P < 0.01。 2.2 小鼠肠道微生物种群组成
基于小鼠16S rRNA测序数据,通过OTU韦恩图和柱状图分析saline、METH以及SLBZS+METH组OTU组成的相似性以及重叠性(图1A 和1B),结果显示saline、METH及SLBZS+METH组OTU的总数量分别为7347、7021、7353,各组独有的OTU的数量分别为6128、5908、6058,METH组OTU总数和独有OTU数量相比SLBZS+METH组降低4.44%和2.48%,提示METH处理后降低小鼠肠道微生物种群的丰度,通过SLBZS给药后可一定程度地恢复小鼠肠道微生物种群数量。
对物种信息的注释(图1 C和表2),发现saline、SLBZS+METH组共有微生物物种有7种,包括葡萄球菌(Staphylococcus_sp)、乳杆菌(Lactobacillus_sp_C4I9)等;对于METH组独有微生物物种除了乳酸杆菌以外,也包括了致病菌如奇异变形杆菌(Proteus mirabilis)、芽孢杆菌(Bittarella_massiliensis)、乙酸钙不动杆菌(Acinetobacter calcoaceticus)。METH组、SLBZS+METH组共有微生物物种有14种,包括促进消化的双歧杆菌(Bifidobacterium_sp_MC_8)、豚双歧杆菌(Bifidobacterium_choerinum)、嗜酸乳杆菌(Lactobacillus_acidophilus),抵御病原体感染分节丝状菌(Candidatus_Arthromitus_sp_SFB-mouse-Japan)等。
表 2 小鼠共有和独有的肠道微生物物种的注释Table 2. The annotation of common and exclusive species of gut microflora in three mice groups范围 物种(Species) saline、SLBZS + METH共有 葡萄球菌(Staphylococcus_sp),耐盐咸海鲜球菌(Jeotgalicoccus_sp_M3T9B12),乳杆菌(Lactobacillus_sp_C4I9),消化乳杆菌(Lactobacillus_alimentarius),多形拟杆菌(Bacteroides_thetaiotaomicron),普通拟杆菌(Bacteroides_vulgatus),瘤胃梭菌(Ruminiclostridium_sp_KB18) METH仅有 奇异变形杆菌(Proteus mirabilis),另枝菌(Alistipes_indistinctus_YIT_12060),乙酸钙不动杆菌(Acinetobacter calcoaceticus),芽孢杆菌(Bittarella_massiliensis),沙克乳酸杆菌(Lactobacillus sakei),动物双叉乳酸杆菌(Bifidobacterium animalis),詹氏乳杆菌(Lactobacillus jensenii) METH、SLBZS + METH共有 谷氨酸棒状杆菌(Corynebacterium_glutamicum),豚双歧杆菌(Bifidobacterium_choerinum),嗜酸乳杆菌(Lactobacillus_acidophilus),乳酪棒杆菌(Corynebacterium_casei),放线菌(Enteractinococcus_viverrae),乳酸乳球菌(Lactococcus_lactis),黄色瘤胃球菌(Ruminococcus_flavefaciens),表皮短杆菌(Brevibacterium_epidermidis),双岐杆菌(Bifidobacterium_sp_MC_8),另枝菌(Alistipes_obesi),耳蜗形梭菌(Clostridium_cocleatum),同型产乙酸菌(Blautia_coccoides),分节丝状菌(Candidatus_Arthromitus_sp_SFB-mouse-Japan),沙氏别样杆菌(Alistipes_shahii_WAL_8301) 2.3 小鼠肠道微生物的多样性
分析3组小鼠肠道微生物种群的α多样性(表3),显示METH组的sobs、Chao1和ACE指数相比saline和SLBZS+METH组略有降低,但数据差别无统计学意义(P > 0.05);simpson、shannon指数在3组小鼠没有明显的差异,该结果提示METH组小鼠微生物种群的多样性略有降低。
表 3 小鼠肠道微生物的α多样性($\bar x \pm s $ )Table 3. The alpha diversity of intestinal microflora in mice ($\bar x \pm s $ )参数 saline METH SLBZS ± METH 多样性指数(sobs) 2863.17 ± 128.79 2776.50 ± 211.26 2830.67 ± 94.37 香农指数(shannon) 9.13 ± 0.20 8.92 ± 0.32 8.96 ± 0.11 辛普森指数(simpson) 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 Chao1指数 2863.17 ± 128.79 2776.50 ± 211.26 2830.67 ± 94.37 基于丰度的覆盖估计值(ACE) 2863.17 ± 128.79 2776.50 ± 211.26 2830.67 ± 94.37 覆盖率(coverage) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 2.4 小鼠肠道微生物的功能
