留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

miR-29c-3p/IGF1分子轴对肝星状细胞活化,增殖和凋亡的作用机制

张梁 王保全 雷喜锋 王旭 柯阳 张玮

张梁, 王保全, 雷喜锋, 王旭, 柯阳, 张玮. miR-29c-3p/IGF1分子轴对肝星状细胞活化,增殖和凋亡的作用机制[J]. 昆明医科大学学报, 2023, 44(9): 7-14. doi: 10.12259/j.issn.2095-610X.S20230926
引用本文: 张梁, 王保全, 雷喜锋, 王旭, 柯阳, 张玮. miR-29c-3p/IGF1分子轴对肝星状细胞活化,增殖和凋亡的作用机制[J]. 昆明医科大学学报, 2023, 44(9): 7-14. doi: 10.12259/j.issn.2095-610X.S20230926
Liang ZHANG, Baoquan WANG, Xifeng LEI, Xu WANG, Yang KE, Wei ZHANG. Effect of miR-29c-3p/IGF1 Molecular Axis on Activation,Proliferation and Apoptosis of Hepatic Stellate Cells[J]. Journal of Kunming Medical University, 2023, 44(9): 7-14. doi: 10.12259/j.issn.2095-610X.S20230926
Citation: Liang ZHANG, Baoquan WANG, Xifeng LEI, Xu WANG, Yang KE, Wei ZHANG. Effect of miR-29c-3p/IGF1 Molecular Axis on Activation,Proliferation and Apoptosis of Hepatic Stellate Cells[J]. Journal of Kunming Medical University, 2023, 44(9): 7-14. doi: 10.12259/j.issn.2095-610X.S20230926

miR-29c-3p/IGF1分子轴对肝星状细胞活化,增殖和凋亡的作用机制

doi: 10.12259/j.issn.2095-610X.S20230926
基金项目: 云南省科技厅-昆明医科大学应用基础研究联合专项基金资助项目(202001AY070001-147)
详细信息
    作者简介:

    张梁(1985~),男,陕西渭南人,医学学士,主治医师,主要从事胃肠肿瘤及各类肝炎的临床治疗与基础研究工作

    通讯作者:

    柯阳,E-mail:keyang1218@126.com

    张玮,E-mail:Zwww2168864@163.com

  • 中图分类号: R735.2

Effect of miR-29c-3p/IGF1 Molecular Axis on Activation,Proliferation and Apoptosis of Hepatic Stellate Cells

  • 摘要:   目的  探讨miR-29c-3p通过IGF-1对肝星状细胞(hepatic stellate cells,HSCs)活化,增殖和凋亡的影响。  方法  原代培养小鼠HSCs,并通过免疫荧光检测HSCs标志物ɑ-SMA表达。双荧光素酶报告基因实验验证miR-29c-3p和IGF-1的靶向关系。TGF-β激活HSCs,并且外源性调控miR-29c-3p和IGF-1的表达水平后,分别采用Westernbolt,CCK-8,克隆形成实验和流式细胞术检测活化HSCs中活化相关蛋白(ɑ-SMA,DDR2,FN1,ITGB1和GFAP)的表达,增殖,克隆形成数和凋亡。  结果  ɑ-SMA阳性表达表明成功分离小鼠HSCs。miR-29c-3p mimic可降低野生型IGF-1的荧光素酶活性,但是对突变型IGF-1没有影响。过表达miR-29c-3p和低表达IGF-1能减少ɑ-SMA,DDR2,FN1和ITGB1表达,增加GFAP的表达,并且降低HSCs的增殖活力和克隆形成数,上调其凋亡比例。  结论  miR-29c-3p通过靶向抑制IGF-1表达,进而抑制HSCs活化和增殖,并促进其凋亡。
  • 图  1  成功分离HSCs,并且miR-29c-3p在不同状态的HSCs中差异表达

    A:采用IF检测HSCs标志物ɑ-SMA是否表达;B:TGF-β处理HSCs前后,WB检测活化相关蛋白(ɑ-SMA,DDR2,FN1,ITGB1和GFAP)的表达;C:在静息及激活状态HSCs中,miR-29c-3p的表达差异。**P < 0.01,***P < 0.001。

    Figure  1.  Successful isolation of HSCs and differential expression of miR-29c-3p in HSCs of different status.

