留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

miR-29c-3p/IGF1分子轴对肝星状细胞活化,增殖和凋亡的作用机制

张梁 王保全 雷喜锋 王旭 柯阳 张玮

张梁, 王保全, 雷喜锋, 王旭, 柯阳, 张玮. miR-29c-3p/IGF1分子轴对肝星状细胞活化,增殖和凋亡的作用机制[J]. 昆明医科大学学报, 2023, 44(9): 7-14. doi: 10.12259/j.issn.2095-610X.S20230926
引用本文: 张梁, 王保全, 雷喜锋, 王旭, 柯阳, 张玮. miR-29c-3p/IGF1分子轴对肝星状细胞活化,增殖和凋亡的作用机制[J]. 昆明医科大学学报, 2023, 44(9): 7-14. doi: 10.12259/j.issn.2095-610X.S20230926
Liang ZHANG, Baoquan WANG, Xifeng LEI, Xu WANG, Yang KE, Wei ZHANG. Effect of miR-29c-3p/IGF1 Molecular Axis on Activation,Proliferation and Apoptosis of Hepatic Stellate Cells[J]. Journal of Kunming Medical University, 2023, 44(9): 7-14. doi: 10.12259/j.issn.2095-610X.S20230926
Citation: Liang ZHANG, Baoquan WANG, Xifeng LEI, Xu WANG, Yang KE, Wei ZHANG. Effect of miR-29c-3p/IGF1 Molecular Axis on Activation,Proliferation and Apoptosis of Hepatic Stellate Cells[J]. Journal of Kunming Medical University, 2023, 44(9): 7-14. doi: 10.12259/j.issn.2095-610X.S20230926

miR-29c-3p/IGF1分子轴对肝星状细胞活化,增殖和凋亡的作用机制

doi: 10.12259/j.issn.2095-610X.S20230926
基金项目: 云南省科技厅-昆明医科大学应用基础研究联合专项基金资助项目(202001AY070001-147)
详细信息
    作者简介:

    张梁(1985~),男,陕西渭南人,医学学士,主治医师,主要从事胃肠肿瘤及各类肝炎的临床治疗与基础研究工作

    通讯作者:

    柯阳,E-mail:keyang1218@126.com

    张玮,E-mail:Zwww2168864@163.com

  • 中图分类号: R735.2

Effect of miR-29c-3p/IGF1 Molecular Axis on Activation,Proliferation and Apoptosis of Hepatic Stellate Cells

  • 摘要:   目的  探讨miR-29c-3p通过IGF-1对肝星状细胞(hepatic stellate cells,HSCs)活化,增殖和凋亡的影响。  方法  原代培养小鼠HSCs,并通过免疫荧光检测HSCs标志物ɑ-SMA表达。双荧光素酶报告基因实验验证miR-29c-3p和IGF-1的靶向关系。TGF-β激活HSCs,并且外源性调控miR-29c-3p和IGF-1的表达水平后,分别采用Westernbolt,CCK-8,克隆形成实验和流式细胞术检测活化HSCs中活化相关蛋白(ɑ-SMA,DDR2,FN1,ITGB1和GFAP)的表达,增殖,克隆形成数和凋亡。  结果  ɑ-SMA阳性表达表明成功分离小鼠HSCs。miR-29c-3p mimic可降低野生型IGF-1的荧光素酶活性,但是对突变型IGF-1没有影响。过表达miR-29c-3p和低表达IGF-1能减少ɑ-SMA,DDR2,FN1和ITGB1表达,增加GFAP的表达,并且降低HSCs的增殖活力和克隆形成数,上调其凋亡比例。  结论  miR-29c-3p通过靶向抑制IGF-1表达,进而抑制HSCs活化和增殖,并促进其凋亡。
  • 过量饮酒会促进酒精性肝病(alcoholic liver disease,ALD),如脂肪变性、脂肪性肝炎、纤维化到肝硬化,最终导致肝细胞癌,这是所有慢性肝病的主要死亡原因 [1-2]。在ALD的发展进程中,肝星状细胞(hepatic stellate cells,HSCs)扮演者重要的角色。HSCs是慢性肝损伤创面愈合相关纤维化过程的主要参与者之一[3-4]。在健康器官中,它们是非实质细胞群的一部分,占据肝细胞和窦状内皮细胞之间的间隙 [5]。在组织损伤、炎症和伴随的可溶性介质(例如TGF-β)激活后,HSCs转分化为肌成纤维细胞样细胞,表现出增殖、收缩和成纤维特性,成为纤维化肝脏中纤维性胶原的主要来源 [46]。HSCs还参与邻近细胞的复杂交互,以促进肝纤维化进展。因此,阐明HSCs的分子调控机制对ALD的治疗具有重要的意义。

