留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

miR-196b靶向ERG促进肺腺癌的增殖和迁移

刘邦卿 李剑锋 刘晓辉 张劲男 梁金屏

阳情姚, 曾洁, 张卫权, 宁月, 李檬, 李湛华, 刘梅, 熊晶晶, 黄永坤. 妊娠期糖尿病与正常足月儿母亲胎盘菌群DNA的差异[J]. 昆明医科大学学报, 2023, 44(10): 140-148. doi: 10.12259/j.issn.2095-610X.S20231006
引用本文: 刘邦卿, 李剑锋, 刘晓辉, 张劲男, 梁金屏. miR-196b靶向ERG促进肺腺癌的增殖和迁移[J]. 昆明医科大学学报, 2023, 44(10): 83-91. doi: 10.12259/j.issn.2095-610X.S20231023
Qingyao YANG, Jie ZENG, Weiquan ZHANG, Yue NING, Meng LI, Zhanhua LI, Mei LIU, Jingjing XIONG, Yongkun HUANG. Differences of Placental Microbiota DNA between Gestational Diabetes Mellitus and Normal Full-term Mothers[J]. Journal of Kunming Medical University, 2023, 44(10): 140-148. doi: 10.12259/j.issn.2095-610X.S20231006
Citation: Bangqing LIU, Jianfeng LI, Xiaohui LIU, Jinnan ZHANG, Jinping LIANG. MiR-196b Promotes Proliferation and Migration of Lung Adenocarcinoma by Targeting ERG[J]. Journal of Kunming Medical University, 2023, 44(10): 83-91. doi: 10.12259/j.issn.2095-610X.S20231023

miR-196b靶向ERG促进肺腺癌的增殖和迁移

doi: 10.12259/j.issn.2095-610X.S20231023
基金项目: 河北省医学科学研究课题基金资助项目(20231805)
详细信息
    作者简介:

    刘邦卿(1988~),男,山东巨野人,医学硕士,主治医师,主要从事肺癌基础与临床研究工作

  • 中图分类号: R734.2

MiR-196b Promotes Proliferation and Migration of Lung Adenocarcinoma by Targeting ERG

  • 摘要:   目的   探究miR-196b影响肺腺癌(lung adenocarcinoma,LUAD)进展的机制。   方法   通过TCGA数据库分析miR-196b在LUAD组织中的表达水平,利用TargetScan预测其下游靶基因并用双荧光素酶实验进行验证,qRT-PCR检测miR-196b和ETS相关基因(ETS-related gene,ERG)在LUAD细胞系中的表达情况,MTT、划痕愈合和Transwell实验分别检测不同处理后LUAD细胞的增殖、迁移和侵袭能力的变化情况。   结果   miR-196b在LUAD中高表达(P = 3.50e-17)并靶向负调控ERG,过表达miR-196b能够促进LUAD细胞的增殖、迁移和侵袭(P < 0.05),回复实验证实miR-196b/ERG调控轴能够影响LUAD细胞增殖、迁移和侵袭( P < 0.05)。   结论   miR-196b靶向ERG促进LUAD进展的分子机制,对开发LUAD新的临床治疗方法具有潜在意义。
  • 微生物群是特定环境中所有微生物的集合,在人体不同部位各不相同,研究发现人体微生物群在代谢、免疫和内分泌等系统中发挥重要作[1-4]。胎盘是母亲与胎儿之间重要的纽带,研究发现当产妇合并妊娠期糖尿病(gestational diabetes mellitus,GDM)时,胎盘组织中的菌群组成和结构可能会发生改变[5-6],而这种菌群的改变可能会导致不良的结果[7-8]

    近年来,GDM的发生率逐渐升高,预防GDM的发生、防治其并发症已成为临床研究的重要任务。本研究通过16S rDNA技术检测和分析足月儿母亲的胎盘菌群DNA,探讨妊娠期糖尿病与正常足月儿母亲之间的胎盘菌群的差异,为研究和防治妊娠期糖尿病提供新思路和参考数据。

    收集了30例2018年2~9月期间在昆明医科大学第一附属医院产科分娩的足月孕妇胎盘组织。严格按照以下入组标准,根据产妇妊娠期间是否伴有妊娠期糖尿病进行分组后得到妊娠期糖尿病组(A组)4例(A1~A4)与正常足月儿组(B组)6例(B1~B6)。

