Differences of Placental Microbiota DNA between Gestational Diabetes Mellitus and Normal Full-term Mothers
-
摘要:
目的 探讨妊娠期糖尿病与正常足月儿母亲胎盘菌群DNA的差异,为今后深入研究提供参考数据。 方法 采集2018年2至9月在昆明医科大学第一附属医院产科分娩的足月儿母亲胎盘组织共30例,按是否伴有妊娠期糖尿病分为妊娠期糖尿病组(A组)与正常足月儿组(B组),通过Illumina MiSeq测序系统对胎盘组织中的细菌DNA进行测序后进行分析,比较2组胎盘菌群DNA的差异。 结果 所测定胎盘组织中都有以变形菌门、放线菌门、厚壁菌门、拟杆菌门等菌门为主的菌群DNA。采用LEfSe分析得出2组胎盘菌群DNA在门、纲水平上差异无统计学意义(P > 0.05),属水平上,丙酸杆菌属、栖热菌属、柯林斯菌属、梭状芽胞杆属IV、另枝菌属、厌氧菌属的相对丰度在妊娠期糖尿病组中显著升高(LDA > 2)。 结论 胎盘组织中可以检测到一定量的细菌DNA,母亲妊娠期糖尿病与正常足月儿其母亲胎盘菌群DNA的组成和丰度存在差异,这种差异可能影响妊娠期糖尿病的发生及预后,值得深入研究。 -
关键词:
- 胎盘菌群DNA /
- 16s rDNA高通量测序 /
- 妊娠期糖尿病 /
- 足月儿
Abstract:Objective To explore the differences of maternal placental microbiota DNA between gestational diabetes mellitus (GDM) and normal full-term infants, and provide reference data for further research. Methods A total of 30 cases of full-term infants’ placental tissue were collected from February to September 2018 at the First Affiliated Hospital of Kunming Medical University. The cases were divided into two groups: the gestational diabetes group (Group A) and the normal full-term infants group (Group B), based on the presence or absence of gestational diabetes. The bacterial DNA in the placental tissue was sequenced using the Illumina MiSeq sequencing system, and the differences in placental microbiota DNA between the two groups were compared. Results The DNA of microbial communities in the placental tissue was mainly composed of phyla such as Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. LEfSe analysis showed no statistically significant differences in the microbial communities at the phylum and class levels between the two groups (P > 0.05). However, at the genus level, the relative abundance of Propionibacterium, Thermus, Collinsella, Clostridium IV, Alistipes and Anaerostipes was significantly higher in the gestational diabetes group (LDA > 2). Conclusion The results of our study indicates that there are a rich microbiome DNA in the maternal placenta and that the composition and abundance of microbiome DNA are different between GDM and normal full-term infants, which may affect the occurrence and prognosis of GDM and deserves further study. -
微生物群是特定环境中所有微生物的集合,在人体不同部位各不相同,研究发现人体微生物群在代谢、免疫和内分泌等系统中发挥重要作[1-4]。胎盘是母亲与胎儿之间重要的纽带,研究发现当产妇合并妊娠期糖尿病(gestational diabetes mellitus,GDM)时,胎盘组织中的菌群组成和结构可能会发生改变[5-6],而这种菌群的改变可能会导致不良的结果[7-8]。
近年来,GDM的发生率逐渐升高,预防GDM的发生、防治其并发症已成为临床研究的重要任务。本研究通过16S rDNA技术检测和分析足月儿母亲的胎盘菌群DNA,探讨妊娠期糖尿病与正常足月儿母亲之间的胎盘菌群的差异,为研究和防治妊娠期糖尿病提供新思路和参考数据。
