Optimization of Extraction Technology of Narciclasine from Hymenocallis Littoralis Based on Response Surface Method
-
摘要:
目的 通过响应面中心设计,获得水鬼蕉中水仙环素的最优提取工艺 。方法 选用昆明产水鬼蕉,在单因素实验基础上,选取温度、时间以及液料比3个因素结合Box-Behnken试验建立数学模型,分析考察3个因素对水仙环素提取率的影响程度,确定最适提取条件。 结果 二次多项式回归模型模型的F 值为10.99,P值为0.0023,小于0.05,表明该模型具有统计学意义。失拟项P 值为0.7568,表明模型显著且适当。最佳提取工艺为提取温度90.97 ℃,取时间4.13 h,液料比5.09 mL/g 。水仙环素在此条件下的提取预测值、验证值分别为3.42×10-4%、3.38×10-4%。 结论 基于响应面中心设计优选的提取工艺稳定、可行、预测性良好,可用于水鬼蕉中活性成分的提取,为水鬼蕉资源开发和利用奠定基础。 Abstract:Objective To obtain the optimal extraction process of narciclasine from Hymenocallis littoralis by response surface center design. Methods Based on the single factor experiment, temperature, time and liquid-to-solid ratio were selected to establish a mathematical model combined with the Box-Behnken test. The influence degree of the three factors on the extraction rate of narciclasine was analyzed and investigated to determine the optimal extraction conditions. Results The optimum extraction conditions were as follows: extraction temperature 90.97 ℃, extraction time 4.13 h, liquid-solid ratio 5.09 mL∶1 g. The predicted and verified values of narciclasine extraction were 3.42×10-4% and 3.38×10-4%, respectively. Conclusion The optimized extraction process based on the response surface method is stable, feasible, and predictable, which could be used for the extraction of active components from Hymenocallis littoralis, and has laid the groundwork for the development and utilization of Hymenocallis littoralis. -
Key words:
- Hymenocallis littoralis /
- Narciclasine /
- Response surface method
-
脑震荡(cerebral concussion,CC)是创伤性脑损伤(traumatic brain injuries,TBI)中的轻度损伤类型,死亡率和致残率高。美国脑震荡年发病率约为5/1000,并有逐年上升得趋势[1]。目前研究发现,反复轻型脑损伤(repetitive mild traumatic brain injury,rmTBI)即多次脑震荡(multiple cerebral concussion,MCC)易出现学习记忆功能与情感障碍问题等,最终可发展为慢性创伤性脑病(chronic traumatic encephalopathy,CTE)[2]。课题组前期研究发现:3次性多重脑震荡(3 MCC)大鼠较一次性脑震荡组(pure cerebral concussion,PCC组)大鼠出现了明显的抑郁样行为损害,且随着打击次数的增加,其抑郁样行为损害程度更加严重[3]。但有关MCC大鼠对比PCC大鼠伤后早期焦虑行为变化尚未见有报道,为深入了解一重和多重脑震荡大鼠伤后早期焦虑行为变化特点,为后续干预和治疗评价提供实验依据,特设计本实验研究。