    (1)产妇的纳入及排除标准[9]:纳入标准:规律产检,年龄为20~45岁。排除标准:①伴有多胎妊娠、慢性高血压、内分泌失调、链球菌感染、胎膜早破、肿瘤和其他严重母体疾病;②伴有吸烟、饮酒、滥用药物等不良习惯等。(2)新生儿的纳入及排除标准[10]:纳入标准:37周≤胎龄 < 42周。排除标准:①胎龄 < 37周或≥42周;②伴有出生重度窒息、败血症等严重疾病史。

    本研究通过昆明医科大学第一附属医院伦理委员会批准[伦理批号:(2023)伦理L第38号],所有研究对象均签署了知情同意书。

    1.2.1   临床资料收集

    由专人收集母婴的临床数据特征。包括母婴病史、年龄和孕前BMI、胎龄、出生体重、出生方式、出生时的身长及头围、新生儿评分和脐动、静脉PH及乳酸等实验室检查结果等。

    1.2.2   胎盘标本的采集

    由专人收集标本,胎盘娩出后,将近脐端的羊膜用无菌剪剪除,另换一把无菌剪剪取下方的绒毛状胎盘膜约1 cm3,随后放入无菌试管中,并立即保存到-80℃冰箱。所有操作在产后/剖宫产术后1 h内完成,整个过程遵循无菌操作原则。

    1.2.3   胎盘组织中细菌DNA的提取及测序

    图1

    图  1  细菌DNA的提取及illumina测序实验流程图
    Figure  1.  Experimental flow chart of bacterial DNA extraction and illumina sequencing
    1.2.4   对测序序列进行生物信息学处理

    按97%相似度进行聚类,得到代表物种的OTU,随后使用Qiime软件进行分析,通过与16S数据库(RDP,http://rdp.cme.msu.edu)进行比对、分类后得到OTU丰度表,分别在门(Phylum)水平选取丰度前十五、属(Genus)水平选取丰度前二十的物种进行统计绘制菌落结构柱状图并根据丰度表进行样本及组间物种的分析。

    采用SPSS 26.0软件。计量资料以均数±标准差($\bar x \pm s $)表示,组间比较采用t检验。计数资料以百分率(%)表示,组间比较采用Fisher确切概率法。采用Alpha、Beta多样性分析反映两组物种多样性的差异大小。采用LEfSe线性判别分析(LDA > 2)出有显著性差异的群落或物种。组间差异分析采用秩和检验。检验水准α = 0.05。

    符合纳入标准的对象基本特征,见表1。2组间婴儿性别、分娩方式、脐动脉pH及乳酸、脐静脉pH及乳酸、母亲年龄、胎龄、出生体重、身长及头围间的差异无统计学意义(P > 0.05);妊娠期糖尿病组(A组)母亲孕前BMI高于正常足月儿组(B组),组间母亲孕前BMI差异有统计学意义(P < 0.05)。

    表  1  A组与B组母婴一般情况比较($\bar x \pm s $
    Table  1.  Comparison of maternal and infant general conditions between group A and B ($\bar x \pm s $
    项目妊娠期糖尿病组(A组,n = 4)正常足月儿组(B组,n = 6)tP
    性别
    男/女(n
    1/3 1/5 0.9991
    出生方式
    顺产/剖宫产(n
    2/2 5/1 0.5001
    脐动脉pH 7.230 ± 0.116 7.280 ± 0.036 0.834 0.459
    脐动脉乳酸
    (mmol/L)
    4.775 ± 3.398 4.550 ± 1.499 0.146 0.888
    脐静脉pH 7.283 ± 0.079 7.358 ± 0.040 −1.770 0.151
    脐静脉乳酸
    (mmol/L)
    4.450 ± 3.440 4.733 ± 1.435 −0.183 0.859
    母亲年龄(岁) 37.000 ± 5.888 28.330 ± 6.532 2.312 0.066
    母亲孕前身体质量指数BMI(kg/m2 25.519 ± 2.536 19.728 ± 1.429 4.671 0.002*
    胎龄(d) 268.500 ± 9.256 273.000 ± 8.741 −0.780 0.458
    出生体重(g) 2777.50 ± 634.27 3100.000 ± 337.460 −1.060 0.320
    身长(cm) 47.500 ± 4.041 50.000 ± 1.789 −1.359 0.211
    头围(cm) 32.750 ± 1.500 33.670 ± 1.211 −1.070 0.316
      1为Fisher确切概率法计算的P值,*P < 0.05。
    下载: 导出CSV 
    | 显示表格

    经过16S rDNA基因高通量测序,10个样本共得到601794条有效序列(Clean Reads),平均有效序列数为60179.4条,其中最大序列数为64431条,最少序列数为55961条。

