Changes of Peripheral Blood Lymphocyte Subsets of Population De-adaptated from High Altitude
-
摘要:
目的 了解移居高原低氧环境人群返回中海拔地区后外周血淋巴细胞亚群的变化,探讨高原脱适应对健康人免疫功能的影响。 方法 采用流式细胞术检测47例高原人员返回中海拔地区15 d内淋巴细胞亚群的变化。 结果 高原居住时间≥1 a的人员在返回中海拔地区第1天比高原居住时间 < 1 a的人员CD3+T细胞更低、B细胞更高(P < 0.05);高原居住时间≥1 a的人员在返回中海拔地区第15天比高原居住时间 < 1 a的人员B淋巴细胞更高(P < 0.01)。高原人群返回中海拔地区15 d外周血T淋巴细胞亚群中CD8+T细胞百分含量升高(P < 0.05),CD4+T细胞比CD8+T细胞比率下降(P < 0.05);自然杀伤(natural killer,NK)细胞百分含量升高(P < 0.05);细胞因子诱导的杀伤(cytokine-induced killer ,CIK)细胞百分含量升高(P < 0.01);CD3+T细胞、CD4+T细胞和B细胞差异无统计学意义(P > 0.05)。 结论 高原脱适应人群外周血淋巴细胞亚群与年龄、海拔及高原居住时间的分析提示高原居住时长会影响机体脱适应期的细胞免疫和体液免疫。高原脱适应期人外周血CD8+T淋巴细胞、NK细胞及CIK细胞百分含量上升,提示高原脱适应主要通过作用细胞免疫和非特异性免疫过程影响机体免疫功能。 -
关键词:
- 高原脱适应 /
- T淋巴细胞 /
- B淋巴细胞 /
- 自然杀伤细胞 /
- 细胞因子诱导的杀伤细胞
Abstract:Objective To understand the changes in peripheral blood lymphocyte subsets in individuals who have migrated to high-altitude low-oxygen environments and returned to lower altitude areas, and to explore the impact of high-altitude deadaptation on the immune function of healthy individuals. Methods The changes of peripheral blood lymphocyte subsets in 47 migrants within 15 days de-adaptated from high altitude were measured by flow cytometry. Results People with a residence time of ≥1 year in high-altitude areas had lower CD3+ T cell levels and higher B cell levels on the first day of returning to low-altitude regions compared to those with a residence time of < 1 year (P < 0.05). On the 15th day of returning to low-altitude regions, people with a residence time of ≥1 year in high-altitude areas had higher B lymphocyte levels compared to those with a residence time of < 1 year (P < 0.01). In the peripheral blood T lymphocyte subgroups of high-altitude residents returning to low-altitude regions after 15 days, the percentage of CD8+ T cells increased (P < 0.05), the ratio of CD4+ T cells to CD8+ T cells decreased (P < 0.05), the percentage of natural killer (NK) cells increased (P < 0.05), and the percentage of cytokine-induced killer (CIK) cells increased (P < 0.01). There was no statistically significant difference in CD3+ T cells, CD4+ T cells, and B cells (P > 0.05). Conclusions Analysis of peripheral blood lymphocyte subgroups in populations adapted to high altitudes suggests that the duration of residence at high altitudes affects cellular and humoral immunity during the de-adaptation period. The percentage of CD8+ T lymphocytes, NK cells, and CIK cells in the peripheral blood of individuals during the de-adaptation period at high altitudes increases, indicating that the main effect of high-altitude de-adaptation is to affect the immune function of the body through cellular immunity and non-specific immune processes. -
表 1 高原脱适应期第1天外周血淋巴细胞亚群百分比与其基本特征的相关性(
$\bar x \pm s $ )Table 1. The percentages of migrant’s peripheral blood lymphocyte subsets and its basic characteristics within first day de-adaptated from high altitude (
