[1]
|
Zasloff M. Antimicrobial peptides of multicellular organisms[J]. Nature,2002,415(6870):389-395. doi: 10.1038/415389a
|
[2]
|
Hancock R E,Nijnik A,Philpott D J. Modulating immunity as a therapy for bacterial infections[J]. Nat Rev Microbiol,2012,10(4):243-254. doi: 10.1038/nrmicro2745
|
[3]
|
Hamill P,Brown K,Jenssen H,et al. Novel anti-infectives: Is host defence the answer?[J]. Curr Opin Biotechnol,2008,19(6):628-636. doi: 10.1016/j.copbio.2008.10.006
|
[4]
|
Blyth G a D,Connors L,Fodor C,et al. The network of colonic host defense peptides as an innate immune defense against enteropathogenic bacteria[J]. Front Immunol,2020,11(15):965.
|
[5]
|
Shelley J R,Davidson D J,Dorin J R. The dichotomous responses driven by β-defensins[J]. Front Immunol,2020,11(56):1176.
|
[6]
|
Wu D,Fu L,Wen W,et al. The dual antimicrobial and immunomodulatory roles of host defense peptides and their applications in animal production[J]. Anim Sci Biotechnol,2022,13(1):141. doi: 10.1186/s40104-022-00796-y
|
[7]
|
Buccini D F,Cardoso M H,Franco O L. Antimicrobial peptides and cell-penetrating peptides for treating intracellular bacterial infections[J]. Front Cell Infect Microbiol,2021,10:612931. doi: 10.3389/fcimb.2020.612931
|
[8]
|
Bowdish D M,Davidson D J,Lau Y E,et al. Impact of LL-37 on anti-infective immunity[J]. J Leukoc Biol,2005,77(4):451-459.
|
[9]
|
Brown K L,Hancock R E. Cationic host defense (antimicrobial) peptides[J]. Curr Opin Immunol,2006,18(1):24-30. doi: 10.1016/j.coi.2005.11.004
|
[10]
|
Döring Y,Libby P,Soehnlein O. Neutrophil extracellular traps participate in cardiovascular diseases:Recent experimental and clinical insights[J]. Circ Res,2020,126(9):1228-1241. doi: 10.1161/CIRCRESAHA.120.315931
|
[11]
|
Alford M A,Baquir B,Santana F L,et al. Cathelicidin host defense peptides and inflammatory signaling:Striking a balance[J]. Front Microbiol,2020,11:1902. doi: 10.3389/fmicb.2020.01902
|
[12]
|
Territo M C,Ganz T,Selsted M E,et al. Monocyte-chemotactic activity of defensins from human neutrophils[J]. J Clin Invest,1989,84(6):2017-2020. doi: 10.1172/JCI114394
|
[13]
|
Hölzl M A,Hofer J,Steinberger P,et al. Host antimicrobial proteins as endogenous immunomodulators[J]. Immunol Lett,2008,119(1-2):4-11. doi: 10.1016/j.imlet.2008.05.003
|
[14]
|
Van Harten R M,Van Woudenbergh E,Van Dijk A,et al. Cathelicidins: Immunomodulatory antimicrobials[J]. Vaccines (Basel),2018,6(3):1-23.
|
[15]
|
Zughaier S M,Shafer W M,Stephens D S. Antimicrobial peptides and endotoxin inhibit cytokine and nitric oxide release but amplify respiratory burst response in human and murine macrophages[J]. Cell Microbiol,2005,7(9):1251-1262. doi: 10.1111/j.1462-5822.2005.00549.x
|
[16]
|
Cai J,Cui X,Wang X,et al. A Novel anti-infective peptide BCCY-1 with immunomodulatory activities[J]. Front Immunol,2021,12:713960. doi: 10.3389/fimmu.2021.713960
|
[17]
|
Laman A G,Lathe R,Savinov G V,et al. Innate immunity: Bacterial cell-wall muramyl peptide targets the conserved transcription factor YB-1[J]. FEBS Lett,2015,589(15):1819-1824. doi: 10.1016/j.febslet.2015.05.028
|
[18]
|
Mookherjee N,Hancock R E. Cationic host defence peptides: Innate immune regulatory peptides as a novel approach for treating infections[J]. Cell Mol Life Sci,2007,64(7-8):922-933. doi: 10.1007/s00018-007-6475-6
|
[19]
|
Nijnik A,Hancock R. Host defence peptides: Antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections[J]. Emerg Health Threats J,2009,2:e1.
