留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双歧杆菌三联活菌对小鼠非酒精性脂肪肝模型中肠道微生物组的影响

李春 周琼 梅聪 黄洁杰 王毅鹏 周松兰 郑倩 唐哲

李春, 周琼, 梅聪, 黄洁杰, 王毅鹏, 周松兰, 郑倩, 唐哲. 双歧杆菌三联活菌对小鼠非酒精性脂肪肝模型中肠道微生物组的影响[J]. 昆明医科大学学报, 2023, 44(10): 77-82. doi: 10.12259/j.issn.2095-610X.S20231022
引用本文: 李春, 周琼, 梅聪, 黄洁杰, 王毅鹏, 周松兰, 郑倩, 唐哲. 双歧杆菌三联活菌对小鼠非酒精性脂肪肝模型中肠道微生物组的影响[J]. 昆明医科大学学报, 2023, 44(10): 77-82. doi: 10.12259/j.issn.2095-610X.S20231022
Chun LI, Qiong ZHOU, Cong MEI, Jie jie HUANG, Yi peng WANG, Song lan ZHOU, Qian ZHENG, Zhe TANG. Effect of Bifidobacterium trisporus on Intestinal Microbiota in the Mouse Model of Non-alcoholic Fatty Liver Disease[J]. Journal of Kunming Medical University, 2023, 44(10): 77-82. doi: 10.12259/j.issn.2095-610X.S20231022
Citation: Chun LI, Qiong ZHOU, Cong MEI, Jie jie HUANG, Yi peng WANG, Song lan ZHOU, Qian ZHENG, Zhe TANG. Effect of Bifidobacterium trisporus on Intestinal Microbiota in the Mouse Model of Non-alcoholic Fatty Liver Disease[J]. Journal of Kunming Medical University, 2023, 44(10): 77-82. doi: 10.12259/j.issn.2095-610X.S20231022

双歧杆菌三联活菌对小鼠非酒精性脂肪肝模型中肠道微生物组的影响

doi: 10.12259/j.issn.2095-610X.S20231022
基金项目: 云南省科技厅-昆明医科大学应用基础研究联合专项基金资助项目(2018FE001-277)
详细信息
    作者简介:

    李春(1984~ ), 女,云南通海人,医学硕士,主治医师,主要从事内分泌与代谢性疾病研究工作

    通讯作者:

    唐哲,E-mail:2398253368@qq.com

  • 中图分类号: R589.2

Effect of Bifidobacterium trisporus on Intestinal Microbiota in the Mouse Model of Non-alcoholic Fatty Liver Disease

  • 摘要:   目的   探究双歧杆菌三联活菌在小鼠NAFLD模型中的疗效和对肠道微生物组的影响。  方法  使用C57BL/6J小鼠分为3个实验组别,对照组(n = 10):小鼠使用普通饮食饲养;NAFLD模型组(n = 10):使用高脂饮食饲养;双歧杆菌组(n = 10):使用NAFLD模型小鼠并给予双歧杆菌三联活菌治疗。在实验结束时间点对不同组小鼠肝脏石蜡切片进行HE染色观察病理变化。采用16S rRNA基因测序技术完成对各组小鼠肠道菌群的检测,并进行生物信息学分析。  结果  与对照组相比,NAFLD小鼠肝脏脂肪累积增加,脂滴增多,细胞肥大,并且血清谷丙转氨酶(ALT)水平增加(P < 0.0001);经双歧杆菌治疗后,NAFLD小鼠肝脏脂肪积累减少并且血清ALT水平降低(P < 0.0001)。肠道微生物群分析在3个组别中鉴定出共有菌种348种。微生物功能分析显示,双歧杆菌组肠道微生物代谢功能水平介于对照组和NAFLD组之间;双歧杆菌治疗能改变NAFLD模型中特定肠道微生物的丰度变化,并且这些肠道微生物可能参与了谷胱甘肽代谢、嘌呤代谢和鞘脂代谢等途径调节机体的代谢功能。  结论  双歧杆菌三联活菌在小鼠模型中可能通过调节肠道微生物组的功能改善NAFLD,并且双歧杆菌三联活菌有改善机体脂代谢紊乱的潜力。
  • 图  1  双歧杆菌改善小鼠NAFLD发生