    图  2  miR-29c-3p抑制HSCs的活化和增殖,并促进其凋亡

    A:采用RT-qPCR检测miR-29c-3p mimic的转染效率;B:通过WB检测miR-29c-3p对活化相关蛋白(ɑ-SMA,DDR2,FN1,ITGB1和GFAP)表达的影响;C:CCK-8试剂盒检测不同组别中TGF-β激活的HSCs增殖活力;D:克隆形成实验检测miR-29c-3p对活化HSCs的克隆形成数的影响;E:流式细胞术检测活化HSCs的凋亡比例。**P < 0.01,***P < 0.001。

    Figure  2.  miR-29c-3p inhibits the activation and proliferation of HSCs and promotes their apoptosis.

    图  3  IGF-1是miR-29c-3p下游靶标mRNA

    A:Starbase数据库预测得到的miR-29c-3p与IGF-1的潜在3’ UTR结合序列(上),并且突变IGF-1的3’ UTR结合序列后,双荧光素酶报告基因实验验证miR-29c-3p与IGF-1的靶向关系(下);B:活化的HSCs中分别转染miR-29c-3p inhibitor和miR-29c-3p mimic,采用WB检测IGF-1的表达变化。**P < 0.01。

    Figure  3.  IGF-1 is a downstream target mRNA of miR-29c-3p.

    图  4  miR-29c-3p通过IGF-1抑制HSCs的活化和增殖,并促进其凋亡

    A: miR-29c-3p inhibior的转染效率;B:通过WB检测得到的sh-IGF-1的转染效率;C:不同组别HSCs中活化相关蛋白(ɑ-SMA,DDR2,FN1,ITGB1和GFAP)表达的表达变化;D:CCK-8实验检测活化的HSCs增殖活力;E:克隆形成实验得到的不同组别中活化HSCs的克隆形成数;F:流式细胞术检测活化HSCs的凋亡比例。与sh-NC组比较,aP < 0.05,aaP < 0.01,aaaP < 0.001;与sh-IGF-1组比较,bP < 0.05,bbP < 0.01,bbbP < 0.001;*P < 0.05,***P < 0.001。

    Figure  4.  miR-29c-3p inhibits the activation and proliferation of HSCs and promotes their apoptosis through IGF-1.