1. 资料与方法
1.1 研究对象
收集了30例2018年2~9月期间在昆明医科大学第一附属医院产科分娩的足月孕妇胎盘组织。严格按照以下入组标准,根据产妇妊娠期间是否伴有妊娠期糖尿病进行分组后得到妊娠期糖尿病组(A组)4例(A1~A4)与正常足月儿组(B组)6例(B1~B6)。
(1)产妇的纳入及排除标准[9]:纳入标准:规律产检,年龄为20~45岁。排除标准:①伴有多胎妊娠、慢性高血压、内分泌失调、链球菌感染、胎膜早破、肿瘤和其他严重母体疾病;②伴有吸烟、饮酒、滥用药物等不良习惯等。(2)新生儿的纳入及排除标准[10]:纳入标准:37周≤胎龄 < 42周。排除标准:①胎龄 < 37周或≥42周;②伴有出生重度窒息、败血症等严重疾病史。
本研究通过昆明医科大学第一附属医院伦理委员会批准[伦理批号:(2023)伦理L第38号],所有研究对象均签署了知情同意书。
1.2 研究方法
1.2.1 临床资料收集
由专人收集母婴的临床数据特征。包括母婴病史、年龄和孕前BMI、胎龄、出生体重、出生方式、出生时的身长及头围、新生儿评分和脐动、静脉PH及乳酸等实验室检查结果等。
1.2.2 胎盘标本的采集
由专人收集标本,胎盘娩出后,将近脐端的羊膜用无菌剪剪除,另换一把无菌剪剪取下方的绒毛状胎盘膜约1 cm3,随后放入无菌试管中,并立即保存到-80℃冰箱。所有操作在产后/剖宫产术后1 h内完成,整个过程遵循无菌操作原则。
1.2.3 胎盘组织中细菌DNA的提取及测序
见图1。
1.2.4 对测序序列进行生物信息学处理
按97%相似度进行聚类,得到代表物种的OTU,随后使用Qiime软件进行分析,通过与16S数据库(RDP,http://rdp.cme.msu.edu)进行比对、分类后得到OTU丰度表,分别在门(Phylum)水平选取丰度前十五、属(Genus)水平选取丰度前二十的物种进行统计绘制菌落结构柱状图并根据丰度表进行样本及组间物种的分析。
1.3 统计学处理
采用SPSS 26.0软件。计量资料以均数±标准差(
$\bar x \pm s $ )表示,组间比较采用t检验。计数资料以百分率(%)表示,组间比较采用Fisher确切概率法。采用Alpha、Beta多样性分析反映两组物种多样性的差异大小。采用LEfSe线性判别分析(LDA > 2)出有显著性差异的群落或物种。组间差异分析采用秩和检验。检验水准α = 0.05。2. 结果
2.1 一般情况
符合纳入标准的对象基本特征,见表1。2组间婴儿性别、分娩方式、脐动脉pH及乳酸、脐静脉pH及乳酸、母亲年龄、胎龄、出生体重、身长及头围间的差异无统计学意义(P > 0.05);妊娠期糖尿病组(A组)母亲孕前BMI高于正常足月儿组(B组),组间母亲孕前BMI差异有统计学意义(P < 0.05)。
表 1 A组与B组母婴一般情况比较($\bar x \pm s $ )Table 1. Comparison of maternal and infant general conditions between group A and B ($\bar x \pm s $ )项目 妊娠期糖尿病组(A组,n = 4) 正常足月儿组(B组,n = 6) t P 性别
男/女(n)1/3 1/5 − 0.9991 出生方式
顺产/剖宫产(n)2/2 5/1 − 0.5001 脐动脉pH 7.230 ± 0.116 7.280 ± 0.036 0.834 0.459 脐动脉乳酸
(mmol/L)4.775 ± 3.398 4.550 ± 1.499 0.146 0.888 脐静脉pH 7.283 ± 0.079 7.358 ± 0.040 −1.770 0.151 脐静脉乳酸
(mmol/L)4.450 ± 3.440 4.733 ± 1.435 −0.183 0.859 母亲年龄(岁) 37.000 ± 5.888 28.330 ± 6.532 2.312 0.066 母亲孕前身体质量指数BMI(kg/m2) 25.519 ± 2.536 19.728 ± 1.429 4.671 0.002* 胎龄(d) 268.500 ± 9.256 273.000 ± 8.741 −0.780 0.458 出生体重(g) 2777.50 ± 634.27 3100.000 ± 337.460 −1.060 0.320 身长(cm) 47.500 ± 4.041 50.000 ± 1.789 −1.359 0.211 头围(cm) 32.750 ± 1.500 33.670 ± 1.211 −1.070 0.316 1为Fisher确切概率法计算的P值,*P < 0.05。 2.2 测序数据结果
经过16S rDNA基因高通量测序,10个样本共得到601794条有效序列(Clean Reads),平均有效序列数为60179.4条,其中最大序列数为64431条,最少序列数为55961条。
2.3 胎盘菌群OTU 聚类及物种注释分析
2.3.1 OTU 聚类分析
按97%相似度进行聚类,各样本OUT数量柱状图,平均每个样本含有171.4个OTU数,2组OTU数量,差异无统计学意义(P > 0.05),见图2a。所有样本共检测出783个OTU,其中妊娠期糖尿病组有427个OTU,特有OTU数为154个,而正常足月儿组有576个,特有的OTU为303个,2组共有OUT数量为273个,见图2b。
2.3.2 物种丰度分析
