Role of Abnormal Bile Acid Metabolism in the Development of Non-alcoholic Fatty Liver Disease
-
摘要: 非酒精性脂肪性肝病逐渐成为全球儿童发病率最高的慢性肝病之一,肠肝循环中扮演重要角色的胆汁酸在其发病机制中的作用日渐突出。近年来,研究发现胆汁酸是法尼醇X受体和G蛋白偶联受体5的信号分子,二者作为胆汁酸受体调控全身代谢。胆汁酸代谢失衡与NAFLD严重程度密切相关。对胆汁酸及其受体在NAFLD进展中的作用进行综述,以期为NAFLD无创诊断及治疗提供新的靶点。Abstract: Non-alcoholic fatty liver disease is emerging as one of the most prevalent chronic liver diseases in children worldwide, and bile acids, which play an important role in the enterohepatic circulation are becoming increasingly prominent in its pathogenesis. In recent years, it has been found that bile acids are[
1 ] signaling molecules for farnesol X receptor and G protein-coupled receptor 5, both of which act as bile acid receptors to regulate systemic metabolism. The imbalance of bile acid metabolism is closely related to the severity of NAFLD. This article reviews the role of bile acids and their receptors in the progression of NAFLD with the aim of providing new targets for the noninvasive diagnosis and treatment of NAFLD. -
随着生活水平的提高,非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)逐渐成为全球范围内最常见的慢性肝病之一,NAFLD患病率逐年稳增其中儿童发病率占比逐渐增高。研究表明,亚洲国家的儿童NAFLD发病率约为27.4%(95% CI 23.3%~31.9%)[1],2019年1项关于亚洲NFALD mate分析显示其患病率及发病率逐年增加[2]。从单纯的脂肪变性到非酒精性脂肪性肝炎(non-alcoholic steatohepatitis,NASH)出现不同程度的纤维化逐渐进展为肝硬化和终末期肝病,并伴有包括肝细胞癌(hepatocellular carcinoma,HCC)在内的相关并发症[3]。并且NAFLD还与肥胖、2型糖尿病、关节炎、肠道肿瘤密切相关。经历“二次打击”学说向“多重打击”学说转变的发病机制由于医学的飞速发展正面临新的挑战,但目前仍旧没有明确的阐述NAFLD的发病机制。
国内外学者的现有研究表明,NAFLD患者胆汁酸池的组成和结构变化形成其发病特点,其中牛磺酸结合的初级胆汁酸比例与脂肪变性呈正相关[4-5]。此外,胆汁酸比例失衡及结合胆汁酸浓度越高则肝脏弥漫性纤维化程度越严重[6]。胆汁酸作为信号分子通过法尼醇X受体(farnesol coupled receptor,FXR)和G蛋白偶联受体5(G protein coupled teceptor 5,TGR5)途径参与糖、脂质和胆固醇的代谢,从而推动NAFLD发展[7]。NAFLD疾病进展与胆汁酸代谢失衡及其受体通路密切相关,近年来NAFLD的研究热点逐渐集中在胆汁酸代谢失衡及其代谢通路方面,本文就胆汁酸代谢在NAFLD发展中的作用,尤其是胆汁酸代谢通路中受体的作用进行综述,为相关疾病选择合适的治疗靶点。
1. 胆汁酸概述
胆汁酸在肝实质细胞内由胆固醇合成,其合成后以胆汁盐的形式储存在胆囊中[7]。胆汁酸以胆固醇为原料合成初级胆汁酸,在肠道中初级胆汁酸在肠道菌群的作用下合成次级胆汁酸。胆固醇通过高度调控的微粒体胆固醇7ɑ羟化酶(CYP7A1)启动经典中性途径合成大部分胆汁酸,胆汁酸池中的另一部分由替代途径合成。初级胆汁酸经过一系列酶促反应在肝脏合成后,通过胆盐输出泵(bile salt export pump,BSEP)和胆汁酸转运蛋白MRP2和MDR1A通过胆道流入胆囊,在消化间期被储存和浓缩,肠内分泌I细胞摄取刺激胆囊收缩素(cholecystokinin,CCK)诱导胆囊收缩释放胆汁和消化酶进入十二指肠促进脂肪和蛋白质消化。主动吸收与被动吸收的双重效应是肠道吸收胆汁酸的主要途径,在回肠末端肠细胞中95%的胆汁酸通过顶端钠依赖性胆汁酸转运体(apical-sodium-dependentbile acid transporter,ABST)主动吸收,5%胆汁酸被肠道菌群分解在结肠被动重吸收或流失到粪便中。重吸收的胆汁酸通过两条静脉通路返回肝脏,肝细胞中的活性转运蛋白Na+-牛磺胆酸盐(Na+-taurocholate cotransporter,NTCP)将血液中胆汁酸转运至肝细胞,游离的胆汁酸经肠肝循环重吸收回肝脏与新合成的胆汁酸一起补偿粪便损失[8]。