1. 材料与方法
1.1 材料
实验动物及分组:雄性SD大鼠50只(购自湖南斯莱克景达实验动物有限公司),合格证编号:SCXK(湘)2016-0002,体重(280±20)g,大鼠于实验前1周运到实验室,在安静环境下(明/暗周期12 h)分笼饲养,自由取食饮水,饲养环境温度15 ℃-22 ℃,湿度50%~60%,模型复制时随机将实验大鼠分入正常对照组(N组)、PCC组和3 MCC组。
1.2 方法
1.2.1 模型复制
模型复制方法参照于建云等[4]的方法,将每次打击符合轻型脑损伤判别标准的大鼠纳入实验对象,多重脑震荡大鼠每次打击的间隔时间为24 h,排除模型复制过程中判断为重型颅脑损伤与死亡的大鼠。
1.2.2 旷场实验(OFT)
1.2.3 实验方法
模型复制成功后饲养14 d,于伤后第14天进行旷场实验(OFT)。旷场实验箱规格为100 cm×100 cm×50 cm,顶部敞开,箱底均分为25个方格,四周墙壁为黑色有机玻璃,沿四周墙壁的区域为外周区域(surround areas,SA),其余区域为中央区域(center areas,CA)。每次实验将大鼠放到正中格开始实验,实验者站到1.5 m外观测,同时打开视频记录系统,记录大鼠在旷场中的活动情况。每次测试结束后,需要用清水和酒精清除掉大鼠的排泄物跟气味。再进行下一只动物的实验。正常大鼠因好奇而自动到CA区域进行探索活动,而焦虑大鼠则更愿意在SA区域活动。
1.2.4 检测指标
每只大鼠需观测5 min并录像,记录大鼠在CA区穿格数与CA区停留时间,SA区穿格数与SA区停留时间,梳理毛发次数。
1.3 高架十字迷宫实验(HPM)
1.3.1 实验方法
HPM由2条相对开臂(open arms,OA)和2条相对闭臂(enclosed arms,EA)组成,互相垂直成十字交叉。将大鼠轻放在十字迷宫的中央部位、面向开臂(OA),实验者迅速离开装置,站到1.5 m以外观测,同时打开电脑实验记录系统,记录大鼠在高架十字迷宫中的活动情况,每次测试结束后,需要用清水和酒精清除掉大鼠的排泄物跟气味。再进行下一只动物的实验。上述实验过程全部录像保存,进行统计分析。大鼠在闭臂中的时间与其焦虑程度呈正相关。
1.3.2 检测指标
每次观测5 min,主要记录大鼠进入OA次数、在OA停留时间、在OA中向平台下探望次数;进入EA次数和停留在EA的时间。
1.4 统计学处理
用SPSS20.0统计软件对数据进行处理,结果采用均数±标准差(
$\bar{{x}} \pm s$ )及四分位数M(P25,75)表示,统计方法采用单因素方差分析和Kruskal-Wallis H检验,P < 0.05为差异具有统计学意义。2. 结果
2.1 旷场实验结果
(1)CA区行走格数与停留时间:损伤组在CA区行走格数与停留时间均少于N组,且打击次数越多,CA区走格数与停留时间均呈减少趋势,3 MCC组与N组、PCC组比较差异有统计学意义,P < 0.05(P = 0.024,P = 0.033);(2)SA区行走格数与停留时间:损伤组在SA区行走格数与停留时间均高于N组,且打击次数越多,SA区走格数与停留时间均呈增多趋势,SA区走格数3 MCC组与N组比较差异有统计学意义,P < 0.05(P = 0.015),SA区停留时间各组间差异无统计学意义,P > 0.05;(3)梳理毛发次数:损伤组梳理毛发次数均明显少于N组,且打击次数越多,梳理毛发次数越少,3 MCC组与N组、PCC组比较差异有统计学意义,P < 0.05(P = 0.013,P = 0.019);(4)OFT实验焦虑行为损伤组较正常组变化率:各损伤组大鼠在旷场实验中CA区行走格数、行走时间与理毛次数,均随着打击次数的增加呈现下降趋势,其中一次性脑震荡大鼠的探索行为分别下降为正常的95.00%、61.88%和80.8%,三次性脑震荡大鼠的探索行为分别下降为正常的50.00%、25.41%和46.90%。此外,随着打击次数的增加,损伤大鼠在SA区行走格数与行走时间则呈上升趋势,其中一次性脑震荡大鼠的焦虑行为分别上升了165.15%和103.30%,三次性脑震荡大鼠的焦虑行为分别上升了196.97%和116.08%,见表1,表2。
