留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

miR-29c-3p/IGF1分子轴对肝星状细胞活化,增殖和凋亡的作用机制

张梁 王保全 雷喜锋 王旭 柯阳 张玮

黄浩, 李雪林, 韩泽华, 舒文, 朱鹏飞, 向盈盈. CAD/CAM在口腔修复中的应用现状[J]. 昆明医科大学学报, 2024, 45(8): 161-165. doi: 10.12259/j.issn.2095-610X.S20240823
引用本文: 张梁, 王保全, 雷喜锋, 王旭, 柯阳, 张玮. miR-29c-3p/IGF1分子轴对肝星状细胞活化,增殖和凋亡的作用机制[J]. 昆明医科大学学报, 2023, 44(9): 7-14. doi: 10.12259/j.issn.2095-610X.S20230926
Hao HUANG, Xuelin LI, Zehua HAN, Wen SHU, Pengfei ZHU, Yingying XIANG. Application Status of CAD/CAM in Prosthodontics[J]. Journal of Kunming Medical University, 2024, 45(8): 161-165. doi: 10.12259/j.issn.2095-610X.S20240823
Citation: Liang ZHANG, Baoquan WANG, Xifeng LEI, Xu WANG, Yang KE, Wei ZHANG. Effect of miR-29c-3p/IGF1 Molecular Axis on Activation,Proliferation and Apoptosis of Hepatic Stellate Cells[J]. Journal of Kunming Medical University, 2023, 44(9): 7-14. doi: 10.12259/j.issn.2095-610X.S20230926

miR-29c-3p/IGF1分子轴对肝星状细胞活化,增殖和凋亡的作用机制

doi: 10.12259/j.issn.2095-610X.S20230926
基金项目: 云南省科技厅-昆明医科大学应用基础研究联合专项基金资助项目(202001AY070001-147)
详细信息
    作者简介:

    张梁(1985~),男,陕西渭南人,医学学士,主治医师,主要从事胃肠肿瘤及各类肝炎的临床治疗与基础研究工作

    通讯作者:

    柯阳,E-mail:keyang1218@126.com

    张玮,E-mail:Zwww2168864@163.com

  • 中图分类号: R735.2

Effect of miR-29c-3p/IGF1 Molecular Axis on Activation,Proliferation and Apoptosis of Hepatic Stellate Cells

  • 摘要:   目的  探讨miR-29c-3p通过IGF-1对肝星状细胞(hepatic stellate cells,HSCs)活化,增殖和凋亡的影响。  方法  原代培养小鼠HSCs,并通过免疫荧光检测HSCs标志物ɑ-SMA表达。双荧光素酶报告基因实验验证miR-29c-3p和IGF-1的靶向关系。TGF-β激活HSCs,并且外源性调控miR-29c-3p和IGF-1的表达水平后,分别采用Westernbolt,CCK-8,克隆形成实验和流式细胞术检测活化HSCs中活化相关蛋白(ɑ-SMA,DDR2,FN1,ITGB1和GFAP)的表达,增殖,克隆形成数和凋亡。  结果  ɑ-SMA阳性表达表明成功分离小鼠HSCs。miR-29c-3p mimic可降低野生型IGF-1的荧光素酶活性,但是对突变型IGF-1没有影响。过表达miR-29c-3p和低表达IGF-1能减少ɑ-SMA,DDR2,FN1和ITGB1表达,增加GFAP的表达,并且降低HSCs的增殖活力和克隆形成数,上调其凋亡比例。  结论  miR-29c-3p通过靶向抑制IGF-1表达,进而抑制HSCs活化和增殖,并促进其凋亡。
  • 计算机辅助设计(computer aided design,CAD)和计算机辅助制造(computer aided manufacturing,CAM)是20世纪60年代快速发展起来的新生的综合性计算机应用技术,它是以计算机作为主要技术手段,处理各种数字信息和图形信息,辅助完成产品设计和制造中的各项活动。20世纪80年代,CAD/CAM技术引入口腔领域,促进了口腔医学的发展和进步,在就诊便捷性和流程规范性等方面有明显优势[1-2]