(1)门水平上的物种丰度分析:在门水平上,全样本丰度明显占优势的菌门有Proteobacteria(变形菌门)、Actinobacteria(放线菌门)、Firmicutes(厚壁菌门)、Bacteroidetes(拟杆菌门)、Verrucomicrobia(疣微菌门)、Fusobacteria(梭杆菌门)、Deinococcus-Thermus(异常球菌-栖热菌门)等,其中变形菌门、放线菌门、厚壁菌门、拟杆菌门的丰度占总样本丰度的95%以上,见图3。
(2)属水平上的物种丰度分析 在属水平上,全样本丰度明显占优势的菌属有Arthrobacter(节细菌属)、Pseudomonas(假单胞菌属)、Bacteroides(多形杆状菌属)、Deiftia、Brevundimonas(短波单胞菌属)、Lactobacillus(乳杆菌属)、Chryseobacterium、Acinetobacter(不动杆菌属)、 Klebsiella(克雷伯氏杆菌属)、Stenotrophomonas(单胞菌属)、Sphingobacterium(鞘氨醇杆菌属)、Escherichia/Shigella(埃希氏菌属/志贺氏菌属)等,见图4。
2.3.3 物种丰度聚类热图
根据物种丰度信息,选取丰度前二十的物种,对样本和物种进行聚类,并绘制成热图。2组间物种组成及丰度相似,每个物种在各样本中的丰度如下图所示,见图5。
横向聚类表示该物种在各样本中的丰度相似情况,纵向聚类表示所有物种在不同样本间表达的相似情况,距离越近,枝长越短,说明越相似;2到-2对应颜色变化表示物种丰度逐渐降低。
2.4 胎盘组织菌群多样性分析
2.4.1 测序量的评估
根据曲线跨度和下降趋势可知,每个样品中物种的丰富度和均匀度,见图6;物种积累曲线急剧上升后趋于平缓,说明研究中样本测序量已经能够反映样品中绝大多数的微生物信息,见图7。
物种的丰富度越高,曲线在横轴上的跨度越大;曲线下降越平缓,物种分布越均匀。
2.4.2 Alpha多样性分析
A组与B组之间的Alpha多样性指数差异无统计学意义(P > 0.05),见图8。
2.4.3 Beta多样性分析
(1) NMDS分析A组与B组之间胎盘菌群的物种组成有一定差异,但差异无统计学意义(P > 0.05),见图9。
R^2越大越好/2个R^2值越一致越好;Stress < 0.2说明有一定可靠性。
(2)PCoA 分析 A组与B组之间胎盘菌群的物种组成有差异,但差异无统计学意义(P > 0.05),见图10。
2.5 组间物种LEfSe差异分析
组间具有显著性差异的物种的进化情况,见图11a;具有显著性差异的物种有Propionibacteriaceae(丙酸杆菌科)、Propionibacterium(丙酸杆菌属)、Thermales(栖热菌目)、Thermaceae(栖热菌科 )、Thermus(栖热菌属)、 Collinsella(柯林斯菌属)、ClostridiumIV(梭状芽胞杆属)、 Rikenellaceae、Alistipes(另枝菌属)、Anaerostipes(厌氧棒状菌属)(LDA > 2),见图11b。
3. 讨论
GDM是妊娠期最常见的代谢紊乱疾病,近年来中国GDM患病率呈急剧上升趋势(8.1%~24.2%)[11]。GDM的发生受到产妇体重、年龄、遗传和环境等多方面影响[12-13],Sun等[14]发现孕前BMI是GDM的相关风险因素,本研究同样发现伴有GDM与正常妊娠相比较,母亲孕前BMI差异有统计学意义。GDM妊娠与正常妊娠相比,胎盘大小增加,绒毛不成熟和一系列血管病变[15],还可能导致胎盘菌群发生改变[5],给母体、胎儿及后代带来严重的短期和长期健康危害[16-18],然而母亲的GDM状态如何影响胎盘微生物群的相关机制尚不清楚,可能通过炎症和氧化应激与GDM诱导的高血糖状态相互作用,或通过口腔-胎盘途径影响胎盘菌群[5]。目前饮食+身体活动干预是预防GDM的主要方法[19],也有许多针对GDM的药物治疗,但越来越多的证据表明,孕期使用二甲双胍这类降糖药物可能对胎儿生后产生长期的不良后果[20-21]。近年来,益生菌作为一种新的干预措施,在预防妊娠期糖尿病上崭露头角[22-24],它能使胰岛素抵抗(HOMA-IR)和HOMA-B标记物减少并促进胰岛素的分泌[25],影响GDM孕妇的葡萄糖代谢和体重增加[26],通过调节孕期的微生物组成从而改善产妇健康和妊娠结局[27]。虽然目前大量研究表明服用益生菌对GDM有一定预防作用,但仍有研究指出益生菌的应用会增加先兆子痫的风险[28]。因而,目前仍然需要个更多的研究来揭示在GDM中起关键作用的菌群、载量及其在诱导疾病中的作用机制,以及需要更高质量、大规模的临床试验来评估益生菌的最佳剂量和理想细菌组成,从而促进孕期母婴的健康。
本研究检测的胎盘组织中的微生物群主要由变形菌门、放线菌门、厚壁菌门、拟杆菌门等菌门组成,其中变形菌门的相对丰度最高,这与Zheng等[29]、Bassols等[30]研究结果一致。属水平上以节细菌属、假单胞菌属、多形杆状菌属、Deiftia、短波单胞菌属、乳杆菌属、Chryseobacterium、不动杆菌属、克雷伯氏杆菌属、单胞菌属、鞘氨醇杆菌属、埃希氏菌属/志贺氏菌属等菌属为主的菌群,Zakis等[31]、Tang等[6]及本课题前期研究[10]发现的菌属大致相同。
本研究2组菌群的物种丰度在门、纲水平上无显著差异,而在目至属水平上,发现栖热菌目、丙酸杆菌科、栖热菌科、Rikenellaceae、丙酸杆菌属、栖热菌属、柯林斯菌属、梭状芽胞杆属IV、另枝菌属、厌氧菌属的丰度在妊娠期糖尿病组中较正常足月儿组显著升高,暂未发现有显著丰度降低的菌类。Bassols[30]等发现GDM妇女的胎盘微生物群中假单胞菌目和不动杆菌属的相对丰度较低,另一研究[7]发现双歧杆菌属,Duncaniella,及瘤胃球菌属在GDM中显著升高,Tang等[6]发现GDM妇女的胎盘菌群多样性增加,其中Anaerotruncus瘤胃球菌属、粪球菌属、副普雷沃菌属及乳酸杆菌属的丰度在GDM中升高,然而韦荣氏菌属丰度降低。综上,多个学者证实GDM妇女的胎盘菌群与正常妇女对比存在差异,但具体显著性差异的菌类各不相同,一方面可能样本量相对较小,也有可能是胎盘菌群本身的个体差异。