    A:对照组,NAFLD组和双歧杆菌组小鼠肝脏HE染色(200×);B:对照组, NAFLD组和双歧杆菌组小鼠血清中谷丙转氨酶(ALT)活性检测。对照组与 NAFLD组ALT比较,****P < 0.0001;NAFLD组和双歧杆菌组ALT比较,****P < 0.0001。

    Figure  1.  Bifidobacterium improves the NAFLD in the mouse model

    图  2  各组小鼠粪便样本鉴定微生物种类韦恩图

    A:对照组;B:NAFLD组;C:双歧杆菌组。

    Figure  2.  Venn diagram of microbial species identified from fecal samples of mice in each group

    图  3  各组小鼠粪便样本鉴定微生物种类丰度分布

    A:对照组;B:NAFLD组;C:双歧杆菌组。

    Figure  3.  Abundance distribution of identified microbial species in fecal samples in each group

    图  4  各组小鼠粪便样本宏基因组数据测序基因片段功能富集分析

    A:对照组;B:NAFLD组;C:双歧杆菌组。

    Figure  4.  Functional enrichment analysis of gene fragments in the metagenomic data of fecal samples from mice in each group

    图  5  生物信息学分析宏基因组富集的代谢功能热图分析

    A:对照组;B:NAFLD组;C:双歧杆菌组。

    Figure  5.  Heatmap summary of the bioinformatics analysis of metabolic functions in the metagenomic data