    口腔数字化技术的进步也不断改变着口腔医生的工作方式[3]。数字化技术在口腔科中最显着的好处之一是能够简化复杂的流程,减少患者预约,以及临床手术和实验室时间,并在不影响临床结果的情况下减少制造步骤[46],优化工作流程、提高工作效率[78]。同时CAD/CAM修复材料具有许多优点,如材料质量稳定,成本较低和节省时间等[9] ,这使得CAD/CAM修复材料得到广泛使用。本文将从CAD/CAM在嵌体、全冠、活动义齿、种植义齿及固定桥5种修复方式中的应用进行描述,从而概述CAD/CAM在口腔修复中的应用进展。

    嵌体(Inlay)是1种嵌入患牙内部,用以恢复缺损牙体形态和功能的修复体。如果嵌体部分嵌入牙冠内、部分高于牙面则命名为高嵌体(Onlay)。研究表明[10],高嵌体可良好的修复牙齿缺损,得到极佳的修复效果。Metiner等[11]对数字印模制造嵌体和传统印模制造的嵌体进行了长达12个月的研究,随访结果表明用数字印模制造的嵌体修复体是传统嵌体修复的可靠替代品。嵌体修复后5 a,嵌体和牙冠的平均保存率分别为93.50%和95.38%[1213]。 Tunac等[1415]在经过2 a评估后得出结论:CAD/CAM树脂复合嵌体可以成功用于后牙II类洞修复,且失败率极低,随访结果也显示出高保存率。CAD/CAM高嵌体在修复根管治疗后磨牙大面积缺损的临床应用中各方面表现良好,患者满意度高,值得临床推广[1617]。用CAD/CAM进行嵌体修复时,对医生技术有较高要求,收费也偏高。

    在口腔修复中最多见的1种修复体是全冠,它包绕了整个牙冠,修复缺损牙体,恢复牙齿功能。良好的边缘密合度是全冠修复的基础,修复体与自身牙体的紧密贴合也是我们希望达到的效果。研究表明[18],通过口内扫描仪(intraoral scanners,IOS)获得的CAD/CAM制造修复体比通过传统印模和随后实验室扫描获得的修复体显示出更好的边缘和内部贴合。直接数字工作流程是间接数字工作流程的有效替代方案,用于生产CAD/CAM全陶瓷修复体。口外扫描仪的类型也会影响CAD/CAM制造的牙冠的边缘密合,但它对牙冠与牙体的内部契合度没有显著影响[19]。CAD/CAM 技术可以增强陶瓷材料在口腔中应用,从而提高修复体的生物相容性,满足患者的美学需求[20]。另有研究表明[21],通过CAD/CAM制造的陶瓷全冠寿命低于传统制造的全冠。这可能与陶瓷的类型及其特性有关,关于CAD/CAM在全冠中的应用还有待进一步研究。此外,CAD/CAM行全冠修复对口腔技师有较高要求[22],经验不足、缺乏对材料的了解、数字技术等原因都能造成修复体临床并发症[23]

    可摘局部义齿(removable partial dentures,RPD)是1种患者可以自行摘戴的用于部分牙缺失(牙列缺损)的修复体。由于预期寿命的增加以及人口老龄化,无牙颌种群正在增加。越来越多的老年人要求保留更多牙齿。因此,对RPD治疗的需求将升高,这样的需求还将持续到将来[24]

    传统制造RPD是1个复杂、容易出错、耗时且昂贵的过程。使用CAD/CAM技术,可以快速原型制作,有望成为制造RPD支架的更有效方法[25]。1994年,首次尝试开发CAD/CAM系统来制造完整的RPD修复体[26]。随着当前数字化口腔的创新和发展,CAD/CAM技术制造已能成功地运用于RPD的修复[27]。传统制造的RPD可能非常耗时,并且它们的不贴合已被确定为RPD使用者的主要诉求之一[28]。与传统RPD相比,使用CAD/CAM支架和聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)光盘进行数字RPD具有许多优势,它可以进行更准确的RPD支架设计,从而提高贴合度。RPD的贴合度越好,RPD就越舒适和实用。此外,使用计算机化技术可以减少RPD的制作时间,使其比传统技术更快地给患者使用[29]。与传统制造的RPD支架相比,通过CAD/CAM和快速原型技术制造的RPD支架具有临床可接受的拟合度,更高的精度和更好的准确性。但是支架和义齿基底之间粘合的准确性和耐用性的技术仍有待解决。在数字化制造中,人为因素也会影响支架的质量[30]。全数字化RPD可以在没有石膏确定铸件的情况下制造,但全数字RPD的指征仅限于肯氏III/IV类部分牙列缺失的病例[31]。数字印模采集和上颌骨关系记录的困难仍有待解决,需要扩展修复的适应症[32]