    微小RNA(microRNAs,miRNAs)是一种由18~24个核苷酸的组成的非编码RNA,通常情况下,miRNA在细胞质RNA诱导沉默复合体中与靶mRNA的3'-UTR相互作用以抑制mRNA翻译和诱导降解它 [7-8]。具体来说,一些miRNA,如miR-122和miR-21已被证明在ALD的肝纤维化的发展中发挥作用,调节包括组织炎症、细胞凋亡和HSCs的激活等过程 [9-10]。此外,由于miRNA释放到血液中的疾病依赖性以及它们在血清中的相对稳定性,miRNA是检测ALD严重程度和致癌性的潜在非侵袭性生物标志物 [11]。近期,Zhang等 [12]通过生物信息学分析发现,miR-29c-3p在ALD模型小鼠肝脏的表达水平显著低于正常小鼠,且预测其为ALD治疗的潜在靶标。然而,目前还没有文献报道,miR-29c-3p对ALD中HSCs活化,增殖和凋亡的调控机制。

    综上所述,本研究拟探讨miR-29c-3p在静息和活化HSCs中的表达差异,并且检测其对HSCs活化,增殖和凋亡的影响,此外,笔者还拟通过生物信息学方法预测miR-29c-3p的下游靶标,并验证miR-29c-3p是否通过该靶标参与HSCs生物学行为的调控。

    从C57BL/6 J小鼠(24.0~26.0 g,8~10周龄)中分离HSCs。简而言之,C57BL/6 J小鼠原位灌注四乙酸和胶原酶获得全肝细胞悬液,用Percoll密度梯度离心法获得HSCs。将细胞调整到3×106细胞/mL,接种在25 cm2的培养瓶中,其中含有包含10%胎牛血清的5mL DMEM完全培养基和1%青霉素/链霉素。采用TGF-β活化HSCs后,采用免疫荧光检测HSCs活化标志物ɑ-SMA的表达。简而言之,HSCs与一抗抗ɑ-SMA(1∶250)在4℃下孵育过夜,随后用二抗染色。在400倍放大的荧光显微镜下测量细胞ɑ-SMA荧光阳性表达的变化并收集图像。

    首先,为观察miR-29c-3p对HSCs的影响,将细胞分为NC组(未转染)、NCmimic组(转染miRNAmimic阴性对照)和miR-29c-3pmimic组(转染miR-29c-3pmimic)。为进一步观察miR-494-3p和IGF-1对HSCs的影响,将细胞分为NC组(未转染)、sh-NC组(转染sh-NC阴性对照)、sh-IGF-1组(转染sh-IGF-1)和sh-IGF-1+miR-29c-3pinhibitor组(同时转染sh-IGF-1和miR-29c-3pinhibitor)。miR-29c-3pmimic/inhibitor和sh-IGF-1,及它们对应的阴性对照购买于广州锐博生物技术有限公司。将HSCs接种于6孔板(5×104 细胞/mL),按照说明书使用Lipofectamine 2000试剂及分组信息,进行50 nM miR-29c-3p mimic/inhibitor/NCmimic/sh-IGF-1/ sh-NC的转染。转染48 h后,采用RT-qPCR和WB检测转染效率。

    使用TRIzol Regent按照说明书提取HSCs的总RNA样本,然后用TurboDNase试剂盒去除DNA。用NanoDrop对提取的总RNA进行定量。用带用gDNA Eraser的PrimeScriptTM RT试剂盒逆转录将2 μg总RNA逆转录为cDNA。采用SYBR Green PCR Master Mix在Bio-Rad Real-Time PCR仪上进行qPCR检测miR-29c-3p的表达。采用U6作为内部参考。每个数据重复3次,用2-ΔΔCt法计算miR-29c-3p的相对表达水平。本研究使用的引物如下:miR-29c-3p sense:5’-GCTGACCGATTTCTCCTGGT-3’;miR-29c-3p antisense:5’-TCCCCCTACATCATAACCGA-3’;U6 sense:5’-CTAGATAATGGTGCTGATAGATGGA-3’;U6 antisense:5’-GGCACACCAGAAATCGAAGC-3’。