    2.3.1   OTU 聚类分析

    按97%相似度进行聚类,各样本OUT数量柱状图,平均每个样本含有171.4个OTU数,2组OTU数量,差异无统计学意义(P > 0.05),见图2a。所有样本共检测出783个OTU,其中妊娠期糖尿病组有427个OTU,特有OTU数为154个,而正常足月儿组有576个,特有的OTU为303个,2组共有OUT数量为273个,见图2b

    图  2  OTU数据统计图(a)和OTU Venn图(b)
    A:妊娠期糖尿病组;B:正常足月儿组。
    Figure  2.  Statistical chart of otu data (a) and OTU Venn chart (b)
    2.3.2   物种丰度分析

    (1)门水平上的物种丰度分析:在门水平上,全样本丰度明显占优势的菌门有Proteobacteria(变形菌门)、Actinobacteria(放线菌门)、Firmicutes(厚壁菌门)、Bacteroidetes(拟杆菌门)、Verrucomicrobia(疣微菌门)、Fusobacteria(梭杆菌门)、Deinococcus-Thermus(异常球菌-栖热菌门)等,其中变形菌门、放线菌门、厚壁菌门、拟杆菌门的丰度占总样本丰度的95%以上,见图3

    图  3  门水平菌落结构柱状图
    Figure  3.  Barplot of colony structure at phylum level

    (2)属水平上的物种丰度分析 在属水平上,全样本丰度明显占优势的菌属有Arthrobacter(节细菌属)、Pseudomonas(假单胞菌属)、Bacteroides(多形杆状菌属)、Deiftia、Brevundimonas(短波单胞菌属)、Lactobacillus(乳杆菌属)、Chryseobacterium、Acinetobacter(不动杆菌属)、 Klebsiella(克雷伯氏杆菌属)、Stenotrophomonas(单胞菌属)、Sphingobacterium(鞘氨醇杆菌属)、Escherichia/Shigella(埃希氏菌属/志贺氏菌属)等,见图4

    图  4  属水平菌落结构柱状图
    Figure  4.  Barplot of colony structure at genus level
    2.3.3   物种丰度聚类热图

    根据物种丰度信息,选取丰度前二十的物种,对样本和物种进行聚类,并绘制成热图。2组间物种组成及丰度相似,每个物种在各样本中的丰度如下图所示,见图5

    图  5  属水平物种丰度热图
    Figure  5.  Heatmap of species abundance at genus level

    横向聚类表示该物种在各样本中的丰度相似情况,纵向聚类表示所有物种在不同样本间表达的相似情况,距离越近,枝长越短,说明越相似;2到-2对应颜色变化表示物种丰度逐渐降低。

    2.4.1   测序量的评估

    根据曲线跨度和下降趋势可知,每个样品中物种的丰富度和均匀度,见图6;物种积累曲线急剧上升后趋于平缓,说明研究中样本测序量已经能够反映样品中绝大多数的微生物信息,见图7

    图  6  Rank-abundance曲线
    Figure  6.  Rank-abundance curves
    图  7  物种累积曲线
    Figure  7.  Species accumulation curves

    物种的丰富度越高,曲线在横轴上的跨度越大;曲线下降越平缓,物种分布越均匀。

    2.4.2   Alpha多样性分析

    A组与B组之间的Alpha多样性指数差异无统计学意义(P > 0.05),见图8

    图  8  组间Alpha多样性指数差异图
    A:妊娠期糖尿病组;B:正常足月儿组。
    Figure  8.  Difference diagram of Alpha diversity index between groups
    2.4.3   Beta多样性分析

    (1) NMDS分析A组与B组之间胎盘菌群的物种组成有一定差异,但差异无统计学意义(P > 0.05),见图9

    图  9  Shepard图(a);NMDS图(b)
    A:妊娠期糖尿病组;B:正常足月儿组。
    Figure  9.  Shepard diagram (a);NMDS diagram (b)

    R^2越大越好/2个R^2值越一致越好;Stress < 0.2说明有一定可靠性。

    (2)PCoA 分析 A组与B组之间胎盘菌群的物种组成有差异,但差异无统计学意义(P > 0.05),见图10

    图  10  主坐标分析PCoA图
    A:妊娠期糖尿病组;B:正常足月儿组。
    Figure  10.  Principal Coordinate Analysis Diagram