本研究通过Illumina MiSeq测序系统对胎盘组织的菌群DNA进行检测和分析,严格执行无菌操作,从胎盘组织中成功分离和鉴定了微生物序列,证明了胎盘组织中存在着一定量的细菌群落DNA,而胎盘菌群的组成、丰度在妊娠期糖尿病与正常足月儿中有显著性差异,而这些显著性差异的菌类可能是妊娠期糖尿病的潜在致病菌并长期影响母婴的健康。本研究也为全面、准确地获得胎盘菌群的信息做出了贡献,为妊娠期糖尿病妇女的胎盘宏基因组研究奠定了重要的理论基础。
-
表 1 A组与B组母婴一般情况比较(
$\bar x \pm s $ )Table 1. Comparison of maternal and infant general conditions between group A and B (
$\bar x \pm s $ )项目 妊娠期糖尿病组(A组,n = 4) 正常足月儿组(B组,n = 6) t P 性别
男/女(n)1/3 1/5 − 0.9991 出生方式
顺产/剖宫产(n)2/2 5/1 − 0.5001 脐动脉pH 7.230 ± 0.116 7.280 ± 0.036 0.834 0.459 脐动脉乳酸
(mmol/L)4.775 ± 3.398 4.550 ± 1.499 0.146 0.888 脐静脉pH 7.283 ± 0.079 7.358 ± 0.040 −1.770 0.151 脐静脉乳酸
(mmol/L)4.450 ± 3.440 4.733 ± 1.435 −0.183 0.859 母亲年龄(岁) 37.000 ± 5.888 28.330 ± 6.532 2.312 0.066 母亲孕前身体质量指数BMI(kg/m2) 25.519 ± 2.536 19.728 ± 1.429 4.671 0.002* 胎龄(d) 268.500 ± 9.256 273.000 ± 8.741 −0.780 0.458 出生体重(g) 2777.50 ± 634.27 3100.000 ± 337.460 −1.060 0.320 身长(cm) 47.500 ± 4.041 50.000 ± 1.789 −1.359 0.211 头围(cm) 32.750 ± 1.500 33.670 ± 1.211 −1.070 0.316 1为Fisher确切概率法计算的P值,*P < 0.05。 -
[1] Giannella L,Grelloni C,Quintili D,et al. Microbiome changes in pregnancy disorders[J]. Antioxidants,2023,12(2):463. doi: 10.3390/antiox12020463 [2] Dominguez-Bello M G,Godoy-Vitorino F,Knight R,et al. Role of the microbiome in human development[J]. Gut,2019,68(6):1108-1114. doi: 10.1136/gutjnl-2018-317503 [3] Tozzo P,Delicati A,Caenazzo L. Human microbiome and microbiota identification for preventing and controlling healthcare-associated infections: A systematic review[J]. Front Public Health,2022,10:989496. doi: 10.3389/fpubh.2022.989496 [4] Yao Y,Cai X,Chen C,et al. The role of microbiomes in pregnant women and offspring: Research progress of recent years[J]. Front Pharmacol,2020,11:643. doi: 10.3389/fphar.2020.00643 [5] Farhat S,Hemmatabadi M,Ejtahed H S,et al. Microbiome alterations in women with gestational diabetes mellitus and their offspring: A systematic review[J]. Frontiers in Endocrinology,2022,13:1060488. doi: 10.3389/fendo.2022.1060488 [6] Tang N,Luo Z C,Zhang L,et al. The association between gestational diabetes and microbiota in placenta and cord blood[J]. Frontiers in Endocrinology,2020,11:550319. doi: 10.3389/fendo.2020.550319 [7] La X,Wang Y,Xiong X,et al. The composition of placental microbiota and its association with adverse pregnancy outcomes[J]. Front Microbiol,2022,13:911852. doi: 10.3389/fmicb.2022.911852 [8] Zheng J,Xiao X,Zhang Q,et al. The placental microbiome varies in association with low birth weight in full-term neonates[J]. Nutrients,2015,7(8):6924-6937. doi: 10.3390/nu7085315 [9] 凌娅. 