    使用RIPA裂解缓冲液从HSCs中提取总蛋白,使用BCA蛋白测定试剂盒测定蛋白浓度。通过聚丙烯酰胺凝胶电泳,将60 μg总蛋白质样本进行分离后,转移到硝化纤维素膜上。用5%脱脂牛奶进行阻断,在4℃下用小鼠单克隆抗ɑ-SMA(1∶1000),DDR2(1∶2000),FN1(1∶1000),ITGB1(1∶2000)和GFAP(1∶1000)孵育过夜。用TBST清洗膜,然后与适当的辣根过氧化物酶结合的二抗孵育。采用增强型化学发光试剂进行膜的显影,并使用Image Lab™软件捕获信号并定量条带灰度值。

    采用Starbase数据库预测IGF-1和miR-29c-3p的3’ UTR结合序列。用PCR分别扩增野生型和突变型IGF-1与miR-29c-3p的3’ UTR结合序列,将片段装入pMIR-REPORT luciferase microRNA expression reporter vector。参照Lipofectamine 2000试剂盒说明书,将0.1 µg野生型和突变型的IGF-1荧光素酶报告载体分别共转染到带有miR-29c-3pmimic的HEK-293细胞中。转染48 h时后,收集细胞裂解液,根据制造商的说明书,使用双荧光素酶报告基因检测试剂盒测量各组的荧光素酶活性。

    采用CCK-8试剂盒检测HSCs的细胞活力。简而言之,将5×104细胞/mL的各组HSCs加入96孔板中孵育24 h。各组HSCs转染24、48和72 h后,分别在各孔加入CCK8溶液。2 h后,使用酶标仪测量450 nm处的吸光度。

    各组HSCs(5×102细胞/mL)接种到含有37℃预热培养基的6孔板中,置于37℃培养箱中培养。每2 d更换一次培养基,放置14 d。随后,各组HSCs用1∶3乙酸/甲醇固定30 min,用Giemsa染色20 min,肉眼计数细胞克隆数。

    采用Annexin V-FITC/PI试剂盒检测HSCs凋亡情况。取1×Annexin V结合液500 µL制备终浓度为1×106细胞/mL的HSC悬液,加入6孔板上。在细胞悬液中加入5 µL Annexin V-FITC和5 µL丙二碘,室温暗培养15 min。流式细胞术检测细胞凋亡情况。坏死细胞位于左上区(AnnexinV-,PI+),晚期凋亡细胞位于右上区(AnnexinV+,PI+),活细胞位于左下区(AnnexinV-,PI-),早期凋亡细胞位于右上区(AnnexinV+,PI-)。

    所有数据重复3次独立实验,数据以均数±标准差表示,并通过SPSS 22.0软件进行统计分析。根据数据组成,2组间比较使用student’s t检验,多组间比较采用单因素方差分析(两两比较采用LSD法),P < 0.05为有统计学意义。

    图1A所示,ɑ-SMA阳性表达表明成功从小鼠中分离出HSCs。TGF-β处理细胞后,HSCs活化相关蛋白ɑ-SMA,DDR2,FN1和ITGB1表达水平明显增加,而GFAP的表达水平则反之(P < 0.01,图1B)。值得注意地,miR-29c-3p在激活的HSCs中呈现低表达(P < 0.01,图1C)。以上结果表明,HSCs被成功分离并激活,且miR-29c-3p在不同状态的HSCs中异常表达。

    图  1  成功分离HSCs,并且miR-29c-3p在不同状态的HSCs中差异表达
    A:采用IF检测HSCs标志物ɑ-SMA是否表达;B:TGF-β处理HSCs前后,WB检测活化相关蛋白(ɑ-SMA,DDR2,FN1,ITGB1和GFAP)的表达;C:在静息及激活状态HSCs中,miR-29c-3p的表达差异。**P < 0.01,***P < 0.001。
    Figure  1.  Successful isolation of HSCs and differential expression of miR-29c-3p in HSCs of different status.

    由于miR-29c-3p在HSCs中的异常状态,进一步探讨了miR-29c-3p对HSCs活化,增殖和凋亡的影响。首先,通过miRNAmimic外源性的调控了活化的HSCs中miR-29c-3p的表达。转染效率结果表明,miR-29c-3p mimic可以增加活化的HSCs中miR-29c-3p的表达水平(P < 0.001,图2A)。WB结果表明,过表达miR-29c-3p能够减低活化相关蛋白ɑ-SMA,DDR2,FN1和ITGB1表达水平,并增加GFAP的表达(P < 0.01,图2B)。相较于NCmimic组,miR-29c-3pmimic组中活化HSCs的增殖活力(P < 0.01,图2C)和克隆形成数(P < 0.01,图2D)均有降低,并且凋亡比例增加(P < 0.01,图2E)。以上结果表明,miR-29c-3p能够抑制HSCs的活化和增殖,并促进其凋亡。