    组间具有显著性差异的物种的进化情况,见图11a;具有显著性差异的物种有Propionibacteriaceae(丙酸杆菌科)、Propionibacterium(丙酸杆菌属)、Thermales(栖热菌目)、Thermaceae(栖热菌科 )、Thermus(栖热菌属)、 Collinsella(柯林斯菌属)、ClostridiumIV(梭状芽胞杆属)、 Rikenellaceae、Alistipes(另枝菌属)、Anaerostipes(厌氧棒状菌属)(LDA > 2),见图11b

    图  11  物种进化树图(a);组间 LDA分值分布图(b)
    A:妊娠期糖尿病组。
    Figure  11.  Phylogenetic tree diagram (a);Distribution chart of LDA scores between groups (b)

    GDM是妊娠期最常见的代谢紊乱疾病,近年来中国GDM患病率呈急剧上升趋势(8.1%~24.2%)[11]。GDM的发生受到产妇体重、年龄、遗传和环境等多方面影响[12-13],Sun等[14]发现孕前BMI是GDM的相关风险因素,本研究同样发现伴有GDM与正常妊娠相比较,母亲孕前BMI差异有统计学意义。GDM妊娠与正常妊娠相比,胎盘大小增加,绒毛不成熟和一系列血管病变[15],还可能导致胎盘菌群发生改变[5],给母体、胎儿及后代带来严重的短期和长期健康危害[16-18],然而母亲的GDM状态如何影响胎盘微生物群的相关机制尚不清楚,可能通过炎症和氧化应激与GDM诱导的高血糖状态相互作用,或通过口腔-胎盘途径影响胎盘菌群[5]。目前饮食+身体活动干预是预防GDM的主要方法[19],也有许多针对GDM的药物治疗,但越来越多的证据表明,孕期使用二甲双胍这类降糖药物可能对胎儿生后产生长期的不良后果[20-21]。近年来,益生菌作为一种新的干预措施,在预防妊娠期糖尿病上崭露头角[22-24],它能使胰岛素抵抗(HOMA-IR)和HOMA-B标记物减少并促进胰岛素的分泌[25],影响GDM孕妇的葡萄糖代谢和体重增加[26],通过调节孕期的微生物组成从而改善产妇健康和妊娠结局[27]。虽然目前大量研究表明服用益生菌对GDM有一定预防作用,但仍有研究指出益生菌的应用会增加先兆子痫的风险[28]。因而,目前仍然需要个更多的研究来揭示在GDM中起关键作用的菌群、载量及其在诱导疾病中的作用机制,以及需要更高质量、大规模的临床试验来评估益生菌的最佳剂量和理想细菌组成,从而促进孕期母婴的健康。

    本研究检测的胎盘组织中的微生物群主要由变形菌门、放线菌门、厚壁菌门、拟杆菌门等菌门组成,其中变形菌门的相对丰度最高,这与Zheng等[29]、Bassols等[30]研究结果一致。属水平上以节细菌属、假单胞菌属、多形杆状菌属、Deiftia、短波单胞菌属、乳杆菌属、Chryseobacterium、不动杆菌属、克雷伯氏杆菌属、单胞菌属、鞘氨醇杆菌属、埃希氏菌属/志贺氏菌属等菌属为主的菌群,Zakis等[31]、Tang等[6]及本课题前期研究[10]发现的菌属大致相同。

    本研究2组菌群的物种丰度在门、纲水平上无显著差异,而在目至属水平上,发现栖热菌目、丙酸杆菌科、栖热菌科、Rikenellaceae、丙酸杆菌属、栖热菌属、柯林斯菌属、梭状芽胞杆属IV、另枝菌属、厌氧菌属的丰度在妊娠期糖尿病组中较正常足月儿组显著升高,暂未发现有显著丰度降低的菌类。Bassols[30]等发现GDM妇女的胎盘微生物群中假单胞菌目和不动杆菌属的相对丰度较低,另一研究[7]发现双歧杆菌属,Duncaniella,及瘤胃球菌属在GDM中显著升高,Tang等[6]发现GDM妇女的胎盘菌群多样性增加,其中Anaerotruncus瘤胃球菌属、粪球菌属、副普雷沃菌属及乳酸杆菌属的丰度在GDM中升高,然而韦荣氏菌属丰度降低。综上,多个学者证实GDM妇女的胎盘菌群与正常妇女对比存在差异,但具体显著性差异的菌类各不相同,一方面可能样本量相对较小,也有可能是胎盘菌群本身的个体差异。