表 1 PCC与3 MCC大鼠伤后14 d OFT数据[($\bar x \pm s$ ),n = 12,M(P25,P75)]Table 1. OFT data of PCC and 3 MCC rats on the 14th day after injury [($\bar x \pm s$ ),n = 12,M(P25,P75)]分组 中央格数(格) 中央格时间(s) 周边格数(格) 周边格时间(s) 理毛频次(次) N 10.00(7.00,17.88) 90.50(65.25,286.50) 33.00(1.13,51.50) 227.00(13.50,251.75) 5.20 ± 1.62 PCC 9.500(6.50,16.75) 56.00(32.25,104.00) 54.50(26.88,62.25) 234.50(196.00,275.75) 4.20 ± 1.03 3 MCC 5.00(3.50,9.00)▲* 23.00(11.00,36.00)▲* 65.00(28.50,81.00)▲ 263.50(217.00,278.00) 2.44 ± 0.73▲* 与N组比较,▲P < 0.05;与PCC组比较,*P < 0.05。 表 2 伤后14 d OFT实验PCC与3 MCC大鼠焦虑行为较正常组变化率(%)Table 2. The changes of anxious behaviors of PCC and 3 MCC rats on the 14th day after injury by OFT test (%)分组 中央格数(格) 中央格时间(s) 周边格数(格) 周边格时间(s) 理毛频次(次) N 100 100 100 100 100 PCC 95.00 61.88 165.15 103.30 80.8 3 MCC 50.00 25.41 196.97 116.08 46.9 2.2 高架十字迷宫实验结果
(1)进入OA次数与时间:各损伤组进入OA的次数与进入OA的时间均少于N组,且打击次数越多,进入OA次数与时间越少,但各组间差异无统计学意义,P > 0.05;(2)在OA中向台下探望次数:损伤组进入OA后向台下探望次数均少于N组,其中3 MCC组较N差异具有统计学意义,P < 0.05(P = 0.032);(3)进入EA次数与时间:损伤组进入EA次数均低于N组,但在EA中的停留时间增加,且打击次数越多,这些变化更加明显,进入EA次数,3 MCC组与PCC组比较,差异具有统计学意义,P < 0.05(P = 0.015);进入EA时间,3 MCC组与N组、PCC组比较差异有统计学意义,P < 0.05(P = 0.042,P = 0.027);(4)HMP实验焦虑行为损伤组较正常组变化率:各损伤组大鼠在高架十字迷宫实验中,进入OA臂的次数、时间与向台下探望次数,均随着打击次数的增加呈现下降趋势,其中一次性脑震荡大鼠的探索行为分别下降为正常的100%、10.05%和53.44%,三次性脑震荡大鼠的探索行为分别下降为正常的50.00%、6.78%和32.66%。此外,随着打击次数的增加,损伤大鼠在EA臂中的停留时间则呈上升趋势,见表3,表4。
表 3 PCC与3 MCC大鼠伤后14 d HMP数据[($\bar x \pm s$ ),n = 12,M(P25,P75)]Table 3. HMP data of PCC and 3 MCC rats on the 14th day after injury [($\bar x \pm s$ ),n = 12、M(P25,P75)]分组 开臂 闭臂 开臂进入次数(次) 进入开臂时间(s) 向台下探究次数(次) 闭臂进入次数(次) 进入闭臂时间(s) N 1.00(0.00,2.00) 199.00(0.00,299.75) 8.42 ± 6.26 1.00(0.00,1.00) 0.00(0.00,201.25) PCC 1.00(0.00,1.00) 20.00(0.00,111.75) 4.50 ± 4.36 1.00(1.00,1.00) 241.50(4.25,289.25) 3 MCC 0.50(0.00,1.00) 13.50(0.00,109.25) 2.75 ± 3.77▲ 0.00(0.00,1.00)* 271.50(0.00,297.00)▲* 与N组比较,▲P < 0.05;与PCC组比较,*P < 0.05。 表 4 伤后14 d HMP实验PCC与3 MCC大鼠焦虑行为较正常组变化率(%)Table 4. The changes of anxious behaviors of PCC and 3 MCC rats on the 14th day after injury by HMP test (%)分组 开臂 闭臂 开臂进入次数(次) 进入开臂时间(s) 向台下探究次数(次) 闭臂进入次数(次) 进入闭臂时间(s) N 100 100 100 100 100 PCC 100 10.05 53.44 100 0.00 3 MCC 50.0 6.78 32.66 0.00 0.00 3. 讨论