    图  2  miR-29c-3p抑制HSCs的活化和增殖,并促进其凋亡
    A:采用RT-qPCR检测miR-29c-3p mimic的转染效率;B:通过WB检测miR-29c-3p对活化相关蛋白(ɑ-SMA,DDR2,FN1,ITGB1和GFAP)表达的影响;C:CCK-8试剂盒检测不同组别中TGF-β激活的HSCs增殖活力;D:克隆形成实验检测miR-29c-3p对活化HSCs的克隆形成数的影响;E:流式细胞术检测活化HSCs的凋亡比例。**P < 0.01,***P < 0.001。
    Figure  2.  miR-29c-3p inhibits the activation and proliferation of HSCs and promotes their apoptosis.

    调控下游mRNA的表达是miRNA在生物学进程中的主要功能之一。因此,笔者通过Starbase数据库预测了miR-29c-3p的下游可能靶标。如图3A所示,IGF-1可能是miR-29c-3p的下游靶标,并且通过双荧光素酶报告基因检测发现,miR-29c-3p mimic能够抑制细胞内野生型IGF-1的荧光素酶活性(P < 0.01),但是对突变型IGF-1的荧光素酶活性无影响(P > 0.01)。进一步,通过WB检测了miR-29c-3p对活化HSCs中IGF-1表达的影响。结果显示,过表达miR-29c-3p可抑制IGF-1的表达(P < 0.01,图3B),低表达miR-29c-3p能促进活化HSCs中IGF-1表达(P < 0.01,图3B)。以上结果表明,在HSCs中,IGF-1是miR-29c-3p的下游靶标。

    图  3  IGF-1是miR-29c-3p下游靶标mRNA
    A:Starbase数据库预测得到的miR-29c-3p与IGF-1的潜在3’ UTR结合序列(上),并且突变IGF-1的3’ UTR结合序列后,双荧光素酶报告基因实验验证miR-29c-3p与IGF-1的靶向关系(下);B:活化的HSCs中分别转染miR-29c-3p inhibitor和miR-29c-3p mimic,采用WB检测IGF-1的表达变化。**P < 0.01。
    Figure  3.  IGF-1 is a downstream target mRNA of miR-29c-3p.

    进一步探讨了miR-29c-3p是否是通过IGF1对HSCs活化,增殖和凋亡产生影响的。结果表明,活化的HSCs中转染miR-29c-3pinhibitor或sh-IGF-1能够降低miR-29c-3p或IGF-1的表达水平(P < 0.05,图4A图4B)。回复实验表明,相较于sh-NC组,sh-IGF-1组中活化相关蛋白ɑ-SMA,DDR2,FN1和ITGB1表达水平降低,并且GFAP的表达增加(P < 0.05,图4C);相较于sh-IGF-1组,sh-IGF-1+miR-29c-3pinhibitor组中活化相关蛋白ɑ-SMA,DDR2,FN1和ITGB1表达水平增加,并且GFAP的表达减少(P < 0.05,图4C)。此外,敲低IGF-1的表达能够降低活化HSCs的增殖活力(P < 0.01,图4D)和克隆形成数(P < 0.01,图4E),并且增加其凋亡水平(P < 0.001,图4F),但是在此基础上同时敲低miR-29c-3p的表达则会逆转这一过程。以上结果表明,IGF-1能够促进HSCs的活化和增殖,并抑制其凋亡,这一功能被miR-29c-3p靶向抑制。

    图  4  miR-29c-3p通过IGF-1抑制HSCs的活化和增殖,并促进其凋亡
    A: miR-29c-3p inhibior的转染效率;B:通过WB检测得到的sh-IGF-1的转染效率;C:不同组别HSCs中活化相关蛋白(ɑ-SMA,DDR2,FN1,ITGB1和GFAP)表达的表达变化;D:CCK-8实验检测活化的HSCs增殖活力;E:克隆形成实验得到的不同组别中活化HSCs的克隆形成数;F:流式细胞术检测活化HSCs的凋亡比例。与sh-NC组比较,aP < 0.05,aaP < 0.01,aaaP < 0.001;与sh-IGF-1组比较,bP < 0.05,bbP < 0.01,bbbP < 0.001;*P < 0.05,***P < 0.001。
    Figure  4.  miR-29c-3p inhibits the activation and proliferation of HSCs and promotes their apoptosis through IGF-1.