    种植义齿(implant denture)是由牙种植体及其支持的上部结构组成的修复体。

    CAD/CAM的引入使临床医生能够使用更便宜的材料和更快的制造程序,提高了义齿修复治疗的效率[33]。口内扫描在单种植体和多种植体修复体中都表现出很高的准确性[34]。IOS数字扫描的准确性与传统的印模技术相比,在单基台或双基台印模时,口内数字扫描具有更高的效率。患者对口内数字扫描的满意度和偏好优于接受传统印模手术的患者[35]。Pesce等[36]通过体外研究,提出数字印模可能可以成为1种可靠的方法,用于在存在倾斜植入物时制作具有良好被动配合的全牙弓植入物支架。李瑾等[37]通过比较上颌前牙缺失后行常规即刻种植修复术和联合应用CAD/CAM牙种植导板进行即刻种植修复术的术前术后咀嚼效率、言语功能及美学效果等指标,提出CAD/CAM牙种植导板联合应用在上颌前牙即刻种植术中能增强修复的精确性、提高咀嚼效率及改善牙周环境。种植导板良好的固位力是提高手术精确度的前提,这对技师的要求较高[38]

    通常情况下,为获得良好的骨支持,上颌窦底至牙槽嵴要有足够的距离,反之则会选择行上颌窦底提升术来处理骨量不足的问题,进行上颌窦底提升术时,应选择“最佳选择”—CAD/CAM引导的设计,因为它减少了组之间和组内所选参数的差异。这有助于没有足够的种植手术经验的口腔医生取得更好的种植效果[39]。Yeung等[40]还将现有的设计原则和CAD/CAM材料相结合,制作出1种金属丙烯酸树脂,最大限度地减少了单个牙齿断裂,并促进了磨损表面的有效表面修复。

    CAD/CAM牙种植导板引导下的牙种植手术治疗效果高于常规牙种植手术,可有效改善咀嚼功能。CAD/CAM引入种植义齿修复,需要医生和技师的高度配合,以保证手术的精确性。

    固定桥用于修复牙列中1个或几个缺失牙,通过粘接剂或固定装置与缺牙2侧预备好的基牙或种植体连接成一体,恢复缺失牙的形态和功能。将CAD/CAM技术整合到完整的义齿设计和制造中,简化了临床和加工厂的流程,并改善了义齿的物理特性,提高了义齿质量[41]。CAD/CAM 系统能够生产可重复制作且边缘间隙小的固定桥[42]。与传统方法和其他合金制成的结构相比,由CAD/CAM技术制成的锆基修复体在边缘贴合、减少炎症、良好维护以及牙周健康等方面展现了更好的临床效果[43]

    综上所述,CAD/CAM在嵌体、全冠、活动义齿、种植义齿及固定桥五种修复方式中应用广泛。CAD/CAM的应用增加了修复体的精密度、准确度,减少临床诊治时间和就诊次数,数字存档可显著提高数据保留率,更有利于以患者为中心的治疗和临床修复后随访。CAD/CAM制作的修复义齿在强度、刚度及耐腐蚀性等方面具有优势,提升了义齿与牙体之间的贴合度,增加了义齿的韧性、极限弯曲强度和更高的弹性模量等[44]。除此之外,CAD/CAM还可应用于过渡粘接中以恢复咬合[45]。虽然CAD/CAM技术还存在部分如初始成本高的局限性[46],但其给口腔修复带来的诸多优点不容小觑。未来,CAD/CAM将更加广泛的应用于口腔修复,促进口腔修复的迅猛发展。

  • 图  1  成功分离HSCs,并且miR-29c-3p在不同状态的HSCs中差异表达

    A:采用IF检测HSCs标志物ɑ-SMA是否表达;B:TGF-β处理HSCs前后,WB检测活化相关蛋白(ɑ-SMA,DDR2,FN1,ITGB1和GFAP)的表达;C:在静息及激活状态HSCs中,miR-29c-3p的表达差异。**P < 0.01,***P < 0.001。

    Figure  1.  Successful isolation of HSCs and differential expression of miR-29c-3p in HSCs of different status.