|
[20]
|
Tjabringa G S,Ninaber D K,Drijfhout J W,et al. Human cathelicidin LL-37 is a chemoattractant for eosinophils and neutrophils that acts via formyl-peptide receptors[J]. Int Arch Allergy Immunol,2006,140(2):103-112. doi: 10.1159/000092305
|
[21]
|
De Y,Chen Q,Schmidt A P,et al. LL-37,the neutrophil granule and epithelial cell-derived cathelicidin,utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils,monocytes,and T cells[J]. J Exp Med,2000,192(7):1069-1074. doi: 10.1084/jem.192.7.1069
|
[22]
|
Niyonsaba F,Iwabuchi K,Someya A,et al. A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis[J]. Immunology,2002,106(1):20-26. doi: 10.1046/j.1365-2567.2002.01398.x
|
[23]
|
Yang D,Chen Q,Le Y,et al. Differential regulation of formyl peptide receptor-like 1 expression during the differentiation of monocytes to dendritic cells and macrophages[J]. J Immunol,2001,166(6):4092-4098. doi: 10.4049/jimmunol.166.6.4092
|
[24]
|
Lee H Y,Bae Y S. The anti-infective peptide,innate defense-regulator peptide,stimulates neutrophil chemotaxis via a formyl peptide receptor[J]. Biochem Biophys Res Commun,2008,369(2):573-578. doi: 10.1016/j.bbrc.2008.02.046
|
[25]
|
Scott M G,Dullaghan E,Mookherjee N,et al. An anti-infective peptide that selectively modulates the innate immune response[J]. Nat Biotechnol,2007,25(4):465-472. doi: 10.1038/nbt1288
|
[26]
|
Chen X,Takai T,Xie Yet al. Human antimicrobial peptide LL-37 modulates proinflammatory responses induced by cytokine milieus and double-stranded RNA in human keratinocytes[J]. Biochem Biophys Res Commun,2013,433(4):532-537. doi: 10.1016/j.bbrc.2013.03.024
|
[27]
|
Coorens M,Scheenstra M R,Veldhuizen E J,et al. Interspecies cathelicidin comparison reveals divergence in antimicrobial activity,TLR modulation,chemokine induction and regulation of phagocytosis[J]. Sci Rep,2017,7:40874. doi: 10.1038/srep40874
|
[28]
|
Bautista-Hernández L A,Gómez-Olivares J L,Buentello-Volante B,et al. Fibroblasts: The unknown sentinels eliciting immune responses against microorganisms[J]. Eur J Microbiol Immunol (Bp),2017,7(3):151-157. doi: 10.1556/1886.2017.00009
|
[29]
|
Li N,Yamasaki K,Saito R,et al. Alarmin function of cathelicidin antimicrobial peptide LL37 through IL-36γ induction in human epidermal keratinocytes[J]. J Immunol,2014,193(10):5140-5148.
|
[30]
|
Scott M G,Davidson D J,Gold M R,et al. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses[J]. J Immunol,2002,169(7):3883-3891.
|
[31]
|
Moser M,Murphy K M. Dendritic cell regulation of TH1-TH2 development[J]. Nat Immunol,2000,1(3):199-205. doi: 10.1038/79734
|
[32]
|
Davidson D J,Currie A J,Reid G S,et al. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization[J]. J Immunol,2004,172(2):1146-1156. doi: 10.4049/jimmunol.172.2.1146
|
[33]
|
Bandholtz L,Ekman G J,Vilhelmsson M,et al. Antimicrobial peptide LL-37 internalized by immature human dendritic cells alters their phenotype[J]. Scand J Immunol,2006,63(6):410-419. doi: 10.1111/j.1365-3083.2006.001752.x
|
[34]
|
Kim S H,Kim Y N,Jang Y S. Cutting Edge: LL-37-mediated formyl peptide receptor-2 signaling in follicular dendritic cells contributes to B cell activation in peyer's patch germinal centers[J]. J Immunol,2017,198(2):629-633. doi: 10.4049/jimmunol.1600886
|
[35]
|
Yu Y,Zhang Y,Zhang Y,et al. LL-37-induced human mast cell activation through G protein-coupled receptor MrgX2[J]. Int Immunopharmacol,2017,49:6-12. doi: 10.1016/j.intimp.2017.05.016
