[1]
|
Younossi Z M,Koenig A B,Abdelatif D,et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence,incidence,and outcomes[J]. Hepatology,2016,64(1):73-84. doi: 10.1002/hep.28431
|
[2]
|
Li J,Zou B,Yeo Y H,et al. Prevalence,incidence,and outcome of non-alcoholic fatty liver disease in Asia,1999-2019: A systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol,2019,4(5):389-398. doi: 10.1016/S2468-1253(19)30039-1
|
[3]
|
Machado M V,Cortez-Pinto H. Non-alcoholic fatty liver disease: What the clinician needs to know[J]. World J Gastroenterol,2014,20(36):12956-12980. doi: 10.3748/wjg.v20.i36.12956
|
[4]
|
Chávez-Talavera O,Tailleux A,Lefebvre P,et al. Bile acid control of metabolism and inflammation in obesity,type2 diabetes,dyslipidemia,and nonalcoholic fatty liver disease[J]. Gastroenterology,2017,152(7):1679-1694. doi: 10.1053/j.gastro.2017.01.055
|
[5]
|
Bechmann L P,Kocabayoglu P,Sowa J P,et al. Free fatty acids repress small heterodimer partner (SHP) activation and adiponectin counteracts bile acid-induced liver injury in superobese patients with nonalcoholic steatohepatitis[J]. Hepatology,2013,57(4):1394-1406.
|
[6]
|
Puri P,Daita K,Joyce A,et al. The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids[J]. Hepatology,2018,67(2):534-548. doi: 10.1002/hep.29359
|
[7]
|
Chow M D,Lee Y H,Guo G L. The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Mol Aspects Med,2017,56(4):34-44.
|
[8]
|
Xue R,Su L,Lai S,et al. Bile acid receptors and the gut-liver axis in nonalcoholic fatty liver disease[J]. Cells,2021,10(11):2806. doi: 10.3390/cells10112806
|
[9]
|
Yang Z X,Shen W,Sun H. Effects of nuclear receptor FXR on the regulation of liver lipid metabolism in patients with non-alcoholic fatty liver disease[J]. Hepatol Int,2010,4(4):741-748. doi: 10.1007/s12072-010-9202-6
|
[10]
|
Jiao N,Baker S S,Chapa-Rodriguez A,et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD[J]. Gut,2018,67(10):1881-1891. doi: 10.1136/gutjnl-2017-314307
|
[11]
|
Arab J P,Karpen S J,Dawson P A,et al. Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives[J]. Hepatology,2017,65(1):350-362. doi: 10.1002/hep.28709
|
[12]
|
Sinal C J,Tohkin M,Miyata M,et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis[J]. Cell,2000,102(6):731-744. doi: 10.1016/S0092-8674(00)00062-3
|
[13]
|
Manchekar M,Kapil R,Sun Z,et al. Relationship between amphipathic β Structures in the β1domain of apolipoprotein B and the properties of the secreted lipoprotein particles in McA-RH7777 cells[J]. Biochemistry,2017,56(31):4084-4094. doi: 10.1021/acs.biochem.6b01174
|
[14]
|
Chiang J Y. Bile acid metabolism and signaling[J]. Compr Physiol,2013,3(3):1191-1212.
|
[15]
|
Deng W,Fan W,Tang T,et al. Farnesoid X receptor deficiency induces hepatic lipid and glucose metabolism disorder via regulation of pyruvate dehydrogenase kinase 4[J]. Oxid Med Cell Longev,2022,2022:3589525.
|
[16]
|
Herzig S,Long F,Jhala U S,et al. CREB regulates hepatic gluconeogenesisthrough the coactivator PGC-1[J]. Nature,2001,413(6852):179-183. doi: 10.1038/35093131
|
[17]
|
Carino A,Cipriani S,Marchianò S,et al. Gpbar1 agonism promotes a Pgc-1α-dependent browning of white adipose tissue and energy expenditure and reverses diet-induced steatohepatitis in mice[J]. Sci Rep,2017,7(1):13689. doi: 10.1038/s41598-017-13102-y
|
[18]
|
Velazquez-Villegas L A,Perino A,Lemos V,et al. TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue[J]. Nat Commun,2018,9(1):245. doi: 10.1038/s41467-017-02068-0
|
[19]
|
Thomas C,Gioiello A,Noriega L,et al. TGR5-mediated bile acid sensing controls glucose homeostasis[J]. Cell Metab,2009,10(3):167-177. doi: 10.1016/j.cmet.2009.08.001
|
[20]
|
Fang S,Suh J M,Reilly S M,et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance[J]. Nat Med,2015,21(2):159-165. doi: 10.1038/nm.3760
|
[21]
|
Seok S,Sun H,Kim Y C,et al. Defective FXR-SHP regulation in obesity aberrantly increases miR-802 expression,promoting insulin resistance and fatty liver[J]. Diabetes,2021,70(3):733-744. doi: 10.2337/db20-0856
|
[22]
|
Ding L,Yang L,Wang Z,et al. Bile acid nuclear receptor FXR and digestive system diseases[J]. Acta Pharm Sin B,2015,5(2):135-144. doi: 10.1016/j.apsb.2015.01.004
|
[23]
|
Goldspink D A,Lu V B,Billing L J,et al. Mechanistic insights into the detection of free fatty and bile acids by ileal glucagon-like peptide-1 secreting cells[J]. Mol Metab,2018,7:90-101. doi: 10.1016/j.molmet.2017.11.005
|
[24]
|
Drucker D J. The biology of incretin hormones[J]. Cell Metab,2006,3(3):153-165. doi: 10.1016/j.cmet.2006.01.004
|
[25]
|
Katsuma S,Hirasawa A,Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1[J]. Biochem Biophys Res Commun,2005,329(1):386-390. doi: 10.1016/j.bbrc.2005.01.139
|
[26]
|
Holter M M,Chirikjian M K,Briere D A,et al. Compound 18 improves glucose tolerance in a hepatocyte TGR5-dependent manner in mice[J]. Nutrients,2020,12(7):2124. doi: 10.3390/nu12072124
|
[27]
|
Lefebvre P,Cariou B,Lien F,et al. Role of bile acids and bile acid receptors in metabolic regulation[J]. Physiol Rev,2009,89(1):147-191. doi: 10.1152/physrev.00010.2008
|
[28]
|
Fiorucci S,Di Giorgio C,Distrutti E. Obeticholic acid: An update of its pharmacological activities in liver disorders[J]. Handb Exp Pharmacol,2019,256:283-295.