$\bar x \pm s $ )淋巴细胞 年龄(岁) 海拔(m) < 30 ≥30 ≤4500 > 4500 n 27 20 13 34 CD3+ 68.17 ± 8.02 68.48 ± 7.73 67.89 ± 10.33 68.46 ± 6.80 CD3+CD4+ 36.27 ± 7.44 36.14 ± 6.85 35.75 ± 7.53 36.39 ± 7.06 CD3+CD8+ 26.11 ± 5.22 26.42 ± 9.85 26.20 ± 10.07 26.26 ± 6.36 CD4+/CD8+ 1.50 ± 0.51 1.58 ± 0.63 1.54 ± 0.52 1.53 ± 0.58 NK 14.34 ± 6.93 14.02 ± 6.66 14.30 ± 7.67 14.17 ± 6.48 CIK 12.55 ± 12.33 11.02 ± 11.95 14.30 ± 13.19 10.99 ± 11.68 CD19+ 10.15 ± 3.63 11.75 ± 3.73 10.67 ± 1.84 10.89 ± 4.24 表 2 高原脱适应期第15天外周血淋巴细胞亚群百分比与其基本特征的相关性(
$\bar x \pm s $ )Table 2. Percentages of immigrant’s peripheral blood lymphocyte subsets and its basic characteristics within last day de-adaptated from high altitude (
$\bar x \pm s $ )淋巴细胞 年龄(岁) 海拔(m) < 30 ≥30 ≤4500 > 4500 n 27 20 13 34 CD3+ 71.20 ± 5.88 68.40 ± 9.29 69.65 ± 10.35 70.15 ± 6.37 CD3+CD4+ 37.82 ± 6.87 35.47 ± 7.43 34.65 ± 7.79 37.65 ± 6.80 CD3+CD8+ 28.21 ± 5.91 25.57 ± 9.64 28.05 ± 9.71 26.72 ± 6.97 CD4+/CD8+ 1.42 ± 0.45 1.51 ± 0.72 1.29 ± 0.41 1.52 ± 0.62 NK 14.27 ± 6.80 19.29 ± 9.71 19.25 ± 9.77 15.32 ± 7.77 CIK 20.63 ± 12.85 21.26 ± 13.36 23.06 ± 13.59 20.07 ± 12.78 CD19+ 10.21 ± 3.99 10.51 ± 4.05 10.07 ± 2.56 10.44 ± 4.43 表 3 高原脱适应期人外周血淋巴细胞亚群百分比变化(
$\bar x \pm s $ )Table 3. The changes of peripheral blood lymphocyte subsets of immigrants de-adaptated from high altitude (
$\bar x \pm s $ )淋巴细胞 高原脱适应期第1天 高原脱适应期第15天 t P n 47 47 CD3+ 68.30 ± 7.81 70.01 ± 7.56 −1.847 0.065 CD3+CD4+ 36.21 ± 7.12 36.82 ± 7.13 −0.849 0.400 CD3+CD8+ 26.24 ± 7.45 27.08 ± 7.74 −2.191 0.028* CD4+/CD8+ 1.52 ± 0.56 1.46 ± 0.57 −2.322 0.020* NK 14.20 ± 6.74 16.40 ± 8.45 −2.199 0.033* CIK 11.90 ± 12.06 20.90 ± 12.93 −3.985 < 0.001** CD19+ 10.83 ± 3.72 10.34 ± 3.97 1.261 0.214 *P < 0.05;** P < 0.01。 -
[1] 格日力. 高原医学[M]. 北京: 北京大学医学出版社, 2015: 1. [2] 谢印芝,尹昭云,洪欣,等. 试述高原医学基本名词术语的概念与定义[J]. 高原医学杂志,1998,23(1):65-69. [3] 格日力. 中国高原医学研究回顾[J]. 青海医学院学报,2005,26(1):1-2. [4] 彭丽. 高原环境对汽车兵认知功能和作业能力的影响[D]. 上海: 中国人民解放军海军军医大学, 2018. [5] MacNutt M J. Acclimatisation, de-acclimatisation and re-acclimatisation to hypoxia[M]. New York: University of British Columbia, 2011: 16-23. [6] 高钰琪. 高原军事医学[M]. 重庆: 重庆出版社, 2005: 237-238. [7] 张宁平,王中华,张宁丽,等. 亚高原地区疗养对高原脱习服症状的改善[J]. 华南国防医学杂志,2022,36(2):133-135. [8] 余志平,汪雁,金源,等. 亚高原地区开展综合康复疗养对减轻移居者高原环境损害的研究[J]. 中国疗养医学,2022,31(5):460-465. [9] 田云梅,聂鸿靖,刘嘉瀛,等. 低氧暴露对大鼠外周血 T 淋巴细胞活化的影响[J]. 中国应用生理学杂志,2011,27(2):145-148. [10] Mishra K P,Ganju L. Influence of high altitude exposure on the immune system: A review[J]. Immunol Invest,2010,39(3):219-234. doi: 10.3109/08820131003681144 [11] 谈泰里. 高原训练对人体自细胞免疫功能的影响[J]. 中国科技博览,2012,(25):553-554. [12] 朱明明. 慢性高原病患者T细胞亚群及部分免疫指标研究[D]. 西宁: 青海大学, 2016. [13] 田云梅,聂鸿靖,刘嘉瀛,等. 高原低氧免疫损伤及其干预措施的研究[J]. 中国应用生理学杂志,2010,26(4):404-410. [14] 安蕊. 早产儿脑损伤外周血NK细胞与T细胞亚群变化研究[D]. 郑州: 郑州大学, 2014. [15] 罗强. 高原脱适应期血液学与神经系统相关指标的改变及机制研究[D]. 西安: 第四军医大学, 2015. [16] 潘秋予,麦陈耀,张金鹏等. 高原脱习服(脱适应)研究进展[J]. 中国疗养医学,2022,31(9):929-932. [17] 张卫花,姜钊. 高原脱适应症的危害及防治措施研究进展[J]. 