|
[36]
|
Gupta K,Subramanian H,Ali H. Modulation of host defense peptide-mediated human mast cell activation by LPS[J]. Innate Immun,2016,22(1):21-30. doi: 10.1177/1753425915610643
|
[37]
|
Subramanian H,Gupta K,Guo Q,et al. Mas-related gene X2 (MrgX2) is a novel G protein-coupled receptor for the antimicrobial peptide LL-37 in human mast cells: Resistance to receptor phosphorylation,desensitization,and internalization[J]. J Biol Chem,2011,286(52):44739-44749. doi: 10.1074/jbc.M111.277152
|
[38]
|
Rajakariar R,Hilliard M,Lawrence T,et al. Hematopoietic prostaglandin D2 synthase controls the onset and resolution of acute inflammation through PGD2 and 15-deoxyDelta12 14 PGJ2[J]. Proc Natl Acad Sci U S A,2007,104(52):20979-20984. doi: 10.1073/pnas.0707394104
|
[39]
|
Zhang Y Y,Yu Y Y,Zhang Y R,et al. The modulatory effect of TLR2 on LL-37-induced human mast cells activation[J]. Biochem Biophys Res Commun,2016,470(2):368-374. doi: 10.1016/j.bbrc.2016.01.037
|
[40]
|
Andrés C M C,Pérez De La Lastra J M,Juan C A,et al. The role of reactive species on innate immunity[J]. Vaccines (Basel),2022,10(10):1735. doi: 10.3390/vaccines10101735
|
[41]
|
Yang B,Good D,Mosaiab T,et al. Significance of LL-37 on immunomodulation and disease outcome[J]. Biomed Res Int,2020,2020:8349712.
|
[42]
|
Yang Y,Jing W,Qiao L,et al. A non-bactericidal cathelicidin provides prophylactic efficacy against bacterial infection by driving phagocyte influx[J]. Elife,2022,11:e72849. doi: 10.7554/eLife.72849
|
[43]
|
Jinwei C,Xin C,Tiaofei Y,et al. Characterization and functional analysis of cathelicidin-MH,a novel frog-derived peptide with anti-septicemic properties[J]. Elife,2021,10:e64411. doi: 10.7554/eLife.64411
|
[44]
|
Yeung A T,Gellatly S L,Hancock R E. Multifunctional cationic host defence peptides and their clinical applications[J]. Cell Mol Life Sci,2011,68(13):2161-2176. doi: 10.1007/s00018-011-0710-x
|
[45]
|
Mookherjee N,Anderson M A,Haagsman H P,et al. Antimicrobial host defence peptides: Functions and clinical potential[J]. Nat Rev Drug Discov,2020,19(5):311-332. doi: 10.1038/s41573-019-0058-8
|
[46]
|
Mookherjee N,Brown K L,Bowdish D M,et al. Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37[J]. J Immunol,2006,176(4):2455-2464. doi: 10.4049/jimmunol.176.4.2455
|
[47]
|
Amatngalim G D,Nijnik A,Hiemstra P S,et al. Cathelicidin peptide LL-37 modulates TREM-1 expression and inflammatory responses to microbial compounds[J]. Inflammation,2011,34(5):412-425. doi: 10.1007/s10753-010-9248-6
|
[48]
|
Shaykhiev R,Sierigk J,Herr C,et al. The antimicrobial peptide cathelicidin enhances activation of lung epithelial cells by LPS[J]. Faseb J,2010,24(12):4756-4766. doi: 10.1096/fj.09-151332
|
[49]
|
Marin M,Holani R,Shah C B,et al. Cathelicidin modulates synthesis of Toll-like Receptors (TLRs) 4 and 9 in colonic epithelium[J]. Mol Immunol,2017,91:249-258. doi: 10.1016/j.molimm.2017.09.011
|
[50]
|
Choi K Y,Napper S,Mookherjee N. Human cathelicidin LL-37 and its derivative IG-19 regulate interleukin-32-induced inflammation[J]. Immunology,2014,143(1):68-80. doi: 10.1111/imm.12291
|
[51]
|
Niyonsaba F,Madera L,Afacan N,et al. The innate defense regulator peptides IDR-HH2,IDR-1002,and IDR-1018 modulate human neutrophil functions[J]. J Leukoc Biol,2013,94(1):159-170. doi: 10.1189/jlb.1012497
|
[52]
|
