留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZNF384调控GCLM对肝细胞癌转移的机制研究

张明 于成龙 曹锦鹏

张明, 于成龙, 曹锦鹏. ZNF384调控GCLM对肝细胞癌转移的机制研究[J]. 昆明医科大学学报, 2023, 44(11): 56-62. doi: 10.12259/j.issn.2095-610X.S20231108
引用本文: 张明, 于成龙, 曹锦鹏. ZNF384调控GCLM对肝细胞癌转移的机制研究[J]. 昆明医科大学学报, 2023, 44(11): 56-62. doi: 10.12259/j.issn.2095-610X.S20231108
Ming ZHANG, Chenglong YU, Jinpeng CAO. ZNF384 Regulates Metastasis of Hepatocellular Carcinoma via GCLM[J]. Journal of Kunming Medical University, 2023, 44(11): 56-62. doi: 10.12259/j.issn.2095-610X.S20231108
Citation: Ming ZHANG, Chenglong YU, Jinpeng CAO. ZNF384 Regulates Metastasis of Hepatocellular Carcinoma via GCLM[J]. Journal of Kunming Medical University, 2023, 44(11): 56-62. doi: 10.12259/j.issn.2095-610X.S20231108

ZNF384调控GCLM对肝细胞癌转移的机制研究

doi: 10.12259/j.issn.2095-610X.S20231108
基金项目: 青岛市输血协会科技计划项目(2020-qdsx11)
详细信息
    作者简介:

    张明(1971~),男,山东青岛人,医学学士,副主任技师,主要从事临床基础检验工作

    通讯作者:

    曹锦鹏,E-mail:epeng12345@sina.com

  • 中图分类号: R735.7

ZNF384 Regulates Metastasis of Hepatocellular Carcinoma via GCLM

  • 摘要:   目的  探讨ZNF384通过调控GCLM对肝细胞癌(hepatocellular carcinoma,HCC)增殖和转移的影响及具体调控机制。  方法  分别在HCC细胞系HepG2和HuH7中转染si-ZNF384和pcDNA-GCLM。Western blot检测ZNF384和GCLM蛋白表达以及上皮间质转化(epithelial-mesenchymal transition,EMT)标志物N-cadherin、Vimentin、E-cadherin的表达,CCK-8检测细胞增殖活力,Transwell检测细胞迁移。双荧光素酶报告基因实验验证ZNF384和GCLM结合关系。荧光原位杂交(fluorescence in situ hybridization,FISH)技术检测ZNF384和GCLM在HepG2细胞中的定位。  结果  ZNF384和GCLM在HepG2和HuH7细胞中表达升高(P < 0.05),敲降ZNF384抑制HepG2和HuH7细胞增殖(P < 0.001)、迁移(P < 0.001)以及间质标志物N-cadherin(P < 0.01)和Vimentin(P < 0.01)的表达,促进上皮标志物E-cadherin的表达(P < 0.01)。数据库以及双荧光素酶实验证实ZNF384与GCLM启动子结合。过表达GCLM逆转敲降ZNF384对HepG2和HuH7细胞增殖、迁移以及EMT的抑制作用(P < 0.05)。  结论  敲降ZNF384通过抑制GCLM,抑制HCC细胞增殖和转移。
  • 图  1  敲降ZNF384抑制HCC细胞增殖和转移

    A~B:Western blot检测HCC细胞系中ZNF384蛋白表达,与LO2组相比,*P < 0.05,***P < 0.001。C~E:Western blot检测敲降ZNF384对ZNF384蛋白表达的作用;F:CCK-8检测细胞增殖活力;G~H:Transwell检测细胞迁移能力;I-K:Western blot检测EMT相关标志物的表达。与si-NC组相比,*P < 0.05,**P < 0.01,***P < 0.001。

    Figure  1.  Knockdown of ZNF384 inhibited the proliferation and metastasis of HCC cells

    图  2  ZNF384作为转录因子调控GCLM的表达

    A:AnimalTFD3.0数据库预测ZNF384与GCLM的启动子结合位点;B:双荧光素酶报告基因实验验证ZNF384与GCLM的结合关系,与pcDNA-NC组相比,***P < 0.001;C:FISH检测ZNF384和GCLM在HepG2细胞中的定位;D:Western blot检测HCC细胞中GCLM的蛋白表达,与LO2组相比,**P < 0.01,***P < 0.001;E~F:Western blot检测敲降ZNF384对GCLM蛋白表达的作用。与si-NC组相比,**P < 0.01,***P < 0.001。

    Figure  2.  ZNF384 as a transcription factor regulated the expression of GCLM

    图  3  ZNF384调控GCLM抑制肝细胞癌细胞的增殖和转移

    A~C:Western blot检测ZNF384和GCLM在HepG2和HuH7细胞中的表达;D:CCK-8检测细胞增殖活力;E~G:Transwell检测细胞迁移能力;H~J:Western blot检测EMT相关标志物N-cadherin、Vimentin和E-cadherin的蛋白表达。*P < 0.05,**P < 0.01,***P < 0.001。