|
[29]
|
Briand F,Brousseau E,Quinsat M,et al. Obeticholic acid raises LDL-cholesterol and reduces HDL-cholesterol in the diet-induced NASH (DIN) hamster model[J]. Eur J Pharmacol,2018,818:449-456. doi: 10.1016/j.ejphar.2017.11.021
|
[30]
|
Yu Y,Liu Y,An W,et al. STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis[J]. J Clin Invest,2019,129(2):546-555.
|
[31]
|
Devkota S,Wang Y,Musch M W,et al. Dietary-fat-induced taurocholic acid promotespathobiont expansion and colitis in Il10-/- mice[J]. Nature,2012,487(7405):104-108. doi: 10.1038/nature11225
|
[32]
|
Jones B V,Begley M,Hill C,et al. Functional and comparative metagenomic analysisof bile salt hydrolase activity in the human gut microbiome[J]. Proc Natl Acad Sci US A,2008,105(36):13580-13585. doi: 10.1073/pnas.0804437105
|
[33]
|
Sayin S I,Wahlström A,Felin J,et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid,a naturally occurring FXR antagonist[J]. Cell Metab,2013,17(2):225-235. doi: 10.1016/j.cmet.2013.01.003
|
[34]
|
Ridaura V K,Faith J J,Rey F E,et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice[J]. Science,2013,341(6150):1241214. doi: 10.1126/science.1241214
|
[35]
|
Parséus A,Sommer N,Sommer F,et al. Microbiota-induced obesity requires farnesoid X receptor[J]. Gut,2017,66(3):429-437. doi: 10.1136/gutjnl-2015-310283
|
[36]
|
Jiang C,Xie C,Li F,et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease[J]. J Clin Invest,2015,125(1):386-402. doi: 10.1172/JCI76738
|
[37]
|
Selwyn F P,Csanaky I L,Zhang Y,et al. Importance of large intestine in regulating bile acids and glucagon-like peptide-1 in germ-free mice[J]. Drug Metab Dispos,2015,43(10):1544-1556. doi: 10.1124/dmd.115.065276
|
[38]
|
Sutti S,Bruzzì S,Albano E. The role of immune mechanisms in alcoholic and nonalcoholic steatohepatitis: A 2015 update[J]. Expert Rev Gastroenterol Hepatol,2016,10(2):243-253. doi: 10.1586/17474124.2016.1111758
|
[39]
|
Biagioli M,Carino A. Signaling from intestine to the host: How bile acids regulate intestinal and liver immunity[J]. Handb Exp Pharmacol,2019,256:95-108.
|
[40]
|
Gai Z,Gui T,Alecu I,et al. Farnesoid X receptor activation induces the degradation of hepatotoxic 1-deoxysphingolipids in non-alcoholic fatty liver disease[J]. Liver Int,2020,40(4):844-859. doi: 10.1111/liv.14340
|
[41]
|
Guo C,Xie S,Chi Z,et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome[J]. Immunity,2016,45(4):802-816. doi: 10.1016/j.immuni.2016.09.008
|
[42]
|
Shi Y,Su W,Zhang L,et al. TGR5 regulates macrophage inflammation in nonalcoholic steatohepatitis by modulating NLRP3 inflammasome activation[J]. Front Immunol,2021,11:609060. doi: 10.3389/fimmu.2020.609060
|
[43]
|
Lallukka S,Sädevirta S,Kallio M T,et al. Predictors of liver fat and stiffness in nonalcoholic fatty liver disease (NAFLD) - an 11-year prospective study[J]. Sci Rep,2017,7(1):14561. doi: 10.1038/s41598-017-14706-0
|
[44]
|
Eslam M,Mangia A,Berg T,et al. Diverse impacts of the rs58542926 E167K variant in TM6SF2 on viral and metabolic liver disease phenotypes[J]. Hepatology,2016,64(1):34-46. doi: 10.1002/hep.28475
|