  • [1] Seitz H K,Bataller R,Cortez-Pinto H,et al. Alcoholic liver disease[J]. Nat Rev Dis Primers,2018,4(1):16. doi: 10.1038/s41572-018-0014-7
    [2] 曾赏,李三强,李前辉. 酒精性肝病的研究进展[J]. 世界华人消化杂志,2022,30(12):535-540.
    [3] 阿比丹·拜合提亚尔,郭津生. 肝纤维化发生时活化肝星状细胞的代谢改变[J]. 中国细胞生物学学报,2021,43(10):2054-2060.
    [4] Teschke R. Alcoholic liver disease: Current mechanistic aspects with focus on their clinical relevance[J]. Biomedicines,2019,7(3):68. doi: 10.3390/biomedicines7030068
    [5] Kordes C,Bock H H,Reichert D,et al. Hepatic stellate cells: Current state and open questions[J]. Biol Chem,2021,402(9):1021-1032. doi: 10.1515/hsz-2021-0180
    [6] Bataller R,Brenner D A. Liver fibrosis[J]. J Clin Invest,2005,115(2):209-218. doi: 10.1172/JCI24282
    [7] Bartel D P. MicroRNAs: Target recognition and regulatory functions[J]. Cell,2009,136(2):215-233. doi: 10.1016/j.cell.2009.01.002
    [8] Michlewski G,Cáceres J F. Post-transcriptional control of miRNA biogenesis[J]. Rna,2019,25(1):1-16. doi: 10.1261/rna.068692.118
    [9] Szabo G,Bala S. MicroRNAs in liver disease[J]. Nat Rev Gastroenterol Hepatol,2013,10(9):542-552. doi: 10.1038/nrgastro.2013.87
    [10] 安召宏,钟庆,徐启云,等. 肝星状细胞活化和肝细胞性肝癌发生发展中的表观遗传学研究进展[J]. 中国组织化学与细胞化学杂志,2020,29(3):282-286.
    [11] Pant K,Venugopal S K. Circulating microRNAs: Possible role as non-invasive diagnostic biomarkers in liver disease[J]. Clin Res Hepatol Gastroenterol,2017,41(4):370-377. doi: 10.1016/j.clinre.2016.11.001
    [12] Zhang Y J,Hu Y,Li J,et al. Roles of microRNAs in immunopathogenesis of non-alcoholic fatty liver disease revealed by integrated analysis of microRNA and mRNA expression profiles[J]. Hepatobiliary Pancreat Dis Int,2017,16(1):65-79. doi: 10.1016/S1499-3872(16)60098-X
    [13] Hosseini N,Shor J,Szabo G. Alcoholic hepatitis: A review[J]. Alcohol Alcohol,2019,54(4):408-416. doi: 10.1093/alcalc/agz036
    [14] Khomich O,Ivanov A V,Bartosch B. Metabolic hallmarks of hepatic stellate cells in liver fibrosis[J]. Cells,2019,9(1):24. doi: 10.3390/cells9010024
    [15] Teschke R. Alcoholic liver disease: Alcohol metabolism,cascade of molecular mechanisms,cellular targets,and clinical aspects[J]. Biomedicines,2018,6(4):106. doi: 10.3390/biomedicines6040106
    [16] Kisseleva T,Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression[J]. Nat Rev Gastroenterol Hepatol,2021,18(3):151-166. doi: 10.1038/s41575-020-00372-7
    [17] Shan L,Jiang T,Ci L,et al. Purine signaling regulating HSCs inflammatory cytokines secretion,activation,and proliferation plays a critical role in alcoholic liver disease[J]. Mol Cell Biochem,2020,466(1-2):91-102. doi: 10.1007/s11010-020-03691-0
    [18] Chen W,Yan X,Yang A,et al. miRNA-150-5p promotes hepatic stellate cell proliferation and sensitizes hepatocyte apoptosis during liver fibrosis[J]. Epigenomics,2020,12(1):53-67. doi: 10.2217/epi-2019-0104
    [19] Chen N,Luo J,Hou Y,et al. miR-29c-3p promotes alcohol dehydrogenase gene cluster expression by activating an ADH6 enhancer[J]. Biochem Pharmacol,2022,203(4):115182.
    [20] Kilikevicius A,Meister G,Corey D R. Reexamining assumptions about miRNA-guided gene silencing[J]. Nucleic Acids Res,2022,50(2):617-634. doi: 10.1093/nar/gkab1256
    [21] Wang X,He Y,Mackowiak B,et al. MicroRNAs as regulators,biomarkers and therapeutic targets in liver diseases[J]. Gut,2021,70(4):784-795. doi: 10.1136/gutjnl-2020-322526
    [22] Dichtel L E,Cordoba-Chacon J,Kineman R D. Growth hormone and insulin-like growth factor 1 regulation of nonalcoholic fatty liver disease[J]. J Clin Endocrinol Metab,2022,107(7):1812-1824. doi: 10.1210/clinem/dgac088