    非酒精性脂肪肝(Non-alcoholic fatty liver disease,NAFLD)及其晚期形式-非酒精性脂肪性肝炎(non-alcoholic steatohepatitis,NASH)已成为一种代谢性流行病[2]。此前的生物信息学分析表明,miR-29c-3p在ALD患者血液中的表达水平显著低于正常人群[12],但是其功能还没有在ALD中得到验证。在本研究中,笔者成功分离了小鼠中的HSCs,并且发现激活的HSCs中miR-29c-3p异常低表达。此外,笔者还发现,过表达miR-29c-3p能够抑制HSCs的激活和增殖,并促进其凋亡。值得注意地,miR-29c-3p的这一功能是通过靶向调控IGF-1的表达实现的。这些结果证实了Yao等[12]的预测,并为miR-29c-3p作为ALD的治疗靶标提供了理论基础。

    HSCs活化是ALD进程中肝纤维化的关键事件,也是肝脏细胞外基质的主要来源之一,它们已被确定为主要负责肝脏纤维化发展的前体细胞类型 [13]。肝损伤后,HSC经历活化,导致典型的星形,脂肪储存表型的丧失和肌成纤维母细胞样表型的获得 [13-14]。因此,为了缓解ALD的发展进程,如何抑制HSCs的活化成为了主要目标之一。研究表明,ɑ-SMA,DDR2,FN1,ITGB1和GFAP已成为研究做多的HSCs活化标志物 [15-16]。在笔者的研究中发现miR-29c-3pmimic可以抑制ɑ-SMA,DDR2,FN1和ITGB1,并促进HSCs中GFAP的表达。这表明,过表达miR-29c-3p可以抑制HSCs的活化,这对缓解ALD的肝纤维化至关重要。此外,介导HSCs增殖和凋亡对明晰ALD的机制也是十分重要的。例如,Liang等[17]表明,嘌呤信号通路调节HSCs激活和增殖,这在ALD中起着关键作用。研究表明,miRNA-150-5p抑制HSCs增殖,并在肝纤维化期间使HSCs凋亡敏感,这有利于缓解ALD的肝纤维化进程 [18]。本研究表明:miR-29c-3p的过表达对HSCs的增殖是有抑制作用的,并且促进HSCs的凋亡。此外,Chen等 [19]表明,miR-29c-3p通过激活ADH6增强子促进酒精脱氢酶(alcohol dehydrogenase,ADHs)基因簇表达,而ADHs在酒精代谢和酒精毒性中起着至关重要的作用,这或许是miR-29c-3p调控HSCs参与ALD的机制之一。

    众所周知,miRNAs通过介导下游靶标mRNA的表达是参与调控多种生物学进程的主要途径之一[20-21]。在本研究中,通过Starbase数据库预测发现IGF-1是miR-29c-3p的下游靶标之一,并通过双荧光素酶报告基因实验进行了验证。IGF-1是一种70-氨基酸合成代谢激素,具有多种内分泌,旁分泌和自分泌作用[22]。胰岛素样生长因子-1(Insulin-like growth factor-1, IGF-1)和 IGF 结合蛋白(IGF-binding proteins, IGFBPs)在包括肝脏在内的多种组织中产生,主要是对生长激素(growth hormone, GH)信号的反应。肝脏合成的 IGF-1 和 IGFBPs 占全身循环 IGF-1 和 IGFBPs 的大部分[23]。众所周知,IGF-1主要由肝脏产生(占循环IGF-1的75%),但几乎每个组织都能够分泌IGF-1用于自分泌/旁分泌的目的[22-23]。此前的研究表明,IGF-1是非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)/非酒精性脂肪性肝炎(non-alcoholic steatohepatitis,NASH)治疗的生物学靶标,IGF-I可以调控细胞衰老和激活,从而介导NASH中的肝纤维化[24-26]。IGF-I治疗已被证明可以改善NASH和肝硬化的动物模型[27-28],表明IGF-I在这些条件下的潜在临床应用。在ALD中,有研究表明,S-烯丙基巯半胱氨酸通过直接调节IGF-I信号通路来改善ALD[29]。Mølle等[30]表明,IGF-I是ALD患者的生存独立预测因子。本研究中,HSCs中转染sh-IGF-1能够降低细胞活化和增殖,并上调其凋亡比例。但是,这一过程受miR-29c-3p的调控。

    综上所述,笔者证明了miR-29c-3p能够通过靶向下调IGF-1的表达水平,进而抑制HSCs活化和增殖,并促进其凋亡。本研究为AH提供了新的治疗策略。但是,本研究仅仅只在HSCs验证了miR-29c-3p的功能,体内实验验证miR-29c-3p在ALD中的功能仍需进一步的挖掘。

  • 图  1  成功分离HSCs,并且miR-29c-3p在不同状态的HSCs中差异表达

    A:采用IF检测HSCs标志物ɑ-SMA是否表达;B:TGF-β处理HSCs前后,WB检测活化相关蛋白(ɑ-SMA,DDR2,FN1,ITGB1和GFAP)的表达;C:在静息及激活状态HSCs中,miR-29c-3p的表达差异。**P < 0.01,***P < 0.001。

    Figure  1.  Successful isolation of HSCs and differential expression of miR-29c-3p in HSCs of different status.