    图  2  miR-29c-3p抑制HSCs的活化和增殖,并促进其凋亡

    A:采用RT-qPCR检测miR-29c-3p mimic的转染效率;B:通过WB检测miR-29c-3p对活化相关蛋白(ɑ-SMA,DDR2,FN1,ITGB1和GFAP)表达的影响;C:CCK-8试剂盒检测不同组别中TGF-β激活的HSCs增殖活力;D:克隆形成实验检测miR-29c-3p对活化HSCs的克隆形成数的影响;E:流式细胞术检测活化HSCs的凋亡比例。**P < 0.01,***P < 0.001。

    Figure  2.  miR-29c-3p inhibits the activation and proliferation of HSCs and promotes their apoptosis.

    图  3  IGF-1是miR-29c-3p下游靶标mRNA

    A:Starbase数据库预测得到的miR-29c-3p与IGF-1的潜在3’ UTR结合序列(上),并且突变IGF-1的3’ UTR结合序列后,双荧光素酶报告基因实验验证miR-29c-3p与IGF-1的靶向关系(下);B:活化的HSCs中分别转染miR-29c-3p inhibitor和miR-29c-3p mimic,采用WB检测IGF-1的表达变化。**P < 0.01。

    Figure  3.  IGF-1 is a downstream target mRNA of miR-29c-3p.

    图  4  miR-29c-3p通过IGF-1抑制HSCs的活化和增殖,并促进其凋亡

    A: miR-29c-3p inhibior的转染效率;B:通过WB检测得到的sh-IGF-1的转染效率;C:不同组别HSCs中活化相关蛋白(ɑ-SMA,DDR2,FN1,ITGB1和GFAP)表达的表达变化;D:CCK-8实验检测活化的HSCs增殖活力;E:克隆形成实验得到的不同组别中活化HSCs的克隆形成数;F:流式细胞术检测活化HSCs的凋亡比例。与sh-NC组比较,aP < 0.05,aaP < 0.01,aaaP < 0.001;与sh-IGF-1组比较,bP < 0.05,bbP < 0.01,bbbP < 0.001;*P < 0.05,***P < 0.001。

    Figure  4.  miR-29c-3p inhibits the activation and proliferation of HSCs and promotes their apoptosis through IGF-1.