    [23] Cristin L,Montini A,Martinino A,et al. The role of growth hormone and insulin growth factor 1 in the development of non-alcoholic steato-hepatitis: A systematic review[J]. Cells,2023,12(4):517. doi: 10.3390/cells12040517
    [24] Adamek A,Kasprzak A. Insulin-like growth factor (IGF) system in liver diseases[J]. Int J Mol Sci,2018,19(5):1308. doi: 10.3390/ijms19051308
    [25] Stanley T L,Fourman L T,Zheng I,et al. Relationship of IGF-1 and IGF-binding proteins to disease severity and glycemia in nonalcoholic fatty liver disease[J]. J Clin Endocrinol Metab,2021,106(2):e520-e533.
    [26] Takahashi Y. The role of growth hormone and insulin-like growth factor-I in the liver[J]. Int J Mol Sci,2017,18(7):1447. doi: 10.3390/ijms18071447
    [27] De La Garza R G,Morales-Garza L A,Martin-Estal I,et al. Insulin-like growth factor-1 deficiency and cirrhosis establishment[J]. J Clin Med Res,2017,9(4):233-247. doi: 10.14740/jocmr2761w
    [28] Martín-González C,González-Reimers E,Quintero-Platt G,et al. Soluble α-klotho in liver cirrhosis and alcoholism[J]. Alcohol Alcohol,2019,54(3):204-208. doi: 10.1093/alcalc/agz019
    [29] Luo P,Zheng M,Zhang R,et al. S-Allylmercaptocysteine improves alcoholic liver disease partly through a direct modulation of insulin receptor signaling[J]. Acta Pharm Sin B,2021,11(3):668-679. doi: 10.1016/j.apsb.2020.11.006
    [30] Møller S,Becker U,Juul A,et al. Prognostic value of insulinlike growth factor I and its binding protein in patients with alcohol-induced liver disease. EMALD group[J]. Hepatology,1996,23(5):1073-1078. doi: 10.1002/hep.510230521
  • [1] 李妍平, 董小林, 李青芸, 李红梅, 魏欢, 曾毅.  miR-21-5p通过抑制STAT3缓解OGD诱导的HT22细胞炎症和凋亡并促进增殖, 昆明医科大学学报.
    [2] 蔡冰, 张伟, 刘静, 刘屹.  miR-218-5p通过调控LAYN抑制结肠癌发展的机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231206
    [3] 胡滔, 吴怡, 耿文达, 章意坚, 贺瑄, 李珊珊, 习杨彦彬, 邓丽玲.  自主运动训练通过调节Caspase-3的活性抑制人BRCA1突变乳腺癌的增殖与生长, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230419
    [4] 张晔琳, 马丽娅, 彭旭晖, 杨禾丰, 佘睿.  hsa-let-7a-5p调控牙周膜干细胞增殖及凋亡, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231028
    [5] 张玮, 王保全, 雷喜锋, 王旭, 张梁.  miR-125b-5p调控HK2抑制胆囊癌细胞增殖和糖酵解, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221206
    [6] 廖周俊, 杨少华, 刘立鑫, 胡晟, 陈轶晖, 康强, 张小文.  AK4对肝内胆管癌细胞HUCCT1增殖、迁移的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220611
    [7] 赵斌, 段元鹏, 张国颖, 毕城伟, 杨李波, 施致裕, 杨勇, 张建朋, 高婷.  CircRNA EZH2通过调控miR-30c-5p促进前列腺癌细胞增殖和迁移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220731
    [8] 王保全, 张伟, 田园, 雷喜锋, 王旭.  miR-142-5p通过CCND1调控胆囊癌细胞的增殖和转移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220223
    [9] 杨兰, 贾霄, 姜奕彤, 崔琪, 刘光赐, 何颖红.  UBE2C基因沉默表达对人胃癌AGS细胞增殖和迁移的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210504
    [10] 余朝军, 赵迁浩, 赵宁辉.  低氧微环境对脑胶质瘤细胞增殖、凋亡及HIF-1α表达的影响, 昆明医科大学学报.
    [11] 戈佳云.  慢病毒介导的FHIT基因过表达调控人肝癌细胞株生长实验研究, 昆明医科大学学报.
    [12] 胡建鹏.  龙血素A对大鼠肝星状细胞增殖及Frizzled-4受体蛋白表达的影响, 昆明医科大学学报.
    [13] 刘立鑫.  二甲双胍对肝癌细胞HCCLM3生物学行为的影响, 昆明医科大学学报.
    [14] 白宇.  小白菊内酯在人膀胱癌T24细胞中抑制增殖和诱导凋亡的作用, 昆明医科大学学报.
    [15] 陈学平.  氨培养胎鼠神经细胞钙离子浓度变化与凋亡的相关性, 昆明医科大学学报.
    [16] 王海峰.  上调microRNA-101沉默EZH2基因表达对人膀胱癌T24细胞系增殖和凋亡的影响, 昆明医科大学学报.
    [17] 刘佳鑫.  SDF-1/CXCR4在恶性胶质瘤细胞体外增殖、迁移及侵袭中的作用, 昆明医科大学学报.
    [18] 曾洪艳.  神经营养因子、凋亡相关因子和轴突导向因子在大鼠神经管畸形发育中的表达, 昆明医科大学学报.
    [19] 夏英杰.  SD大鼠髁状突颈部骨折对大鼠髁状突软骨细胞增殖与凋亡的影响, 昆明医科大学学报.
    [20] 体外培养神经干细胞CNTF、TGF-β1和IGF-1的表达, 昆明医科大学学报.
  • 加载中
图(4)
计量
  • 文章访问数:  1189
  • HTML全文浏览量:  1072
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-26
  • 网络出版日期:  2023-09-22
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回