    本研究通过Illumina MiSeq测序系统对胎盘组织的菌群DNA进行检测和分析,严格执行无菌操作,从胎盘组织中成功分离和鉴定了微生物序列,证明了胎盘组织中存在着一定量的细菌群落DNA,而胎盘菌群的组成、丰度在妊娠期糖尿病与正常足月儿中有显著性差异,而这些显著性差异的菌类可能是妊娠期糖尿病的潜在致病菌并长期影响母婴的健康。本研究也为全面、准确地获得胎盘菌群的信息做出了贡献,为妊娠期糖尿病妇女的胎盘宏基因组研究奠定了重要的理论基础。

  • 图  1  miR-196b和ERG在肺腺癌中的表达情况

    A:通过TCGA数据库预测miR-196b在正常组织和肺腺癌组织中的表达,绿框图表示正常样本(n = 46),红框图表示肿瘤样本(n = 521);B:肺腺癌患者miR-196b表达水平与总生存率的K-M分析,红色表示高表达组,蓝色表示低表达组;C:通过TCGA数据库预测正常组织和肺腺癌组织中ERG的表达,绿框图表示正常样本(n = 59),红框图表示肿瘤样本(n = 535)。

    Figure  1.  Expression of miR-196b and ERG in lung adenocarcinoma

    图  2  miR-196b在肺腺癌细胞中的表达情况

    与BEAS-2B组比较,*P < 0.05。

    Figure  2.  Expression of miR-196b in lung adenocarcinoma cells

    图  3  miR-196b可影响肺腺癌细胞的增殖、迁移和侵袭

    A:qRT-PCR检测过表达或敲低miR-196b后细胞的转染效率;B:MTT法检测过表达或敲低miR-196b后细胞的增殖能力;C:划痕愈合实验检测过表达或敲低miR-196b后细胞的迁移能力;D:Transwell实验检测过表达或敲低miR-196b后细胞的迁移和侵袭能力(100×)。与NC组比较,*P < 0.05。

    Figure  3.  miR-196b can affect the proliferation,migration and invasion of lung adenocarcinoma cells

    图  4  miR-196b的靶点检测及不同处理组细胞中ERG 的表达情况

    A:通过TargetScan数据库预测miR-196b和ERG的靶向结合位点;B:双荧光素酶法检测miR-196b与ERG的靶向结合关系;C:采用qRT-PCR和Western blot检测各细胞系中ERG mRNA和蛋白的表达;D:采用qRT-PCR和Western blot检测不同处理组ERG mRNA和蛋白的表达。与NC组或BEAS-2B组做比较,*P < 0.05。

    Figure  4.  Target detection of miR-196b and expression of ERG in cells of different treatment groups

    图  5  miR-196b能靶向下调ERG促进肺腺癌细胞的增殖、迁移和侵袭能力

    A:采用qRT-PCR和Western blot检测不同处理组大鼠ERG mRNA和蛋白的表达;B:MTT实验检测不同处理组的细胞增殖能力;C:划痕愈合实验检测不同处理组细胞迁移能力;D:Transwell实验检测不同处理组细胞的迁移和侵袭能力(100×)。NC-mimic、NC-inhibitor、oe-NC和si-NC分别表示miR-196b过表达、miR-196b沉默、ERG过表达和ERG沉默对照组,miR-mimic和miR-inhibitor分别表示miR-196b过表达和沉默组,oe-ERG和si-ERG分别表示ERG过表达组和沉默组;miR-mimic/inhibitor + oe/si-NC与NC组比较,miR-mimic/inhibitor + oe/si-NC组与miR-mimic/inhibitor + oe/si-ERG组比较,*P < 0.05,。

    Figure  5.  miR-196b can target down regulate ERG to promote the proliferation,migration and invasion of lung adenocarcinoma cells

    表  1  研究使用的细胞系及培养基

    Table  1.   Cell lines and media used in the study

    细胞系 编号 培养基
    BEAS-2B BNCC338205 DMEM-H
    PC-9 BNCC340767
    HCC-78 BNCC338064 RPMI-1640
    H1395 BNCC255519
    Calu-3 BNCC338514
    下载: 导出CSV