  • [1] Wagner R,Eckstein S S,Yamazaki H,et al. Metabolic implications of pancreatic fat accumulation[J]. Nat Rev Endocrinol,2022,18(1):43-54. doi: 10.1038/s41574-021-00573-3
    [2] Kwan S Y,Jiao J,Joon A,et al. Gut microbiome features associated with liver fibrosis in Hispanics,a population at high risk for fatty liver disease[J]. Hepatology,2022,5(4):955-967.
    [3] Kolodziejczyk A A,Zheng D,Shibolet O,et al. The role of the microbiome in NAFLD and NASH[J]. EMBO Mol Med,2019,11(2):e9302. doi: 10.15252/emmm.201809302
    [4] Safari Z,Gérard P. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD)[J]. Cell Mol Life Sci,2019,76(8):1541-1558. doi: 10.1007/s00018-019-03011-w
    [5] Hu H,Lin A,Kong M,et al. Intestinal microbiome and NAFLD: Molecular insights and therapeutic perspectives[J]. J Gastroenterol,2020,55(2):142-158. doi: 10.1007/s00535-019-01649-8
    [6] Aron-Wisnewsky J,Vigliotti C,Witjes J,et al. Gut microbiota and human NAFLD: Disentangling microbial signatures from metabolic disorders[J]. Nat Rev Gastroenterol Hepatol,2020,17(5):279-297. doi: 10.1038/s41575-020-0269-9
    [7] Lau L H S,Wong S H. Microbiota,obesity and NAFLD[J]. Adv Exp Med Biol,2018,1061:111-125.
    [8] Canfora E E,Meex R C R,Venema K,et al. Gut microbial metabolites in obesity,NAFLD and T2DM[J]. Nat Rev Endocrinol,2019,15(5):261-273. doi: 10.1038/s41574-019-0156-z
    [9] Fan Y,Pedersen O. Gut microbiota in human metabolic health and disease[J]. Nat Rev Microbiol,2021,19(1):55-71. doi: 10.1038/s41579-020-0433-9
    [10] Bana B,Cabreiro F. The microbiome and aging[J]. Annu Rev Genet,2019,53:239-261. doi: 10.1146/annurev-genet-112618-043650
    [11] Suez J,Zmora N,Segal E,et al. The pros,cons,and many unknowns of probiotics[J]. Nat Med,2019,25(5):716-729. doi: 10.1038/s41591-019-0439-x
    [12] Qian X,Si Q,Lin G,et al. Bifidobacterium adolescentis is effective in relieving type 2 diabetes and may be related to its dominant core genome and gut microbiota modulation capacity[J]. Nutrients,2022,14(12):2479. doi: 10.3390/nu14122479
    [13] Fang Z,Pan T,Li L,et al. Bifidobacterium longum mediated tryptophan metabolism to improve atopic dermatitis via the gut-skin axis[J]. Gut Microbes,2022,14(1):2044723. doi: 10.1080/19490976.2022.2044723
    [14] Eng J M,Estall J L. Diet-induced models of non-alcoholic fatty liver disease: Food for thought on sugar,fat,and cholesterol[J]. Cells,2021,10(7):1805.P. doi: 10.3390/cells10071805
    [15] Zeng H,Larson K J,Cheng WH,et al. Advanced liver steatosis accompanies an increase in hepatic inflammation,colonic,secondary bile acids and Lactobacillaceae/Lachnospiraceae bacteria in C57BL/6 mice fed a high-fat diet[J]. J Nutr Biochem,2020,78:108336. doi: 10.1016/j.jnutbio.2019.108336
    [16] Yuan G,Tan M,Chen X. Punicic acid ameliorates obesity and liver steatosis by regulating gut microbiota composition in mice[J]. Food Funct,2021,12(17):7897-7908. doi: 10.1039/D1FO01152A
    [17] Wang H,Wang Q,Yang C,et al. Bacteroides acidifaciens in the gut plays a protective role against CD95-mediated liver injury[J]. Gut Microbes,2022,14(1):2027853. doi: 10.1080/19490976.2022.2027853
    [18] Nishimura N,Kaji K,Kitagawa K,et al. Intestinal permeability is a mechanical rheostat in the pathogenesis of liver cirrhosis[J]. Int J Mol Sci,2021,22(13):6921. doi: 10.3390/ijms22136921
    [19] Do M H,Oh M J,Lee H B,et al. Bifidobacterium animalis ssp. lactis MG741 reduces body weight and ameliorates nonalcoholic fatty liver disease via improving the gut permeability and amelioration of inflammatory cytokines[J]. Nutrients,2022,14(9):1965. doi: 10.3390/nu14091965