焦虑症(Anxiety)又称焦虑性障碍,是一种处于应激状态时的正常情绪反应,表现为以焦虑情绪为主的神经症,临床上常伴有头晕、呼吸困难、心悸、汗出、胸闷、口干、尿急、尿频和运动不安等,属于防御性的心理反应[5-6]。焦虑症的神经生理学基础主要涉及扣带回、前额叶以及杏仁核等脑区功能与结构异常[7]。神经科学研究发现大脑加工“恐惧”情绪的神经通路发生异常是焦虑症的神经基础。LeDoux等研究者通过在实验动物大脑信息加工环路上制造一系列病灶,最终确立了杏仁核在恐惧加工中的关键地位,并在脑成像技术中得到证明。高度焦虑个体在看到恐惧表情的面孔后,其杏仁核外侧基底部的活动跟对照组不同[8]面孔表情使创伤后应激综合征患者杏仁核的活动增强,支持了杏仁核在焦虑症发病中的作用[9]。Kalisch等研究发现高度焦虑大鼠在应激时,其背内侧前额叶的活动较低焦虑大鼠低。也有研究提出:大鼠情绪、神经性行为等活动主要由海马CA1区调控。海马神经细胞丢失、神经树突萎缩与突触点减少,可通过影响海马在下丘脑—垂体—肾上腺(The hypothalamic-pituitary-adrenal axis,HPA)轴反馈抑制导致焦虑症[10-11]。
有关大鼠焦虑样情感行为,多采用旷场实验(OFT)和高架十字迷宫实验(HPM)进行检测。OFT实验是由Hall等于1934年设计发明的,主要用于检测实验动物焦虑、抑郁状态、自发活动及探索行为。其原理是基于动物存在畏惧空旷场地、对新鲜事物探索、趋壁性的天性而设置。该实验主要检测大鼠在CA区和SA区行走格数及活动时间指标,实验动物在CA区活动的距离与时间越长,说明其自主活动能力越高,焦虑程度越低。该实验操作简单,所得数据丰富,被研究者广泛应用[12-13]。HPM实验主要用于检测大鼠在复杂环境中的自主活动能力和焦虑程度,被广泛用于抑郁症、痴呆等疾病模型研究[14]。其原理是是基于动物对新异环境的探索性和对高悬敞开臂的恐惧性而设计。主要通过观测大鼠在OA和EA次数和时间,来判断大鼠的焦虑程度和自主活动能力。实验动物进入OA的次数和时间越长,说明实验动物的自主活动能力越高,焦虑程度越低。
本实验结果显示:一次与三次性脑震荡大鼠在伤后14 d,均表现出一定程度的焦虑行为增加,各损伤组大鼠伤后14 d对新奇环境的探索行为呈明显下降趋势。主要表现在损伤组大鼠在旷场实验中央(CA)区行走格数下降为正常的95.0%~50.0%,在CA区的停留时间减少为正常的61.88%~25.41%;同时在高架十字迷宫实验中,损伤大鼠进入开放臂(OA)次数下降为正常的100%~50.0%,停留在OA的时间下降为正常的10.05%~6.78%,向台下探望的次数下降为正常的53.44%~32.66%。上述结果提示,不论是一次还是三次脑震荡大鼠的探索行为在伤后14 d都有程度不等的受损下降。另一方面,一次与三次性脑震荡大鼠在伤后14天,其焦虑行为也一定程度出现增加,表现为损伤组大鼠在旷场实验周边(SA)区行走距离与停留时间较正常组大鼠分别增加了165.15%~196.97%,103.30%~116.08%,代表大鼠安宁自在的理毛行为频数较正常组大鼠减少了80.8%~46.9%。
本实验研究结果还显示,随着打击次数的增加,伤后14 d三重脑震荡大鼠的焦虑行为异常变化较正常组大鼠出现了显著的损伤性变化,且在各项观测指标中,三重脑震荡大鼠的焦虑行为变化较一次性脑震荡大鼠的改变更加突出,表现出了不同程度的损伤累加效应趋势,推测随着实验观测时间的延长,这些变化很可能会出现更显著性的差异。
一次性与多次性脑震荡大鼠于伤后14 d,开始出现了明显的焦虑行为增多趋势,并随打击次数的增加,表现出不同程度的损伤累加效应。一次与多次脑震荡大鼠焦虑行为改变的具体机制有待深入研究。
-
表 1 因素水平
Table 1. The level of factors
水平因素 A温度(℃) B时间(h) C液料比(mL/g) −1 80 3 4∶1 0 90 4 5∶1 1 100 5 6∶1 表 2 高效液相色谱梯度洗脱条件
Table 2. The gradient elution condition of HPLC
时间(min) A:纯水(%) B:乙腈溶液浓度(%) 0.01 98 2 60.00 2 98 表 3 3种不同提取方法峰面积
Table 3. The peak area of three different extraction methods
提取方法 分组 峰面积 均值 回流提取法 A1 124934 119261 A2 128763 A3 104086 超声提取法 B1 28985 26901 B2 26875 B3 24845 冷浸法 C1 60833