基于16S rRNA测序序列信息,使用PICRUSt对小鼠肠道微生物群落功能进行KEGG Pathway的预测,由图2(A-D)可知,METH组小鼠主要降低了碳水化合物代谢(Carbohydrate metabolism)、辅因子和维生素的代谢(Metabolism of cofactors and vitamins)、氨基酸代谢(Amino acid metabolism)、细胞运动(Cell motility)、细胞生长和死亡(Cell growth and death)、环境适应(Environmental adaptation)、感染性疾病(Infectious diseases)等通路的丰度;通过SLBZS给药METH处理后小鼠后提高以上通路的丰度,其比saline组的小鼠略高。
3. 讨论
METH滥用导致了吸食者肠道屏障出现破坏,增加肠道通透性以及肠道炎症,从而引起肠道疾病的发生[3, 10-12],SLBZS作为一种中成复方药物,在增强体质、提高免疫力、调节能量代谢和胃肠蠕动方面具有重要功能[8-9]。本研究的小鼠血免疫生化指标说明SLBZS改善METH引发的小鼠免疫力低下,并降低炎症反应,有报道称SLBZS给药肺炎链球菌感染的小鼠降低了肺组织中性粒细胞的数量,抑制多种炎症因子的表达[9, 13],阐明了SLBZS在控制炎症反应具有显著的作用。
METH滥用可引起肠道微生物失调,降低益生菌的丰度,并提高致病微生物种群的丰度[14-15]。我们的结果提示METH处理后降低了小鼠肠道微生物OTU的数量,METH组小鼠单独出现几种致病菌及条件致病菌如Proteus mirabilis、Bittarella_massiliensis、Acinetobacter calcoaceticus。研究显示它们与肠道损伤具有紧密的联系,如Proteus mirabilis的出现则与细菌感染后肠上皮细胞屏障功能受损有关[16];Bittarella则与结肠炎、结直肠癌相关疾病中的致病,以及宿主抑郁症的精神体征有关[17]。Acinetobacter具有较低的毒力,在溃疡性结肠炎、炎症性肠病状态下升高[18],而SLBZS给药后METH处理小鼠肠道中上面描述的致病菌及条件致病菌消失,出现Bifidobacterium_sp_MC_8、Bifidobacterium_choerinum、Corynebacterium_casei等益生菌,对调节人体菌群平衡、降低肠黏膜损伤、抑制有害细菌具有良好的作用[19-20]。尽管我们结果显示METH组的小鼠降低了微生物种群的多样性,但与saline组、SLBZS+METH组相比没有明显的差异。此外,我们小鼠肠道微生物进行功能分析,显示METH处理后降低碳水化合物、辅因子和维生素、氨基酸相关的代谢功能,这些物质为维持微生物正常的生长繁殖所需的营养元素。有研究显示METH依赖扰乱了人体正常的代谢稳态,影响了丙氨酸、天冬氨酸、谷氨酸代谢途径,并降低了血清谷氨酸的水平[21]。SLBZS可通过结肠发酵来改变高乳糖引起的腹泻[22],并能使微生物组的功能失调正常化,上调能量代谢的途径,减少氧化应激和细菌发病机制[23]。
综上所述,本研究证实了SLBZS给药METH处理后的小鼠能够增强小鼠免疫力,降低炎症反应,减少小鼠的肠道微生物致病菌出现以及改善肠道基础微生物代谢水平,为广大毒品成瘾患者的肠道疾病治疗提供了一种潜在药物,对改善患者的营养代谢与健康水平具有重要意义。
-
表 1 小鼠外周血免疫和生化指标的变化(中位数(范围),n = 5)
Table 1. The change of immune and biochemical indices in three mice groups (Medians with range,n = 5)
检测指标 saline组 METH组 SLBZS + METH组 P
(saline vs
METH)P
(saline vs
SLBZS+
METH)P
(METH vs
SLBZS+
METH)白细胞 (×109/L) 6.22 (5.73~8.57) 3.31 (2.42~5.29) 6.82 (4.76~7.50) 0.004** 0.728 0.015* 中性粒细胞 (%) 5.50 (5.20~7.10) 10.30 (8.10~15.00) 9.30 (2.10~15.10) 0.024 0.467 0.340 中性粒细胞 (×109/L) 0.25 (0.16~0.32) 0.67 (0.44~0.92) 0.40 (0.10~0.64) 0.021* 0.380 0.008** 淋巴细胞 (%) 94.50 (92.90~94.80) 89.60 (85.00~90.90) 90.70 (84.60~97.50) 0.012* 0.457 0.546 淋巴细胞 (×109/L) 5.86 (5.24~8.11) 3.01 (2.22~4.88) 4.77 (3.32~6.80) 0.020* 0.310 0.161 红细胞 (×1012/L) 12.34 (11.21~12.67) 11.85 (11.78~12.10) 12.13 (11.70~13.07) 0.580 0.783 0.332 血红蛋白浓度 (g/L) 177 (173~188) 175 (169~177) 180 (170~187) 0.368 0.998 0.515 红细胞比容 (L/L) 