    图  2  miR-29c-3p抑制HSCs的活化和增殖,并促进其凋亡

    A:采用RT-qPCR检测miR-29c-3p mimic的转染效率;B:通过WB检测miR-29c-3p对活化相关蛋白(ɑ-SMA,DDR2,FN1,ITGB1和GFAP)表达的影响;C:CCK-8试剂盒检测不同组别中TGF-β激活的HSCs增殖活力;D:克隆形成实验检测miR-29c-3p对活化HSCs的克隆形成数的影响;E:流式细胞术检测活化HSCs的凋亡比例。**P < 0.01,***P < 0.001。

    Figure  2.  miR-29c-3p inhibits the activation and proliferation of HSCs and promotes their apoptosis.

    图  3  IGF-1是miR-29c-3p下游靶标mRNA

    A:Starbase数据库预测得到的miR-29c-3p与IGF-1的潜在3’ UTR结合序列(上),并且突变IGF-1的3’ UTR结合序列后,双荧光素酶报告基因实验验证miR-29c-3p与IGF-1的靶向关系(下);B:活化的HSCs中分别转染miR-29c-3p inhibitor和miR-29c-3p mimic,采用WB检测IGF-1的表达变化。**P < 0.01。

    Figure  3.  IGF-1 is a downstream target mRNA of miR-29c-3p.

    图  4  miR-29c-3p通过IGF-1抑制HSCs的活化和增殖,并促进其凋亡

    A: miR-29c-3p inhibior的转染效率;B:通过WB检测得到的sh-IGF-1的转染效率;C:不同组别HSCs中活化相关蛋白(ɑ-SMA,DDR2,FN1,ITGB1和GFAP)表达的表达变化;D:CCK-8实验检测活化的HSCs增殖活力;E:克隆形成实验得到的不同组别中活化HSCs的克隆形成数;F:流式细胞术检测活化HSCs的凋亡比例。与sh-NC组比较,aP < 0.05,aaP < 0.01,aaaP < 0.001;与sh-IGF-1组比较,bP < 0.05,bbP < 0.01,bbbP < 0.001;*P < 0.05,***P < 0.001。

    Figure  4.  miR-29c-3p inhibits the activation and proliferation of HSCs and promotes their apoptosis through IGF-1.