    表  2  引物序列表

    Table  2.   Primer Sequence Table

    基因 引物序列(5′→ 3′)
    miR-196b Forward primer: GTACCACTTTATCCCGTTCACCA
    Reverse primer:ATCTCGAGGCAGGGAGAGAGGAATAA
    U6 Forward primer: GCCCATCTTGACCCGAAT
    Reverse primer: AACGCTTCACGAATTTGCGT
    ERG Forward primer:GAGTGGGCGGTGAAAGAATA
    Reverse primer: GGAGATGTGAGAGAAGAGTG
    GAPDH Forward primer:CTCCTCCTGTTCGACAGTCAGC
    Reverse primer:CCCAATACGACCAAATCCGTT
    下载: 导出CSV
  • [1] Luo C,Lei M,Zhang Y,et al. Systematic construction and validation of an immune prognostic model for lung adenocarcinoma[J]. J Cell Mol Med,2020,24(2):1233-1244. doi: 10.1111/jcmm.14719
    [2] Seguin L,Durandy M,Feral C C. Lung adenocarcinoma tumor origin: A Guide for personalized medicine[J]. Cancers (Basel),2022,14(7):1759. doi: 10.3390/cancers14071759
    [3] Siegel R L,Miller K D,Jemal A. Cancer statistics,2016[J]. CA Cancer J Clin,2016,66(1):7-30. doi: 10.3322/caac.21332
    [4] Guo T,Li J,Zhang L,et al. Multidimensional communication of microRNAs and long non-coding RNAs in lung cancer[J]. J Cancer Res Clin Oncol,2019,145(1):31-48. doi: 10.1007/s00432-018-2767-5
    [5] Xin H,Wang C,Chi Y,et al. MicroRNA-196b-5p promotes malignant progression of colorectal cancer by targeting ING5[J]. Cancer Cell Int,2020,20:119. doi: 10.1186/s12935-020-01200-3
    [6] Shao L,Chen Z,Peng D,et al. Methylation of the HOXA10 promoter directs miR-196b-5p-dependent cell proliferation and invasion of gastric cancer cells[J]. Mol Cancer Res,2018,16(4):696-706. doi: 10.1158/1541-7786.MCR-17-0655
    [7] Chen L,Tang H,Liu G,et al. MicroRNA-196b promotes gastric cancer progression by targeting ECRG4[J]. Anticancer Drugs,2021,32(2):127-137. doi: 10.1097/CAD.0000000000000998
    [8] Wu X, Wu G, Zhang H, et al. MiR-196b promotes the invasion and migration of lung adenocarcinoma cells by targeting AQP4 [J]. Technol Cancer Res Treat, 2021, 20: 1533033820985868.
    [9] Xu Q,Xu Z. miR-196b-5p promotes proliferation,migration and invasion of lung adenocarcinoma cells via targeting RSPO2[J]. Cancer Manag Res,2020,12:13393-13402. doi: 10.2147/CMAR.S274171
    [10] Li H,Feng C,Shi S. miR-196b promotes lung cancer cell migration and invasion through the targeting of GATA6[J]. Oncol Lett,2018,16(1):247-252.
    [11] Tharakan B,Hunter F A,Muthusamy S,et al. ETS-related gene activation preserves adherens junctions and permeability in microvascular endothelial cells[J]. Shock,2022,57(2):309-315. doi: 10.1097/SHK.0000000000001899
    [12] Khosh Kish E,Choudhry M,Gamallat Y,et al. The expression of proto-oncogene ETS-related gene (ERG) plays a central role in the oncogenic mechanism involved in the development and progression of prostate cancer[J]. Int J Mol Sci,2022,23(9):4772. doi: 10.3390/ijms23094772
    [13] Lorenzoni M,De Felice D,Beccaceci G,et al. ETS-related gene (ERG) undermines genome stability in mouse prostate progenitors via Gsk3beta dependent Nkx3.1 degradation[J]. Cancer Lett,2022,534:215612. doi: 10.1016/j.canlet.2022.215612
    [14] He Y,Tao W,Shang C,et al. Xeroderma pigmentosum group D suppresses proliferation and promotes apoptosis of HepG2 cells by downregulating ERG expression via the PPARgamma pathway[J]. Int J Exp Pathol,2021,102(3):157-162. doi: 10.1111/iep.12396