胎盘、阴道局部菌群改变与胎膜早破相关性研究[D]. 昆明: 昆明医科大学, 2022. [10] 熊晶晶,祁文瑾,胡红卫,等. 正常足月儿母亲胎盘菌群检析[J]. 昆明医科大学学报,2017,38(11):52-57. doi: 10.3969/j.issn.1003-4706.2017.11.013 [11] Wang H,Li N,Chivese T,et al. IDF diabetes atlas: Estimation of global and regional gestational diabetes mellitus prevalence for 2021 by international association of diabetes in pregnancy Study Group’s criteria[J]. Diabetes Research and Clinical Practice,2022,183:109050. doi: 10.1016/j.diabres.2021.109050 [12] Li Y,Ren X,He L,et al. Maternal age and the risk of gestational diabetes mellitus: A systematic review and meta-analysis of over 120 million participants[J]. Diabetes Res Clin Pract,2020,162:108044. doi: 10.1016/j.diabres.2020.108044 [13] Zhang Y,Xiao C M,Zhang Y,ea al. Factors associated with gestational diabetes mellitus: A meta-analysis[J]. J Diabetes Res,2021,2021:6692695. [14] Sun M,Luo M,Wang T,et al. Effect of the interaction between advanced maternal age and pre-pregnancy BMI on pre-eclampsia and GDM in Central China[J]. BMJ Open Diabetes Res Care,2023,11(2):e003324. doi: 10.1136/bmjdrc-2023-003324 [15] Ehlers E,Talton O O,Schust D J,et al. Placental structural abnormalities in gestational diabetes and when they develop: A scoping review[J]. Placenta,2021,116:58-66. doi: 10.1016/j.placenta.2021.04.005 [16] Xie W,Wang Y,Xiao S,et al. Association of gestational diabetes mellitus with overall and type specific cardiovascular and cerebrovascular diseases: Systematic review and meta-analysis[J]. BMJ,2022,378:e070244. [17] Johns E C,Denison F C,Norman J E,et al. Gestational diabetes mellitus: Mechanisms,treatment,and complications[J]. Trends Endocrinol Metab,2018,29(11):743-754. doi: 10.1016/j.tem.2018.09.004 [18] Ye W,Luo C,Huang J,Li C,et al. Gestational diabetes mellitus and adverse pregnancy outcomes: Systematic review and meta-analysis[J]. BMJ,2022,377:e067946. [19] Wu S,Jin J,Hu K L,et al. Prevention of gestational diabetes mellitus and gestational weight gain restriction in overweight/obese pregnant women: A systematic review and network meta-analysis[J]. Nutrients,2022,14(12):2383. doi: 10.3390/nu14122383 [20] Murray S R,Reynolds R