  • [1] Seitz H K,Bataller R,Cortez-Pinto H,et al. Alcoholic liver disease[J]. Nat Rev Dis Primers,2018,4(1):16. doi: 10.1038/s41572-018-0014-7
    [2] 曾赏,李三强,李前辉. 酒精性肝病的研究进展[J]. 世界华人消化杂志,2022,30(12):535-540.
    [3] 阿比丹·拜合提亚尔,郭津生. 肝纤维化发生时活化肝星状细胞的代谢改变[J]. 中国细胞生物学学报,2021,43(10):2054-2060.
    [4] Teschke R. Alcoholic liver disease: Current mechanistic aspects with focus on their clinical relevance[J]. Biomedicines,2019,7(3):68. doi: 10.3390/biomedicines7030068
    [5] Kordes C,Bock H H,Reichert D,et al. Hepatic stellate cells: Current state and open questions[J]. Biol Chem,2021,402(9):1021-1032. doi: 10.1515/hsz-2021-0180
    [6] Bataller R,Brenner D A. Liver fibrosis[J]. J Clin Invest,2005,115(2):209-218. doi: 10.1172/JCI24282
    [7] Bartel D P. MicroRNAs: Target recognition and regulatory functions[J]. Cell,2009,136(2):215-233. doi: 10.1016/j.cell.2009.01.002
    [8] Michlewski G,Cáceres J F. Post-transcriptional control of miRNA biogenesis[J]. Rna,2019,25(1):1-16. doi: 10.1261/rna.068692.118
    [9] Szabo G,Bala S. MicroRNAs in liver disease[J]. Nat Rev Gastroenterol Hepatol,2013,10(9):542-552. doi: 10.1038/nrgastro.2013.87
    [10] 安召宏,钟庆,徐启云,等. 肝星状细胞活化和肝细胞性肝癌发生发展中的表观遗传学研究进展[J]. 中国组织化学与细胞化学杂志,2020,29(3):282-286.
    [11] Pant K,Venugopal S K. Circulating microRNAs: Possible role as non-invasive diagnostic biomarkers in liver disease[J]. Clin Res Hepatol Gastroenterol,2017,41(4):370-377. doi: 10.1016/j.clinre.2016.11.001
    [12] Zhang Y J,Hu Y,Li J,et al. Roles of microRNAs in immunopathogenesis of non-alcoholic fatty liver disease revealed by integrated analysis of microRNA and mRNA expression profiles[J]. Hepatobiliary Pancreat Dis Int,2017,16(1):65-79. doi: 10.1016/S1499-3872(16)60098-X
    [13] Hosseini N,Shor J,Szabo G. Alcoholic hepatitis: A review[J]. Alcohol Alcohol,2019,54(4):408-416. doi: 10.1093/alcalc/agz036
    [14] Khomich O,Ivanov A V,Bartosch B. Metabolic hallmarks of hepatic stellate cells in liver fibrosis[J]. Cells,2019,9(1):24. doi: 10.3390/cells9010024
    [15] Teschke R. Alcoholic liver disease: Alcohol metabolism,cascade of molecular mechanisms,cellular targets,and clinical aspects[J]. Biomedicines,2018,6(4):106. doi: 10.3390/biomedicines6040106
    [16] Kisseleva T,Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression[J]. Nat Rev Gastroenterol Hepatol,2021,18(3):151-166. doi: 10.1038/s41575-020-00372-7
    [17] Shan L,Jiang T,Ci L,et al. Purine signaling regulating HSCs inflammatory cytokines secretion,activation,and proliferation plays a critical role in alcoholic liver disease[J]. Mol Cell Biochem,2020,466(1-2):91-102. doi: 10.1007/s11010-020-03691-0
    [18] Chen W,Yan X,Yang A,et al. miRNA-150-5p promotes hepatic stellate cell proliferation and sensitizes hepatocyte apoptosis during liver fibrosis[J]. Epigenomics,2020,12(1):53-67. doi: 10.2217/epi-2019-0104
    [19] Chen N,Luo J,Hou Y,et al. miR-29c-3p promotes alcohol dehydrogenase gene cluster expression by activating an ADH6 enhancer[J]. Biochem Pharmacol,2022,203(4):115182.
    [20] Kilikevicius A,Meister G,Corey D R. Reexamining assumptions about miRNA-guided gene silencing[J]. Nucleic Acids Res,2022,50(2):617-634. doi: 10.1093/nar/gkab1256
    [21] Wang X,He Y,Mackowiak B,et al. MicroRNAs as regulators,biomarkers and therapeutic targets in liver diseases[J]. Gut,2021,70(4):784-795. doi: 10.1136/gutjnl-2020-322526
    [22] Dichtel L E,Cordoba-Chacon J,Kineman R D. Growth hormone and insulin-like growth factor 1 regulation of nonalcoholic fatty liver disease[J]. J Clin Endocrinol Metab,2022,107(7):1812-1824. doi: 10.1210/clinem/dgac088