53069C2 33853 C3 64521 表 4 响应面实验设计及结果
Table 4. Experimental design and results of response surface method
试验号因素
实际提取率
(10−4%)
预测提取率
(10−4%)A(℃) B(h) C(mL/g) 1 90(0) 4(0) 5(0) 3.34 3.40 2 90(0) 4(0) 5(0) 3.70 3.40 3 80(−1) 4(0) 6(1) 2.49 2.47 4 90(0) 3(−1) 4(0) 2.17 2.05 5 90(0) 4(0) 5(0) 3.33 3.40 6 90(0) 3(−1) 6(1) 2.34 2.32 7 90(0) 5(1) 6(1) 2.42 2.54 8 100(1) 4(0) 4(−1) 2.37 2.39 9 90(0) 5(1) 4(−1) 2.36 2.38 10 80(−1) 4(0) 4(−1) 2.26 2.34 11 80(−1) 5(1) 5(0) 2.68 2.59 12 100(1) 4(0) 6(1) 2.76 2.68 13 100(1) 3(−1) 5(0) 2.36 2.45 14 100(1) 5(1) 5(0) 2.76 2.72 15 80(−1) 3(−1) 5(0) 2.28 2.32 16 90(0) 4(0) 5(0) 3.11 3.40 17 90(0) 4(0) 5(0) 3.52 3.40 表 5 二次多项式回归模型的方差分析结果
Table 5. Anova result of quadratic polynomial regression model
项目 平方和 自由度 均方 F P 模型 3.63 9 0.40 10.99 0.0023** A 0.036 1 0.036 0.99 0.3524 B 0.14 1 0.14 3.90 0.0890 C 0.090 1 0.090 2.46 0.1609 AB 0.000 1 0.000 0.000 1.0000 AC 6.400E-03 1 6.400E-03 0.17 0.6889 BC 3.025E-04 1 3.025E-04 0.082 0.7825 A2 0.56 1 0.56 15.37 0.0057** B2 1.11 1 1.11 30.25 0.0009** C2 1.34 1 1.34 36.42 0.0005** 残差 0.26 7 0.037 失拟项 0.060 3 0.060 0.41 0.7568 纯误差 0.20 4 0.20 总和 3.89 16 **P<0.01。A:提取温度;B:提取时间;C:提取液料比。 -
[1] 福建省医药研究所. 福建中草药[M]. 福州: 福建省医药公司出版社, 1970: 484-485. [2] Dumont P,Ingrassia L,Ribaucour S,et al. The Amaryllidaceae isocarbostyril narciclasine induces apoptosis by activation of the death receptor and/or mitochondrial pathways in cancer cells but not in normal fibroblasts[J]. Neoplasia,2007,9(9):766-776. doi: 10.1593/neo.07535 [3] Chen F,Yu Z,Wang X. Development of a UPLC-MS/MS method for the determination of narciclasine and 7-deoxynarciclasine in mouse blood and its application in pharmacokinetics[J]. J Chromatogr B Analyt Technol Biomed Life Sci.,2021,1180(1):122899. doi: 10.1016/j.jchromb.2021.122899 [4] Qiu Y,Fang B,Thuy N T T,et al. Narciclasine suppresses esophageal cancer cell proliferation and migration by inhibiting the FAK signaling pathway[J]. European Journal of Pharmacology,2022,921(1):174669. doi: 10.1016/j.ejphar.2021.174669 [5] Shieu M K, Ho H Y, Lin C C, Lo Y S, et al. Narciclasine suppresses oral cancer metastasis by modulating cathepsin B and extracellular signal-related kinase pathways. Biomed Pharmacother. 