M. Short- and long-term outcomes of gestational diabetes and its treatment on fetal development[J]. Prenat Diagn,2020,40(9):1085-1091. doi: 10.1002/pd.5768 [21] Tarry-Adkins J L,Aiken C E,Ozanne S E. Neonatal,infant,and childhood growth following metformin versus insulin treatment for gestational diabetes: A systematic review and meta-analysis[J]. PLoS Med,2019,16(8):e1002848. doi: 10.1371/journal.pmed.1002848 [22] Homayouni A,Bagheri N,Mohammad-Alizadeh-Charandabi S,et al. Prevention of gestational diabetes mellitus (GDM) and probiotics: Mechanism of action: A review[J]. Curr Diabetes Rev,2020,16(6):538-545. [23] Deng Y F,Wu L P,Liu Y P. Probiotics for preventing gestational diabetes in overweight or obese pregnant women: A review[J]. World J Clin Cases,2022,10(36):13189-13199. doi: 10.12998/wjcc.v10.i36.13189 [24] Zhou L,Ding C,Wu J,et al. Probiotics and synbiotics show clinical efficacy in treating gestational diabetes mellitus: A meta-analysis[J]. Prim Care Diabetes,2021,15(6):937-947. doi: 10.1016/j.pcd.2021.08.005 [25] Okesene-Gafa K A,Moore A E,Jordan V,et al. Probiotic treatment for women with gestational diabetes to improve maternal and infant health and well-being[J]. Cochrane Database Syst Rev,2020,6(6):CD012970. [26] Dolatkhah N,Hajifaraji M,Abbasalizadeh F,et al. Is there a value for probiotic supplements in gestational diabetes mellitus? A randomized clinical trial[J]. J Health Popul Nutr,2015,33:25. doi: 10.1186/s41043-015-0034-9 [27] Zakaria Z Z,Al-Rumaihi S,Al-Absi R S,et al. Physiological changes and interactions between microbiome and the host during pregnancy[J]. Front Cell Infect Microbiol,2022,12:824925. doi: 10.3389/fcimb.2022.824925 [28] Davidson S J,Barrett H L,Price S A,et al. Probiotics for preventing gestational diabetes[J]. Cochrane Database Syst Rev,2021,4(4):CD009951. [29] Zheng J,Xiao X,Zhang Q,et al. The placental microbiota is altered among subjects with gestational diabetes mellitus: A pilot study[J]. Front Physiol,2017,8:675. doi: 10.3389/fphys.2017.00675 [30] Bassols J,Serino M,Carreras-Badosa G,et al. Gestational diabetes is associated with changes in placental microbiota and microbiome[J]. Pediatr Res,2016,80(6):777-784. doi: 10.1038/pr.2016.155 [31] Zakis DR,Paulissen E,Kornete L,et al. The evidence for placental microbiome and its composition in healthy pregnancies: A systematic review[J]. J Reprod Immunol,2022,149:103455. doi: 10.1016/j.jri.2021.103455 -