    Figure  3.  ZNF384 suppressed the proliferation and metastasis of HCC cells by regulating GCLM

  • [1] Brown Z J,Tsilimigras D I,Ruff S M,et al. Management of hepatocellular carcinoma: A review[J]. JAMA Surg,2023,158(4):410-420. doi: 10.1001/jamasurg.2022.7989
    [2] Xie D,Shi J,Zhou J,et al. Clinical practice guidelines and real-life practice in hepatocellular carcinoma: A Chinese perspective[J]. Clin Mol Hepatol,2023,29(2):206-216. doi: 10.3350/cmh.2022.0402
    [3] Liu S,Liu X,Lin X,et al. Zinc finger proteins in the war on gastric cancer: Molecular mechanism and clinical potential[J]. Cells,2023,12(9):1314. doi: 10.3390/cells12091314
    [4] Singh J K,Smith R,Rother M B,et al. Zinc finger protein ZNF384 is an adaptor of Ku to DNA during classical non-homologous end-joining[J]. Nat Commun,2021,12(1):6560. doi: 10.1038/s41467-021-26691-0
    [5] Meng Q X,Wang K N,Li J H,et al. ZNF384-ZEB1 feedback loop regulates breast cancer metastasis[J]. Mol Med,2022,28(1):111. doi: 10.1186/s10020-022-00541-1
    [6] Yan Z,Zhou Y,Yang Y,et al. Zinc finger protein 384 enhances colorectal cancer metastasis by upregulating MMP2[J]. Oncol Rep,2022,47(3):49. doi: 10.3892/or.2022.8260
    [7] He L,Fan X,Li Y,et al. Overexpression of zinc finger protein 384 (ZNF 384),a poor prognostic predictor,promotes cell growth by upregulating the expression of Cyclin D1 in Hepatocellular carcinoma[J]. Cell Death Dis,2019,10(6):444. doi: 10.1038/s41419-019-1681-3
    [8] Yang H, Wang J, Huang Z Z, et al. Cloning and characterization of the 5'-flanking region of the rat glutamate-cysteine ligase catalytic subunit[J]. Biochem J, 2001, 357(Pt 2): 447-455.
    [9] Yang H,Li G,Qiu G. Bioinformatics analysis using ATAC-seq and RNA-seq for the identification of 15 gene signatures associated with the prediction of prognosis in hepatocellular carcinoma[J]. Front Oncol,2021,11:726551.
    [10] Tsai M C,Yen Y H,Chang K C,et al. Elevated levels of serum urokinase plasminogen activator predict poor prognosis in hepatocellular carcinoma after resection[J]. BMC Cancer,2019,19(1):1169. doi: 10.1186/s12885-019-6397-3
    [11] Luo Y,Teng F,Fu H,et al. Immunotherapy in liver transplantation for hepatocellular carcinoma: Pros and cons[J]. World J Gastrointest Oncol,2022,14(1):163-180. doi: 10.4251/wjgo.v14.i1.163
    [12] Gauthier A,Ho M. Role of sorafenib in the treatment of advanced hepatocellular carcinoma: An update[J]. Hepatol Res,2013,43(2):147-154. doi: 10.1111/j.1872-034X.2012.01113.x
    [13] Fang Y,Zhan Y,Xie Y,et al. Integration of glucose and cardiolipin anabolism confers radiation resistance of HCC[J]. Hepatology,2022,75(6):1386-1401. doi: 10.1002/hep.32177
    [14] Zhu L,Bai W,Cheng Q,et al. ZNF384-related fusion genes in acute lymphoblastic leukemia[J]. Cancer Control,2023,30:10732748231182787.
    [15] Grammatico S,Vitale A,La Starza R,et al. Lineage switch from pro-B acute lymphoid leukemia to acute myeloid leukemia in a case with t(12;17)(p13;q11)/TAF15-ZNF384 rearrangement[J]. Leuk Lymphoma,2013,54(8):1802-1805. doi: 10.3109/10428194.2012.753450
    [16] Sim J,Park J,Kim S,et al. Association of Tim-3/Gal-9 Axis with NLRC4 inflammasome in glioma malignancy: Tim-3/Gal-9 induce the NLRC4 inflammasome[J]. Int J Mol Sci,2022,23(4):2028. doi: 10.3390/ijms23042028
    [17] Mori S,Takeuchi T,Ishii Y,et al. Identification of APOBEC3B promoter elements responsible for activation by human papillomavirus type 16 E6[J]. Biochem Biophys Res Commun,2015,460(3):555-560. doi: 10.1016/j.bbrc.2015.03.068