    [15] Robinson M D,McCarthy D J,Smyth G K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics,2010,26(1):139-140. doi: 10.1093/bioinformatics/btp616
    [16] Zhang B,Chen M,Jiang N,et al. A regulatory circuit of circ-MTO1/miR-17/QKI-5 inhibits the proliferation of lung adenocarcinoma[J]. Cancer Biol Ther,2019,20(8):1127-1135. doi: 10.1080/15384047.2019.1598762
    [17] Sheng K,Lu J,Zhao H. ELK1-induced upregulation of lncRNA HOXA10-AS promotes lung adenocarcinoma progression by increasing Wnt/beta-catenin signaling[J]. Biochem Biophys Res Commun,2018,501(3):612-618. doi: 10.1016/j.bbrc.2018.04.224
    [18] 宋家美,刘洋,史涛,等. DATS调控VEGF信号轴改善URSA小鼠胎盘血管的形成[J]. 昆明医科大学学报.,2023,44(5):6-11.
    [19] 徐冬杏,唐波,朱国,等. Twist1调控Bmi1对胆囊癌细胞侵袭迁移的影响及其机制研究[J]. 昆明医科大学学报,2023,44(3):28-33.
    [20] Wei K,Ma Z,Yang F,et al. M2 macrophage-derived exosomes promote lung adenocarcinoma progression by delivering miR-942[J]. Cancer Lett,2022,526:205-216. doi: 10.1016/j.canlet.2021.10.045
    [21] Xiong Y,Feng Y,Zhao J,et al. TFAP2A potentiates lung adenocarcinoma metastasis by a novel miR-16 family/TFAP2A/PSG9/TGF-beta signaling pathway[J]. Cell Death Dis,2021,12(4):352. doi: 10.1038/s41419-021-03606-x
    [22] Lu J,Lin J,Zhou Y,et al. MiR-328-3p inhibits lung adenocarcinoma-genesis by downregulation PYCR1[J]. Biochem Biophys Res Commun,2021,550:99-106. doi: 10.1016/j.bbrc.2021.02.029
    [23] Zhang J,Yang W,Xiao Y,et al. MiR-125b inhibits cell proliferation and induces apoptosis in human colon cancer SW480 cells via targeting STAT3[J]. Recent Pat Anticancer Drug Discov,2022,17(2):187-194. doi: 10.2174/1574892816666210708165037
    [24] Angeles AK,Heckmann D,Flosdorf N,et al. The ERG-regulated LINC00920 promotes prostate cancer cell survival via the 14-3-3epsilon-FOXO pathway[J]. Mol Cancer Res,2020,18(10):1545-1559. doi: 10.1158/1541-7786.MCR-20-0021
    [25] Smolarz B,Durczynski A,Romanowicz H,et al. miRNAs in cancer (review of literature)[J]. Int J Mol Sci,2022,23(5):2805. doi: 10.3390/ijms23052805
    [26] Singh A P,Luo H,Matur M,et al. A coordinated function of lncRNA HOTTIP and miRNA-196b underpinning leukemogenesis by targeting FAS signaling[J]. Oncogene,2022,41(5):718-731. doi: 10.1038/s41388-021-02127-3
    [27] Dioguardi M,Cantore S,Sovereto D,et al. Potential role of miR-196a and miR-196b as prognostic biomarkers of survival in head and neck squamous cell carcinoma: A systematic review,meta-analysis and trial sequential analysis[J]. Life (Basel),2022,12(8):1269. doi: 10.3390/life12081269
    [28] Adamo P,Ladomery M R. The oncogene ERG: A key factor in prostate cancer[J]. Oncogene,2016,35(4):403-414. doi: 10.1038/onc.2015.109
    [29] Kulda V,Topolcan O,Kucera R,et al. Prognostic significance of TMPRSS2-ERG fusion gene in prostate cancer[J]. Anticancer Res,2016,36(9):4787-4793. doi: 10.21873/anticanres.11037
    [30] Hagglof C,Hammarsten P,Stromvall K,et al. TMPRSS2-ERG expression predicts prostate cancer survival and associates with stromal biomarkers[J]. PLoS One,2014,9(2):e86824. doi: 10.1371/journal.pone.0086824
    [31] Wei Y,Peng J,He S,et al. miR-223-5p targeting ERG inhibits prostate cancer cell proliferation and migration[J]. J Cancer,2020,11(15):4453-4463. doi: 10.7150/jca.44441