0.69 (0.62~0.73) 0.67 (0.63~0.68) 0.66 (0.65~0.70) 0.571 0.876 0.625 红细胞压积 (Fl) 55.70 (55.20~57.50) 56.00 (53.20~56.50) 64.60 (53.60~55.70) 0.656 0.117 0.317 平均血红蛋白量 (pg) 14.40 (14.30~14.80) 14.50 (14.30~14.80) 14.50 (14.30~14.80) 0.987 0.615 0.989 红细胞血红蛋白浓度 (g/L) 259 (253~263) 258 (257~268) 264 (261~272) 0.887 0.062 0.445 红细胞体积分布宽度 (CV %) 21 (20~21) 21 (21~22) 21 (21~23) 0.334 0.178 0.382 红细胞体积分布宽度 (SD %) 25 (23~27) 27 (25~29) 25 (24~27) 0.264 0.966 0.303 血小板 (×109/L) 1217 (1073-1640) 1270 (1126-1412) 1222 (950-1386) 0.996 0.602 0.589 降钙素原 (%) 0.90 (0.62~1.15) 0.85 (0.78~1.00) 0.76 (0.62~0.82) 0.998 0.331 0.175 血小板平均容积 (fL) 6.70 (6.70~7.50) 6.90 (6.70~7.10) 6.50 (5.50~6.80) 0.959 0.243 0.147 血小板体积分布宽度 (fL) 7.20 (7.10~8.60) 7.30 (7.20~7.70) 7.10 (6.80~7.10) 0.769 0.208 0.143 大型血小板比率 (%) 4.70 (3.90~5.80) 5.10 (4.00~6.40) 3.80 (3.10~4.40) 0.911 0.010* 0.140 *P < 0.05,**P < 0.01。 表 2 小鼠共有和独有的肠道微生物物种的注释
Table 2. The annotation of common and exclusive species of gut microflora in three mice groups
范围 物种(Species) saline、SLBZS + METH共有 葡萄球菌(Staphylococcus_sp),耐盐咸海鲜球菌(Jeotgalicoccus_sp_M3T9B12),乳杆菌(Lactobacillus_sp_C4I9),消化乳杆菌(Lactobacillus_alimentarius),多形拟杆菌(Bacteroides_thetaiotaomicron),普通拟杆菌(Bacteroides_vulgatus),瘤胃梭菌(Ruminiclostridium_sp_KB18) METH仅有 奇异变形杆菌(Proteus mirabilis),另枝菌(Alistipes_indistinctus_YIT_12060),乙酸钙不动杆菌(Acinetobacter calcoaceticus),芽孢杆菌(Bittarella_massiliensis),沙克乳酸杆菌(Lactobacillus sakei),动物双叉乳酸杆菌(Bifidobacterium animalis),詹氏乳杆菌(Lactobacillus jensenii) METH、SLBZS + METH共有 谷氨酸棒状杆菌(Corynebacterium_glutamicum),豚双歧杆菌(Bifidobacterium_choerinum),嗜酸乳杆菌(Lactobacillus_acidophilus),乳酪棒杆菌(Corynebacterium_casei),放线菌(Enteractinococcus_viverrae),乳酸乳球菌(Lactococcus_lactis),黄色瘤胃球菌(Ruminococcus_flavefaciens),表皮短杆菌(Brevibacterium_epidermidis),双岐杆菌(Bifidobacterium_sp_MC_8),另枝菌(Alistipes_obesi),耳蜗形梭菌(Clostridium_cocleatum),同型产乙酸菌(Blautia_coccoides),分节丝状菌(Candidatus_Arthromitus_sp_SFB-mouse-Japan),沙氏别样杆菌(Alistipes_shahii_WAL_8301) 表 3 小鼠肠道微生物的α多样性(
$\bar x \pm s $ )Table 3. The alpha diversity of intestinal microflora in mice (
$\bar x \pm s $ )参数 saline METH SLBZS ± METH 多样性指数(sobs) 2863.17 ± 128.79 2776.50 ± 211.26 2830.67 ± 94.37 香农指数(shannon) 9.13 ± 0.20 8.92 ± 0.32 8.96 ± 0.11 辛普森指数(simpson) 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 Chao1指数 2863.17 ± 128.79 2776.50 ± 211.26 2830.67 ± 94.37 基于丰度的覆盖估计值(ACE) 2863.17 ± 128.79 2776.50 ± 211.26 2830.67 ± 94.37 覆盖率(coverage) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 -