    [23] Cristin L,Montini A,Martinino A,et al. The role of growth hormone and insulin growth factor 1 in the development of non-alcoholic steato-hepatitis: A systematic review[J]. Cells,2023,12(4):517. doi: 10.3390/cells12040517
    [24] Adamek A,Kasprzak A. Insulin-like growth factor (IGF) system in liver diseases[J]. Int J Mol Sci,2018,19(5):1308. doi: 10.3390/ijms19051308
    [25] Stanley T L,Fourman L T,Zheng I,et al. Relationship of IGF-1 and IGF-binding proteins to disease severity and glycemia in nonalcoholic fatty liver disease[J]. J Clin Endocrinol Metab,2021,106(2):e520-e533.
    [26] Takahashi Y. The role of growth hormone and insulin-like growth factor-I in the liver[J]. Int J Mol Sci,2017,18(7):1447. doi: 10.3390/ijms18071447
    [27] De La Garza R G,Morales-Garza L A,Martin-Estal I,et al. Insulin-like growth factor-1 deficiency and cirrhosis establishment[J]. J Clin Med Res,2017,9(4):233-247. doi: 10.14740/jocmr2761w
    [28] Martín-González C,González-Reimers E,Quintero-Platt G,et al. Soluble α-klotho in liver cirrhosis and alcoholism[J]. Alcohol Alcohol,2019,54(3):204-208. doi: 10.1093/alcalc/agz019
    [29] Luo P,Zheng M,Zhang R,et al. S-Allylmercaptocysteine improves alcoholic liver disease partly through a direct modulation of insulin receptor signaling[J]. Acta Pharm Sin B,2021,11(3):668-679. doi: 10.1016/j.apsb.2020.11.006
    [30] Møller S,Becker U,Juul A,et al. Prognostic value of insulinlike growth factor I and its binding protein in patients with alcohol-induced liver disease. EMALD group[J]. Hepatology,1996,23(5):1073-1078. doi: 10.1002/hep.510230521
  • [1] 周锟, 刘亚丽, 李自良, 钱丽萍, 冉丽权, 任娅岚.  miR-34a对人牙周膜干细胞增殖和成骨分化的影响, 昆明医科大学学报.
    [2] 罗丽丝, 杨清雄, 王燕, 刘四香, 许榛, 凌昱.  儿童肥胖症中IGF-1和IGFBP-3的水平及诊断价值, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250118
    [3] 李妍平, 董小林, 李青芸, 李红梅, 魏欢, 曾毅.  miR-21-5p通过抑制STAT3缓解OGD诱导的HT22细胞炎症和凋亡并促进增殖, 昆明医科大学学报.
    [4] 蔡冰, 张伟, 刘静, 刘屹.  miR-218-5p通过调控LAYN抑制结肠癌发展的机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231206
    [5] 胡滔, 吴怡, 耿文达, 章意坚, 贺瑄, 李珊珊, 习杨彦彬, 邓丽玲.  自主运动训练通过调节Caspase-3的活性抑制人BRCA1突变乳腺癌的增殖与生长, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230419
    [6] 张晔琳, 马丽娅, 彭旭晖, 杨禾丰, 佘睿.  hsa-let-7a-5p调控牙周膜干细胞增殖及凋亡, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231028
    [7] 张玮, 王保全, 雷喜锋, 王旭, 张梁.  miR-125b-5p调控HK2抑制胆囊癌细胞增殖和糖酵解, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221206
    [8] 廖周俊, 杨少华, 刘立鑫, 胡晟, 陈轶晖, 康强, 张小文.  AK4对肝内胆管癌细胞HUCCT1增殖、迁移的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220611
    [9] 赵斌, 段元鹏, 张国颖, 毕城伟, 杨李波, 施致裕, 杨勇, 张建朋, 高婷.  CircRNA EZH2通过调控miR-30c-5p促进前列腺癌细胞增殖和迁移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220731
    [10] 王保全, 张伟, 田园, 雷喜锋, 王旭.  miR-142-5p通过CCND1调控胆囊癌细胞的增殖和转移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220223
    [11] 杨兰, 贾霄, 姜奕彤, 崔琪, 刘光赐, 何颖红.  UBE2C基因沉默表达对人胃癌AGS细胞增殖和迁移的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210504
    [12] 余朝军, 赵迁浩, 赵宁辉.  低氧微环境对脑胶质瘤细胞增殖、凋亡及HIF-1α表达的影响, 昆明医科大学学报.
    [13] 戈佳云.  慢病毒介导的FHIT基因过表达调控人肝癌细胞株生长实验研究, 昆明医科大学学报.
    [14] 胡建鹏.  龙血素A对大鼠肝星状细胞增殖及Frizzled-4受体蛋白表达的影响, 昆明医科大学学报.
    [15] 刘立鑫.  二甲双胍对肝癌细胞HCCLM3生物学行为的影响, 昆明医科大学学报.
    [16] 陈学平.  氨培养胎鼠神经细胞钙离子浓度变化与凋亡的相关性, 昆明医科大学学报.
    [17] 王海峰.  上调microRNA-101沉默EZH2基因表达对人膀胱癌T24细胞系增殖和凋亡的影响, 昆明医科大学学报.
    [18] 曾洪艳.  神经营养因子、凋亡相关因子和轴突导向因子在大鼠神经管畸形发育中的表达, 昆明医科大学学报.
    [19] 夏英杰.  SD大鼠髁状突颈部骨折对大鼠髁状突软骨细胞增殖与凋亡的影响, 昆明医科大学学报.
    [20] 体外培养神经干细胞CNTF、TGF-β1和IGF-1的表达, 昆明医科大学学报.
  • 加载中
图(4)
计量
  • 文章访问数:  1243
  • HTML全文浏览量:  1143
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-26
  • 网络出版日期:  2023-09-22
  • 刊出日期:  2023-09-30

目录

/

返回文章
返回