    [32] Moh-Moh-Aung A,Fujisawa M,Ito S,et al. Decreased miR-200b-3p in cancer cells leads to angiogenesis in HCC by enhancing endothelial ERG expression[J]. Sci Rep,2020,10(1):10418. doi: 10.1038/s41598-020-67425-4
    [33] Yue C,Ma H,Zhou Y. Identification of prognostic gene signature associated with microenvironment of lung adenocarcinoma[J]. PeerJ,2019,7:e8128. doi: 10.7717/peerj.8128
    [34] Tang Q,Chen J,Di Z,et al. TM4SF1 promotes EMT and cancer stemness via the Wnt/beta-catenin/SOX2 pathway in colorectal cancer[J]. J Exp Clin Cancer Res,2020,39(1):232. doi: 10.1186/s13046-020-01690-z
    [35] Gao C,Yao H,Liu H,et al. TM4SF1 is a potential target for anti-invasion and metastasis in ovarian cancer[J]. BMC Cancer,2019,19(1):237. doi: 10.1186/s12885-019-5417-7
    [36] Peng X C,Zeng Z,Huang Y N,et al. Clinical significance of TM4SF1 as a tumor suppressor gene in gastric cancer[J]. Cancer Med,2018,7(6):2592-2600. doi: 10.1002/cam4.1494
  • [1] 严怡然, 沈成万, 尚香玉, 冯婵, 李金秋, 阿仙姑·哈斯木.  高良姜素通过影响Hippo/YAP通路抑制宫颈癌Hela细胞迁移和侵袭, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250105
    [2] 周锟, 刘亚丽, 李自良, 钱丽萍, 冉丽权, 任娅岚.  miR-34a对人牙周膜干细胞增殖和成骨分化的影响, 昆明医科大学学报.
    [3] 刘卓慧, 覃诗茵, 赵鹤翔, 贾峰峰, 阮标, 龙瑞清.  藏红花素通过IRF7/NF-κB信号通路对垂体腺瘤的抑制作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241203
    [4] 秦祥川, 李金秋, 黄晓婧, 忽吐比丁·库尔班, 阿仙姑·哈斯木.  HPV E6通过Rap1信号通路影响宫颈癌细胞增殖、侵袭及迁移的研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240902
    [5] 胡滔, 吴怡, 耿文达, 章意坚, 贺瑄, 李珊珊, 习杨彦彬, 邓丽玲.  自主运动训练通过调节Caspase-3的活性抑制人BRCA1突变乳腺癌的增殖与生长, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230419
    [6] 张梁, 王保全, 雷喜锋, 王旭, 柯阳, 张玮.  miR-29c-3p/IGF1分子轴对肝星状细胞活化,增殖和凋亡的作用机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230926
    [7] 马诗淇, 丁毅, 李敏, 王梦慈, 张思宇, 冯树梅.  LINC00341通过MAPK通路抑制肺腺癌细胞增殖, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230403
    [8] 张黎, 王清岑, 周罗慧, 杨娟, 王红.  木犀草素通过调控内质网应激抑制平滑肌细胞的迁移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220518
    [9] 王保全, 张伟, 田园, 雷喜锋, 王旭.  miR-142-5p通过CCND1调控胆囊癌细胞的增殖和转移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220223
    [10] 张玮, 王保全, 雷喜锋, 王旭, 张梁.  miR-125b-5p调控HK2抑制胆囊癌细胞增殖和糖酵解, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221206
    [11] 朱中山, 杨洲, 江承川, 李小兵, 任斗, 黄橙, 张维薇, 李湘军, 赵顺利.  肺腺癌患者PLA2G1B表达情况与预后的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220912
    [12] 廖周俊, 杨少华, 刘立鑫, 胡晟, 陈轶晖, 康强, 张小文.  AK4对肝内胆管癌细胞HUCCT1增殖、迁移的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220611
    [13] 赵斌, 段元鹏, 张国颖, 毕城伟, 杨李波, 施致裕, 杨勇, 张建朋, 高婷.  CircRNA EZH2通过调控miR-30c-5p促进前列腺癌细胞增殖和迁移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220731
    [14] 杨兰, 贾霄, 姜奕彤, 崔琪, 刘光赐, 何颖红.  UBE2C基因沉默表达对人胃癌AGS细胞增殖和迁移的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210504
    [15] 吴琪燕, 边革元, 程绘珺, 李娇霞, 王书廷, 黄照略.  肺腺癌预后因素及血清肿瘤标记物的诊断效能, 昆明医科大学学报.
    [16] 庞月文, 巩会杰, 王玲, 时京, 段珺耀, 冯营营, 闫永吉.  老鹳草素对去势抵抗性前列腺癌细胞增殖与迁移能力的影响, 昆明医科大学学报.
    [17] 朱中山, 严文辉, 李小兵, 杨洲, 白鹏.  200例肺腺癌脑转移患者驱动基因突变情况及预后关系, 昆明医科大学学报.
    [18] 刘立鑫.  二甲双胍对肝癌细胞HCCLM3生物学行为的影响, 昆明医科大学学报.
    [19] 史兆坤.  单核细胞趋化蛋白-1趋化巨噬细胞迁移与侵袭的体外实验研究, 昆明医科大学学报.
    [20] 刘佳鑫.  SDF-1/CXCR4在恶性胶质瘤细胞体外增殖、迁移及侵袭中的作用, 昆明医科大学学报.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  2554
  • HTML全文浏览量:  1112
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-26
  • 刊出日期:  2023-10-25

目录

/

返回文章
返回