[1] Li Y,Re G F,Zhao Y,et al. Messenger RNA expression profiles and bioinformatics analysis of mouse hippocampi during exercise alleviates methamphetamine dependence via mRNA profile change in hippocampi[J]. Ann Transl Med,2022,10(18):957. doi: 10.21037/atm-22-450 [2] Li Y,Re G F,Zhao Y,et al. Long-term exercise at different intensities can reduce the inflammatory response in the brains of methamphetamine-treated mice[J]. Biochem Biophys Res Commun,2022,613:201-206. doi: 10.1016/j.bbrc.2022.05.042 [3] Persons A L,Bradaric B D,Dodiya H B,et al. Colon dysregulation in methamphetamine self-administering HIV-1 transgenic rats[J]. PLoS One,2018,13(1):e0190078. doi: 10.1371/journal.pone.0190078 [4] Pang L,Wang Y. Overview of blood-brain barrier dysfunction in methamphetamine abuse[J]. Biomed Pharmacother,2023,161:114478. doi: 10.1016/j.biopha.2023.114478 [5] Kevil C G,Goeders N E,Woolard M D,et al. Methamphetamine Use and Cardiovascular Disease[J]. Arterioscler Thromb Vasc Biol,2019,39(9):1739-1746. doi: 10.1161/ATVBAHA.119.312461 [6] Qu Q,Li S P,Dong Q,et al. Transcriptome profiling Revealed the potential mechanisms of Shen Lin Bai Zhu San n-butanol extract on DSS induced Colitis in Mice and LC-MS analysis[J]. Phytomedicine,2023,110:154645. doi: 10.1016/j.phymed.2023.154645 [7] 邓頔, 赵敏. 肠道微生物与物质依赖关系的研究进展. 上海交通大学学报(医学版) [J]. 2019;39(3): 322-326. [8] Ma Q,Ouyang Y,Meng F,et al. A review of pharmacological and clinical studies on the application of Shenling Baizhu San in treatment of Ulcerative colitis[J]. J Ethnopharmacol,2019,244:112015. [9] Feng J,Dai W,Zhang C,et al. Shen-ling-bai-zhu-san ameliorates inflammation and lung injury by increasing the gut microbiota in the murine model of Streptococcus pneumonia-induced pneumonia[J]. BMC Complement Med Ther,2020,20:159. doi: 10.1186/s12906-019-2780-5 [10] Zou X,Huang H,Yang L,et al. Methamphetamine consumption and life-threatening abdominal complications: A case report[J]. Medicine (Baltimore),2018,97(18):e0647. [11] Sun J,Chen F,Chen C,et al. Intestinal mRNA expression profile and bioinformatics analysis in a methamphetamine-induced mouse model of inflammatory bowel disease[J]. Ann Transl Med,2020,8(24):1669. doi: 10.21037/atm-20-7741 [12] Li Y,Kong D,Bi K,et al. Related effects of methamphetamine on the intestinal barrier