中国疗养医学,2021,30(3):242-245. [18] 张建祥,魏敏,李贝华. 高原脱适应研究进展[J]. 中华神经外科疾病研究杂志,2015,14(5):478-480. [19] 何江,余伍忠,高晓康等. 长期驻不同海拔高原对官兵体液免疫功能影响的研究[J]. 人民军医,2010,53(4):261-262. [20] 崔昌裕,雷霞,王志尚,等. 放疗对宫颈癌患者外周血淋巴细胞亚群及细胞因子的影响[J]. 延安大学学报(医学科学版),2023,21(1):40-46+50. [21] 曹雪涛. 医学免疫学[M]. 第七版. 北京: 人民卫生出版社, 2018: 10-18. [22] Meehan R T. Immune suppression at high altitude[J]. Ann Emerg Med,1987,16(9):974-979. doi: 10.1016/S0196-0644(87)80743-6 [23] Wilder Smith A,Mustafa F B,Peng C M,et al. Transient immune impairment after a simulated long-haul flight[J]. Aviat Space Environ Med,2012,83(4):418-423. doi: 10.3357/ASEM.3162.2012 [24] Facco M,Zilli C,Siviero M,et al. Modulation of immune response by the acute and chronic exposure to high altitude[J]. MedSci Sports Exerc,2005,37(5):768-774. doi: 10.1249/01.MSS.0000162688.54089.CE [25] Ermolao A,Travain G,Facco M,et al. Relationship between stress hormones and immune response during high altitude exposure in women[J]. J Endocrinol Invest,2009,32(11):889-894. doi: 10.1007/BF03345767 [26] 陈军,顾松琴,袁汶,等. 高原地区健康人群T淋巴细胞亚群及血小板膜糖蛋白的改变[J]. 高原医学杂志,2018,28(04):50-53. [27] Cretenet G,Clerc I,Matias M,et al. Cell surface Glut1 levels distinguish human CD4 and CD8 T lymphocyte subsets with distinct effector functions[J]. Sci Rep,2016,6:24129. doi: 10.1038/srep24129 [28] Li P,Zheng S J,Jiang C H,et al. Th2 lymphocytes migrating to the bone marrow under high-altitude hypoxia promote erythropoiesis via activin A and interleukin-9[J]. Exp Hematol,2014,42(9):804-815. doi: 10.1016/j.exphem.2014.04.007 [29] Tian Y M,Nie H J,Liu J Y,et al. Effect of hypoxia on activation of the peripheral blood T lymphocyte in rats[J]. Chinese Journal of Applied Physiology,2011,27(2):145-148. [30] 万晓丹,陈传辉,徐华,等. 极端气候变化对哮喘患者全身及气道局部细胞,体液免疫的影响[J]. 山东医药,2010,50(21):12-14. [31] 王恬,陈佩杰,高炳宏. 模拟低氧训练对女子赛艇运动员淋巴细胞亚群等指标变化的影响[J]. 体育科学,2006,26(6):59-61. [32] 李胜学,王红练,赵玲莉,等. 高压氧对高原低氧下运动员力竭运动后血液指标的影响[J]. 青海医学院学报,2012,33(4):264-267. [33] Meehan R,Duncan U,Neale L,et al. Operation everest II: Alteration in the immune system at high altitudes[J]. J Clin Immunol,1988,8(5):397-406. doi: 10.1007/BF00917156 [34] Klokker M,Kjaer M,Secher N H,et al. Natural killer cell response to exercise in humans: effect of hypoxia and epidural anesthesia[J]. J Appl Physiol(1985),1995,78(2):709-716. [35] Broquet A,Roquilly A,Jacqueline C,et al. Depletion of natural killer cells increases mice susceptibility in a Pseudomonas aeruginosa pneumonia model[J]. Crit CareMed,2014,42(6):e441-450. [36] Kim J S,Chung I S,Lim S H,et al. Preclinical and clinicalstudies on cytokine‐induced killer cells for the treatment of renal cell carcinoma[J]. Arch Pharm Res,2014,37(5):559-566. doi: 10.1007/s12272-014-0381-x [37] Zhang L,Zhao G,Hou Y,et al. The experimental study on the treatment of cytokine‐induced killer cells combinedwith EGFR monoclonal antibody against gastric cancer[J]. Cancer Biother Radiopharm,2014,29(3):99-107.