    [18] Xiao Y,Yang K,Liu P,et al. Deoxyribonuclease 1-like 3 inhibits hepatocellular carcinoma progression by inducing apoptosis and reprogramming glucose metabolism[J]. Int J Biol Sci,2022,18(1):82-95. doi: 10.7150/ijbs.57919
    [19] Kendig E L,Chen Y,Krishan M,et al. Lipid metabolism and body composition in Gclm(-/-) mice[J]. Toxicol Appl Pharmacol,2011,257(3):338-348. doi: 10.1016/j.taap.2011.09.017
    [20] Wang T,Li C,Han B,et al. Neuroprotective effects of danshensu on rotenone-induced parkinson's disease models in vitro and in vivo[J]. BMC Complement Med Ther,2020,20(1):20. doi: 10.1186/s12906-019-2738-7
    [21] Wang S, Wang H, Zhu S, et al. Systematical analysis of ferroptosis regulators and identification of GCLM as a tumor promotor and immunological biomarker in bladder cancer[J]. Front Oncol, 2022, 24(12): 1040892.
    [22] Inoue Y,Tomisawa M,Yamazaki H,et al. The modifier subunit of glutamate cysteine ligase (GCLM) is a molecular target for amelioration of cisplatin resistance in lung cancer[J]. Int J Oncol,2003,23(5):1333-1339.
    [23] Wu N,Zhu D,Li J,et al. CircOMA1 modulates cabergoline resistance by downregulating ferroptosis in prolactinoma[J]. J Endocrinol Invest,2023,46(8):1573-1587. doi: 10.1007/s40618-023-02010-w
    [24] Cheng M L,Lu Y F,Chen H,et al. Liver expression of Nrf2-related genes in different liver diseases[J]. Hepatobiliary Pancreat Dis Int,2015,14(5):485-491. doi: 10.1016/S1499-3872(15)60425-8
  • [1] 王玲, 秦祥川, 李金秋, 阿仙姑·哈斯木.  CD147通过AIM2炎症小体介导宫颈癌细胞焦亡和增殖, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240103
    [2] 张晔琳, 马丽娅, 彭旭晖, 杨禾丰, 佘睿.  hsa-let-7a-5p调控牙周膜干细胞增殖及凋亡, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231028
    [3] 张梁, 王保全, 雷喜锋, 王旭, 柯阳, 张玮.  miR-29c-3p/IGF1分子轴对肝星状细胞活化,增殖和凋亡的作用机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230926
    [4] 吴华杰, 屠德桢, 李磊, 乔涵, 李国萍.  白藜芦醇对鼻咽癌转移能力的影响及其分子机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230220
    [5] 冯毅, 王小峰, 白西民, 姚胜, 党俊涛, 赵云洁, 蔡冰.  miR-149-5p通过MSH5/Wnt信号通路调控胶质瘤细胞恶性生物学行为, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230823
    [6] 张玮, 王保全, 雷喜锋, 王旭, 张梁.  miR-125b-5p调控HK2抑制胆囊癌细胞增殖和糖酵解, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221206
    [7] 廖周俊, 杨少华, 刘立鑫, 胡晟, 陈轶晖, 康强, 张小文.  AK4对肝内胆管癌细胞HUCCT1增殖、迁移的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220611
    [8] 王保全, 张伟, 田园, 雷喜锋, 王旭.  miR-142-5p通过CCND1调控胆囊癌细胞的增殖和转移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220223
    [9] 杨兰, 贾霄, 姜奕彤, 崔琪, 刘光赐, 何颖红.  UBE2C基因沉默表达对人胃癌AGS细胞增殖和迁移的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210504
    [10] 雷喜锋, 侯峰强, 杨少华, 张伟.  miR-373在人肝细胞癌中的表达及其作用, 昆明医科大学学报.
    [11] 雷喜锋, 侯峰强, 刘韬, 张伟.  FOXP2抑制人肝细胞癌增殖及其机制, 昆明医科大学学报.
    [12] 魏东.  脆性位点基因WWOX调控人胆囊癌细胞的体外增殖效应, 昆明医科大学学报.
    [13] 贾楠楠.  Gnaq对SH-SY5Y细胞增殖的作用及机制, 昆明医科大学学报.
    [14] 邱建武.  P38MAPK特异性抑制剂SB203580对肝癌细胞增殖的影响, 昆明医科大学学报.
    [15] 熊伟.  奥沙利铂化疗对荧光HepG2肝癌细胞裸鼠原位移植瘤侵袭转移潜能的影响, 昆明医科大学学报.
    [16] 王海峰.  上调microRNA-101沉默EZH2基因表达对人膀胱癌T24细胞系增殖和凋亡的影响, 昆明医科大学学报.
    [17] 周喆焱.  E-cadherin对非小细胞肺癌的转移和靶向治疗的影响, 昆明医科大学学报.
    [18] 武斌.  大豆苷元对人乳牙牙髓干细胞增殖和成骨分化的影响, 昆明医科大学学报.
    [19] 夏英杰.  SD大鼠髁状突颈部骨折对大鼠髁状突软骨细胞增殖与凋亡的影响, 昆明医科大学学报.
    [20] 李雄.  氧自由基在血管紧张素Ⅱ诱导ECV304细胞增殖中的作用, 昆明医科大学学报.
  • 加载中
图(3)
计量
  • 文章访问数:  1417
  • HTML全文浏览量:  866
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-05
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-11-30

目录

    /

    返回文章
    返回