via cytokines,and potential mechanisms by which methamphetamine may occur on the brain-gut axis[J]. Front Med (Lausanne),2022,9:783121. [13] Chao L,Li Z,Zhou J,et al. Shen-ling-bai-zhu-san improves dextran sodium sulfate-induced colitis by inhibiting caspase-1/caspase-11-mediated pyroptosis[J]. Front Pharmacol,2020,11:814. doi: 10.3389/fphar.2020.00814 [14] Ning T,Gong X,Xie L,et al. Gut microbiota analysis in rats with methamphetamine-induced conditioned place preference[J]. Front Microbiol,2017,8:1620. doi: 10.3389/fmicb.2017.01620 [15] Wang L B,Xu L L,Chen L J,et al. Methamphetamine induces intestinal injury by altering gut microbiota and promoting inflammation in mice[J]. Toxicol Appl Pharmacol,2022,443:116011. [16] Nakamoto N,Sasaki N,Aoki R,et al. Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis[J]. Nat Microbiol,2019,4(3):492-503. doi: 10.1038/s41564-018-0333-1 [17] Parker B J,Wearsch P A,Veloo A C M,et al. The genus alistipes: gut bacteria with emerging implications to inflammation,cancer,and mental health[J]. Front Immunol,2020,11:906. doi: 10.3389/fimmu.2020.00906 [18] Glover J S,Browning B D,Ticer T D,et al. Acinetobacter calcoaceticus is well adapted to withstand intestinal stressors and modulate the gut epithelium[J]. Front Physiol,2022,13:880024. doi: 10.3389/fphys.2022.880024 [19] Quaresma M,Damasceno S,Monteiro C,et al. Probiotic mixture containing lactobacillus spp and bifidobacterium spp. attenuates 5-fluorouracil-induced intestinal mucositis in mice[J]. Nutr Cancer,2020,72(8):1355-1365. doi: 10.1080/01635581.2019.1675719 [20] Luo Y,Zhu F,Wu J,et al. Effect of shenling baizhu san on intestinal flora in a rat model of ulcerative colitis with spleen deficiency and dampness[J]. Evid Based Complement Alternat Med,2022,2022:9985147. [21] Li X,Li K,Zhu Z,et al. Exercise regulates the metabolic homeostasis of methamphetamine dependence[J]. Metabolites,2022,12(7):606. [22] Xue H,Ma J,Wang Y,et al. Shen-ling-bai-zhu-san (SL) and SL derived-polysaccharide (PL) ameliorate the severity of diarrhea-induced by high lactose via modification of colonic fermentation[J]. Front Pharmacol,2022,13:883355. doi: 10.3389/fphar.2022.883355 [23] Zhang S,Lin L,Liu W,et al. Shen-ling-bai-zhu-san alleviates functional dyspepsia in rats and modulates the composition of the gut microbiota[J]. Nutr Res,2019,71:89-99. doi: 10.1016/j.nutres.2019.10.001 -