Kandler K,Shaykhiev R,Kleemann P,et al. The anti-microbial peptide LL-37 inhibits the activation of dendritic cells by TLR ligands[J]. Int Immunol,2006,18(12):1729-1736. doi: 10.1093/intimm/dxl107
|
[53]
|
Nijnik A,Pistolic J,Wyatt A,et al. Human cathelicidin peptide LL-37 modulates the effects of IFN-gamma on APCs[J]. J Immunol,2009,183(9):5788-5798. doi: 10.4049/jimmunol.0901491
|
[54]
|
Hilchie A L,Wuerth K,Hancock R E. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides[J]. Nat Chem Biol,2013,9(12):761-768. doi: 10.1038/nchembio.1393
|
[55]
|
Luo Y,Song Y. Mechanism of antimicrobial peptides: Antimicrobial,anti-Inflammatory and antibiofilm activities[J]. Int J Mol Sci,2021,22(21):11401. doi: 10.3390/ijms222111401
|
[56]
|
Afacan N J,Yeung A T,Pena O M,et al. Therapeutic potential of host defense peptides in antibiotic-resistant infections[J]. Curr Pharm Des,2012,18(6):807-819. doi: 10.2174/138161212799277617
|
[57]
|
Vlieghe P,Lisowski V,Martinez J,et al. Synthetic therapeutic peptides: Science and Market[J]. Drug Discov Today,2010,15(1-2):40-56. doi: 10.1016/j.drudis.2009.10.009
|
[58]
|
Duarte-Mata D I,Salinas-Carmona M C. Antimicrobial peptides’ immune modulation role in intracellular bacterial infection[J]. Front Immunol,2023,14:1119574. doi: 10.3389/fimmu.2023.1119574
|
[59]
|
Abdi M,Mirkalantari S,Amirmozafari N. Bacterial resistance to antimicrobial peptides[J]. J Pept Sci,2019,25(11):e3210.
|
[60]
|
Jia F,Wang J,Peng J,et al. D-amino acid substitution enhances the stability of antimicrobial peptide polybia-CP[J]. Acta Biochim Biophys Sin (Shanghai),2017,49(10):916-925. doi: 10.1093/abbs/gmx091
|
[61]
|
Ting D S J,Beuerman R W,Dua H S,et al. Strategies in translating the therapeutic potentials of host defense peptides[J]. Front Immunol,2020,11:983. doi: 10.3389/fimmu.2020.00983
|
[62]
|
Rounds T,Straus S K. Lipidation of antimicrobial peptides as a design strategy for future alternatives to antibiotics[J]. Int J Mol Sci,2020,21(24):9692. doi: 10.3390/ijms21249692
|
[63]
|
Mahlapuu M,Håkansson J,Ringstad L,et al. Antimicrobial peptides: An emerging category of therapeutic agents[J]. Front Cell Infect Microbiol,2016,6:194.
|
[64]
|
Braun K,Pochert A,Lindén M,et al. Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides[J]. J Colloid Interface Sci,2016,475:161-170. doi: 10.1016/j.jcis.2016.05.002
|
[65]
|
Boge L,Bysell H,Ringstad L,et al. Lipid-Based liquid crystals as carriers for antimicrobial peptides:Phase behavior and antimicrobial effect[J]. Langmuir,2016,32(17):4217-4228. doi: 10.1021/acs.langmuir.6b00338
|
[66]
|
Silva J P,Gonçalves C,Costa C,et al. Delivery of LLKKK18 loaded into self-assembling hyaluronic acid nanogel for tuberculosis treatment[J]. J Control Release,2016,235:112-124. doi: 10.1016/j.jconrel.2016.05.064
|
[67]
|
D’angelo I,Casciaro B,Miro A,et al. Overcoming barriers in Pseudomonas aeruginosa lung infections: Engineered nanoparticles for local delivery of a cationic antimicrobial peptide[J]. Colloids Surf B Biointerfaces,2015,135:717-725. doi: 10.1016/j.colsurfb.2015.08.027
|
[68]
|
Sandreschi S,Piras A M,Batoni G,et al. Perspectives on polymeric nanostructures for the therapeutic application of antimicrobial peptides[J]. Nanomedicine (Lond),2016,11(13):1729-1744. doi: 10.2217/nnm-2016-0057
|
[69]
|
Abd El-Hack M E,El-Saadony M T,Shafi M E,et al. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review[J]. Int J Biol Macromol,2020,164:2726-2744. doi: 10.1016/j.ijbiomac.2020.08.153
|