  • [1] Seitz H K,Bataller R,Cortez-Pinto H,et al. Alcoholic liver disease[J]. Nat Rev Dis Primers,2018,4(1):16. doi: 10.1038/s41572-018-0014-7
    [2] 曾赏,李三强,李前辉. 酒精性肝病的研究进展[J]. 世界华人消化杂志,2022,30(12):535-540.
    [3] 阿比丹·拜合提亚尔,郭津生. 肝纤维化发生时活化肝星状细胞的代谢改变[J]. 中国细胞生物学学报,2021,43(10):2054-2060.
    [4] Teschke R. Alcoholic liver disease: Current mechanistic aspects with focus on their clinical relevance[J]. Biomedicines,2019,7(3):68. doi: 10.3390/biomedicines7030068
    [5] Kordes C,Bock H H,Reichert D,et al. Hepatic stellate cells: Current state and open questions[J]. Biol Chem,2021,402(9):1021-1032. doi: 10.1515/hsz-2021-0180
    [6] Bataller R,Brenner D A. Liver fibrosis[J]. J Clin Invest,2005,115(2):209-218. doi: 10.1172/JCI24282
    [7] Bartel D P. MicroRNAs: Target recognition and regulatory functions[J]. Cell,2009,136(2):215-233. doi: 10.1016/j.cell.2009.01.002
    [8] Michlewski G,Cáceres J F. Post-transcriptional control of miRNA biogenesis[J]. Rna,2019,25(1):1-16. doi: 10.1261/rna.068692.118
    [9] Szabo G,Bala S. MicroRNAs in liver disease[J]. Nat Rev Gastroenterol Hepatol,2013,10(9):542-552. doi: 10.1038/nrgastro.2013.87
    [10] 安召宏,钟庆,徐启云,等. 肝星状细胞活化和肝细胞性肝癌发生发展中的表观遗传学研究进展[J]. 中国组织化学与细胞化学杂志,2020,29(3):282-286.
    [11] Pant K,Venugopal S K. Circulating microRNAs: Possible role as non-invasive diagnostic biomarkers in liver disease[J]. Clin Res Hepatol Gastroenterol,2017,41(4):370-377. doi: 10.1016/j.clinre.2016.11.001
    [12] Zhang Y J,Hu Y,Li J,et al. Roles of microRNAs in immunopathogenesis of non-alcoholic fatty liver disease revealed by integrated analysis of microRNA and mRNA expression profiles[J]. Hepatobiliary Pancreat Dis Int,2017,16(1):65-79. doi: 10.1016/S1499-3872(16)60098-X
    [13] Hosseini N,Shor J,Szabo G. Alcoholic hepatitis: A review[J]. Alcohol Alcohol,2019,54(4):408-416. doi: 10.1093/alcalc/agz036
    [14] Khomich O,Ivanov A V,Bartosch B. Metabolic hallmarks of hepatic stellate cells in liver fibrosis[J]. Cells,2019,9(1):24. doi: 10.3390/cells9010024
    [15] Teschke R. Alcoholic liver disease: Alcohol metabolism,cascade of molecular mechanisms,cellular targets,and clinical aspects[J]. Biomedicines,2018,6(4):106. doi: 10.3390/biomedicines6040106
    [16] Kisseleva T,Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression[J]. Nat Rev Gastroenterol Hepatol,2021,18(3):151-166. doi: 10.1038/s41575-020-00372-7
    [17] Shan L,Jiang T,Ci L,et al. Purine signaling regulating HSCs inflammatory cytokines secretion,activation,and proliferation plays a critical role in alcoholic liver disease[J]. Mol Cell Biochem,2020,466(1-2):91-102. doi: 10.1007/s11010-020-03691-0
    [18] Chen W,Yan X,Yang A,et al. miRNA-150-5p promotes hepatic stellate cell proliferation and sensitizes hepatocyte apoptosis during liver fibrosis[J]. Epigenomics,2020,12(1):53-67. doi: 10.2217/epi-2019-0104
    [19] Chen N,Luo J,Hou Y,et al. miR-29c-3p promotes alcohol dehydrogenase gene cluster expression by activating an ADH6 enhancer[J]. Biochem Pharmacol,2022,203(4):115182.
    [20] Kilikevicius A,Meister G,Corey D R. Reexamining assumptions about miRNA-guided gene silencing[J]. Nucleic Acids Res,2022,50(2):617-634. doi: 10.1093/nar/gkab1256
    [21] Wang X,He Y,Mackowiak B,et al. MicroRNAs as regulators,biomarkers and therapeutic targets in liver diseases[J]. Gut,2021,70(4):784-795. doi: 10.1136/gutjnl-2020-322526
    [22] Dichtel L E,Cordoba-Chacon J,Kineman R D. Growth hormone and insulin-like growth factor 1 regulation of nonalcoholic fatty liver disease[J]. J Clin Endocrinol Metab,2022,107(7):1812-1824. doi: 10.1210/clinem/dgac088