2023, 158(1): 114159 [6] Yuan Y,He X,Li X,et al. Narciclasine induces autophagy-mediated apoptosis in gastric cancer cells through the Akt/mTOR signaling pathway[J]. BMC Pharmacol Toxicol.,2021,22(1):70. doi: 10.1186/s40360-021-00537-3 [7] Kingsley M K,Bhat B V,Badhe B A,et al. Narciclasine improves outcome in sepsis among neonatal rats via inhibition of calprotectin and alleviating inflammatory responses[J]. Sci. Rep.,2020,10(1):2947. doi: 10.1038/s41598-020-59716-7 [8] 汪伦记,贾培培,纠敏,等. 超声辅助乙醇回流提取冬凌草抑菌活性成分的工艺优化[J]. 食品科技,2016,41(4):213-219. doi: 10.13684/j.cnki.spkj.2016.04.041 [9] 李锐,陈中兰,肖宏,等. 厚朴中厚朴酚及和厚朴酚提取工艺的优化研究[J]. 中国药业,2011,20(10):47-48. doi: 10.3969/j.issn.1006-4931.2011.10.028 [10] 冯素香,李晓玉,白燕,等. 回流提取法与闪式提取法提取姜黄中姜黄素的工艺对比研究[J]. 时珍国医国药,2015,26(2):348-350. [11] 王振强,李孝坤,王浩. 响应面试验优化超声辅助提取番茄皮渣中番茄红素工艺及其HPLC-MS测定[J]. 食品科学,2015,36(12):70-75. doi: 10.7506/spkx1002-6630-201512013 [12] 王宇,张生,王少明,等. 响应面分析法优化泽兰中桦木酸的超声辅助提取工艺[J]. 中成药,2013,35(11):2541-2545. doi: 10.3969/j.issn.1001-1528.2013.11.057 [13] 夏季,郑炯,陈光静,等. 响应面法优化超声辅助提取野木瓜多酚工艺[J]. 食品工业科技,2014,35(21):253-258. doi: 10.13386/j.issn1002-0306.2014.21.046 [14] Liao J Q,QuB D,Liu D,et al. New method to enhance the extraction yield of rutinfrom Sophora japonica,using a novel ultrasonic extraction system by determining optimum ultrasonic frequency[J]. Ultrasonics Sonochemistry,2015,27(1):10-16. doi: 10.1016/j.ultsonch.2015.04.017 [15] 黄菊,翟淑敏. 正交设计和响应面法优化荞麦中芦丁提取工艺的比较[J]. 粮食与油脂,2014,27(9):45-48. doi: 10.3969/j.issn.1008-9578.2014.09.013 [16] Gao F,Hu Y,Ye X,et al. Optimal extraction and fingerprint analysis of Cnidii fructus by accelerated solvent extraction and high performance liquid chromatographic analysis with photodiode array and mass spectrometry detections[J]. Food Chemistry,2013,141(3):1962-1971. doi: 10.1016/j.foodchem.2013.05.013 -