    [20] Wang W,Xu A L,Li Z C,et al. Combination of probiotics and salvia miltiorrhiza polysaccharide alleviates hepatic steatosis via gut microbiota modulation and insulin resistance improvement in high fat-induced NAFLD mice[J]. Diabetes Metab J,2020,44(2):336-348. doi: 10.4093/dmj.2019.0042
    [21] Yang X,Mo W,Zheng C,et al. Alleviating effects of noni fruit polysaccharide on hepatic oxidative stress and inflammation in rats under a high-fat diet and its possible mechanisms[J]. Food Funct,2020,11(4):2953-2968. doi: 10.1039/D0FO00178C
    [22] Wang X,Shi L,Wang X,et al. MDG-1,an Ophiopogon polysaccharide,restrains process of non-alcoholic fatty liver disease via modulating the gut-liver axis[J]. Int J Biol Macromol,2019,141(3):1013-1021.
    [23] Tong A J,Hu R K,Wu L X,et al. Ganoderma polysaccharide and chitosan synergistically ameliorate lipid metabolic disorders and modulate gut microbiota composition in high fat diet-fed golden hamsters[J]. J Food Biochem,2020,44(1):e13109.
    [24] Dehhaghi M, Kazemi Shariat Panahi H, Guillemin GJ. Microorganisms, tryptophan metabolism, and kynurenine pathway: A complex interconnected loop influencing human health status [J]. Int J Tryptophan Res, 2019, 12(2): 1178646919852996.
    [25] Arnoriaga-Rodríguez M,Mayneris-Perxachs J,Burokas A,et al. Obesity impairs short-term and working memory through gut microbial metabolism of aromatic amino acids[J]. Cell Metab,2020,32(4):548-560,e7. doi: 10.1016/j.cmet.2020.09.002
    [26] Zhao Z H,Xin F Z,Xue Y,et al. Indole-3-propionic acid inhibits gut dysbiosis and endotoxin leakage to attenuate steatohepatitis in rats[J]. Exp Mol Med,2019,51(9):1-14.
  • [1] 陈杭, 崔琦, 黄敏杉, 刘建军, 马岚青.  miRNA在非酒精性脂肪性肝病中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240101
    [2] 李媛媛, 宋亚贤, 徐玉善, 曾晓甫, 袁惠, 徐兆, 江艳.  肠道菌群代谢物TMAO与非酒精性脂肪性肝病的关系, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240210
    [3] 张学敏, 田云粉.  胆汁酸代谢异常在非酒精性脂肪性肝病发展中的作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231125
    [4] 王丽媛, 杨振廷, 李青玲, 李海雯, 赵智蓉, 杨永锐, 李树德.  灯盏乙素对长期高脂高糖饮食诱导的肥胖大鼠慢性肝损伤中肝脏组织MMP2、MMP9及TIMP-1蛋白表达的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230408
    [5] 李露, 田云粉.  肠道菌群与儿童非酒精性脂肪性肝病的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230708
    [6] 刘聪, 吴贵帅, 普瑞, 李树德, 陶建平, 张忍发.  EGCG通过抑制TGF-β1/Smads信号通路改善高脂高糖饮食诱导的肥胖大鼠心肌纤维化, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220506
    [7] 杨永锐, 王丽媛, 李海雯, 赵智蓉, 普瑞, 吴贵帅, 李树德.  灯盏乙素抑制NOX的表达改善非酒精性脂肪性肝病肝脏纤维化的研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220721
    [8] 徐永芳, 吴娜, 胡月新, 赵永美, 郑绍鼎, 危玲, 郑思佳, 刘建军.  GW7647对大鼠非酒精性脂肪性肝病(NAFLD)的治疗作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210804
    [9] 代润, 张婵, 程瑜静, 陈婉璐, 李琦, 王玉明.  云南佤族和布朗族人群药物基因组学基因遗传差异, 昆明医科大学学报.
    [10] 杨怀勇, 黎麟达.  双歧杆菌三联活菌胶囊联合二甲双胍治疗对结直肠癌合并2型糖尿病患者血糖控制和临床疗效, 昆明医科大学学报.
    [11] 薛平燕, 江艳, 徐玉善, 袁惠, 李璇, 宋亚贤, 刘华.  肠道菌群结构在非酒精性脂肪性肝病患者中的改变, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201120
    [12] 张丹, 吕俊衍, 邓溢, 周波, 罗粟风, 王金香, 文玉, 应昀晏, 文代艳, 马岚青.  三种不同饮食干预建立非酒精性脂肪肝模型, 昆明医科大学学报.
    [13] 朱为梅, 华鹏, 罗宇超, 杨红玲, 李亚山, 赵红宇.  低铅染毒抑制非酒精性脂肪性肝病大鼠脂肪酸分解加重其肝脏损伤, 昆明医科大学学报.
    [14] 杨金荣, 阮经艳, 曾云, 武坤, 聂波, 王雪娇.  DNMT3A在IDH1致急性髓系白血病基因组高甲基化中的作用, 昆明医科大学学报.
    [15] 张馨文, 张燕, 胡晏馨, 潘宝龙, 王名芳, 马润玫.  高脂饮食诱导妊娠期糖尿病大鼠模型的建立, 昆明医科大学学报.
    [16] 王丽昆.  三联、四联疗法及Boulardii酵母菌在幽门螺杆菌根除治疗中的疗效评估, 昆明医科大学学报.
    [17] 江艳.  非酒精性脂肪性肝患者的代谢紊乱分析, 昆明医科大学学报.
    [18] 刘荣.  二甲双胍治疗2型糖尿病大鼠非酒精性脂肪肝疗效, 昆明医科大学学报.
    [19] 李盈甫.  脂联素基因多态性与非小细胞肺癌遗传易感性的关联, 昆明医科大学学报.
    [20] 和海玉.  非酒精性脂肪肝大鼠胃窦Cajal间质细胞的研究, 昆明医科大学学报.
  • 加载中
图(5)
计量
  • 文章访问数:  1467
  • HTML全文浏览量:  904
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-29
  • 网络出版日期:  2023-09-07
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回