    [23] Cristin L,Montini A,Martinino A,et al. The role of growth hormone and insulin growth factor 1 in the development of non-alcoholic steato-hepatitis: A systematic review[J]. Cells,2023,12(4):517. doi: 10.3390/cells12040517
    [24] Adamek A,Kasprzak A. Insulin-like growth factor (IGF) system in liver diseases[J]. Int J Mol Sci,2018,19(5):1308. doi: 10.3390/ijms19051308
    [25] Stanley T L,Fourman L T,Zheng I,et al. Relationship of IGF-1 and IGF-binding proteins to disease severity and glycemia in nonalcoholic fatty liver disease[J]. J Clin Endocrinol Metab,2021,106(2):e520-e533.
    [26] Takahashi Y. The role of growth hormone and insulin-like growth factor-I in the liver[J]. Int J Mol Sci,2017,18(7):1447. doi: 10.3390/ijms18071447
    [27] De La Garza R G,Morales-Garza L A,Martin-Estal I,et al. Insulin-like growth factor-1 deficiency and cirrhosis establishment[J]. J Clin Med Res,2017,9(4):233-247. doi: 10.14740/jocmr2761w
    [28] Martín-González C,González-Reimers E,Quintero-Platt G,et al. Soluble α-klotho in liver cirrhosis and alcoholism[J]. Alcohol Alcohol,2019,54(3):204-208. doi: 10.1093/alcalc/agz019
    [29] Luo P,Zheng M,Zhang R,et al. S-Allylmercaptocysteine improves alcoholic liver disease partly through a direct modulation of insulin receptor signaling[J]. Acta Pharm Sin B,2021,11(3):668-679. doi: 10.1016/j.apsb.2020.11.006
    [30] Møller S,Becker U,Juul A,et al. Prognostic value of insulinlike growth factor I and its binding protein in patients with alcohol-induced liver disease. EMALD group[J]. Hepatology,1996,23(5):1073-1078. doi: 10.1002/hep.510230521
  • [1] 周锟, 刘亚丽, 李自良, 钱丽萍, 冉丽权, 任娅岚.  miR-34a对人牙周膜干细胞增殖和成骨分化的影响, 昆明医科大学学报.
    [2] 罗丽丝, 杨清雄, 王燕, 刘四香, 许榛, 凌昱.  儿童肥胖症中IGF-1和IGFBP-3的水平及诊断价值, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250118
    [3] 李妍平, 董小林, 李青芸, 李红梅, 魏欢, 曾毅.  miR-21-5p通过抑制STAT3缓解OGD诱导的HT22细胞炎症和凋亡并促进增殖, 昆明医科大学学报.
    [4] 蔡冰, 张伟, 刘静, 刘屹.  miR-218-5p通过调控LAYN抑制结肠癌发展的机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231206
    [5] 胡滔, 吴怡, 耿文达, 章意坚, 贺瑄, 李珊珊, 习杨彦彬, 邓丽玲.  自主运动训练通过调节Caspase-3的活性抑制人BRCA1突变乳腺癌的增殖与生长, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230419
    [6] 张晔琳, 马丽娅, 彭旭晖, 杨禾丰, 佘睿.  hsa-let-7a-5p调控牙周膜干细胞增殖及凋亡, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231028
    [7] 张玮, 王保全, 雷喜锋, 王旭, 张梁.  miR-125b-5p调控HK2抑制胆囊癌细胞增殖和糖酵解, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221206
    [8] 廖周俊, 杨少华, 刘立鑫, 胡晟, 陈轶晖, 康强, 张小文.  AK4对肝内胆管癌细胞HUCCT1增殖、迁移的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220611
    [9] 赵斌, 段元鹏, 张国颖, 毕城伟, 杨李波, 施致裕, 杨勇, 张建朋, 高婷.  CircRNA EZH2通过调控miR-30c-5p促进前列腺癌细胞增殖和迁移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220731
    [10] 王保全, 张伟, 田园, 雷喜锋, 王旭.  miR-142-5p通过CCND1调控胆囊癌细胞的增殖和转移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220223
    [11] 杨兰, 贾霄, 姜奕彤, 崔琪, 刘光赐, 何颖红.  UBE2C基因沉默表达对人胃癌AGS细胞增殖和迁移的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210504
    [12] 余朝军, 赵迁浩, 赵宁辉.  低氧微环境对脑胶质瘤细胞增殖、凋亡及HIF-1α表达的影响, 昆明医科大学学报.
    [13] 戈佳云.  慢病毒介导的FHIT基因过表达调控人肝癌细胞株生长实验研究, 昆明医科大学学报.
    [14] 胡建鹏.  龙血素A对大鼠肝星状细胞增殖及Frizzled-4受体蛋白表达的影响, 昆明医科大学学报.
    [15] 刘立鑫.  二甲双胍对肝癌细胞HCCLM3生物学行为的影响, 昆明医科大学学报.
    [16] 陈学平.  氨培养胎鼠神经细胞钙离子浓度变化与凋亡的相关性, 昆明医科大学学报.
    [17] 王海峰.  上调microRNA-101沉默EZH2基因表达对人膀胱癌T24细胞系增殖和凋亡的影响, 昆明医科大学学报.
    [18] 曾洪艳.  神经营养因子、凋亡相关因子和轴突导向因子在大鼠神经管畸形发育中的表达, 昆明医科大学学报.
    [19] 夏英杰.  SD大鼠髁状突颈部骨折对大鼠髁状突软骨细胞增殖与凋亡的影响, 昆明医科大学学报.
    [20] 体外培养神经干细胞CNTF、TGF-β1和IGF-1的表达, 昆明医科大学学报.
  • 加载中
图(4)
计量
  • 文章访问数:  1240
  • HTML全文浏览量:  1137
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-26
  • 网络出版日期:  2023-09-22
  • 刊出日期:  2023-09-30

目录

/

返回文章
返回