2. 胆汁酸代谢与NAFLD
NAFLD的发病机尚未完全明确,且随着研究进展发现NAFLD患者初级胆汁酸水平和次级胆汁酸水平均升高[9]。1项在高脂饮食喂养的NAFLD大鼠研究中表明胆汁酸池主要以次级胆汁酸增高为主,并且初级胆汁酸和次级胆汁酸比例明显失衡[10],而病情严重程度与标志性胆汁酸合成及血清胆汁酸水平呈正相关。关键胆汁酸的增加与脂肪变性、汇管区和小叶内炎症以及肝脏纤维化高度相关。胆汁酸代谢与NAFLD相关性随着研究深入逐渐被证实,随着对其发病机制的进一步探索,潜在代谢生物标志物筛选可能为NAFLD的治疗提供有力量证据。
3. 胆汁酸代谢在NAFLD发病机制中的作用
3.1 胆汁酸与脂质代谢
脂质代谢失衡和肝细胞脂肪堆积是NAFLD的前驱因素,胆汁酸作为肝脏和肝外组织的代谢因子及信号因子,在肠肝循环途径中激活核受体如FXR及TGR5[11]参与机体脂质代谢。1项关于敲除FXR受体(FXR-KO)小鼠实验发现,小鼠表现出促动脉粥样硬化血清脂蛋白谱升高,循环中的血脂水平和肝脏胆固醇水平明显提高。FXR-KO小鼠胆汁酸运输蛋白表达减少导致胆汁酸池及粪便胆汁酸排泄减少,这些结果均表明FXR可作为胆汁酸浓度的细胞感受器调节脂质的平衡[12]。FXR对脂质代谢的影响是通过胆汁酸FXR-非典型核受体小异质二聚体(SHP)信号通路来调节的,FXR受体激动后通过的SHP途径抑制固醇调节元件结合蛋白1c(SPERBP-1c)的表达,同时依赖诱导过氧化物酶体增殖物激活受体(PPARα)上调,增加了脂肪酸β氧化过程,限制肝脂质积累[13]。肝脏FXR受体活化的负性作用通过间接诱导SHP,SHP通过抑制微粒体胆固醇7ɑ羟化酶mRNA表达,胆固醇转化为胆汁酸减少,导致肝细胞内胆固醇水平的增加,低密度脂蛋白(LDL)受体的下调,并增加血清LDL胆固醇水平,加剧甘油三酯聚集[14],最近发现的胆汁酸激活的鞘氨醇-1-磷酸受体2(S1P2)也可能在脂质代谢中发挥作用。2022年1项关于FXR基因敲除小鼠实验证明,丙酮酸脱氢激酶4(pyruvate dehydrogenase kinase 4,PDK4)在FXR基因敲除细胞中表达增加,FXR缺乏时通过抑制PDK4的表达可以减少肝细胞脂质积聚[15]。相较于FXR人体内TGR5分布范围更为广泛,其在脂肪组织、肌肉组织、免疫细胞、Kupffer 细胞中均有表达。人体脂肪细胞分化速度越快则TGR5在脂肪细胞中表达越显著,二者呈正相关,甘油三酯和脂肪酸通过腺苷酸环化酶(cyclic adenosine monophosphate,cAMP)通路随着活化的TGR5表达水平的增加而分解和氧化增多。其机制为活化的TGR5通过浓度变化介导激酶磷酸化,驱使cAMP反应元件结合蛋白(CREB)聚集到靶基因启动子的cAMP反应元件(CRE)上介导转录,调节能量消耗[16-17]。TGR5通过信号调节激酶( extracellul- arsignal -regulated kinase,ERK) /线粒体动力相关蛋白1(dynamin-1-like protein 1,Drp1)通路诱导线粒体分裂,线粒体分裂作为一种代偿机制增加了脂肪酸β氧化,从而将白色脂肪重塑为消耗能量的棕色脂肪,胆汁酸作为代谢通路上的信号分子起到重要作用,加速棕色脂肪组织的能量消耗,减轻体内脂质累积[18]。肠道胰高血糖素样肽-1(GLP-1)的释放受TGR5信号通路调节,其靶向作用可能增加胰岛素敏感性,在信号通路激活后增加脂肪分解[19]。因此FXR-SHP代谢通路和TGR5介导的ERK/Drp1通路可能为治疗NAFLD提供潜在靶点。
3.2 胆汁酸与葡萄糖代谢
FXR不仅存在于胆汁酸受体信号通路中,而且在葡萄糖稳态中也发挥重要作用。特异性靶向FXR受体可能是治疗肥胖性代谢性疾病的有效途径。FXR激动剂(fexaramine ,Fex)稳健地促进肠成纤维细胞生长因子15/19(FGF15/19)合成,其可以在不改变食物摄入的情况下增加代谢率维持葡萄糖稳态是能量消耗调节的重要因子。Fex减缓体重增加程度以及肝脏葡萄糖生成减少,通过激活FXR受体调节糖的代谢过程[20]。FXR-SHP通过调节微小RNA(microRNA)-802表达维持脂代谢平衡,FXR-SHP对miR-802抑制在NAFLD表达失衡,导致脂质和葡萄糖代谢紊乱[21]。1项关于小鼠的研究发现,胆汁酸降低了磷酸烯醇式丙酮酸羧激酶(phosphoenolpyruvate carboxykinase,PEPCK)和葡萄糖-6-磷酸酶(glucose-6-phosphatase,G6Pase)的基因表达,肝糖原的合成是通过FGF15/19提高糖原合成酶激酶3(GSK3)活性调节的,并下调cAMP调节元件结合蛋白(CREB)-过氧化物酶增殖物-激活受体γ共激活蛋白-1α(PGC-1α)通路来抑制肝脏糖异生[22]。同时,TGR5通过肠道内肠内分泌L细胞的作用参与葡萄糖稳态,这些细胞中的TGR5激活后驱动cAMP/PKA途径,触发L型Ca2+通道电活动,诱导GLP-1释放,GLP-1促进胰岛素分泌协调葡萄糖的分解[23-24]。胆汁酸激活TGR5信号途径诱导肠内分泌细胞内cAMP水平快速增长。例如,使用腺苷酸环化酶抑制剂MDL12330A显著减少了石胆酸所诱发的cAMP累积进一步抑制GLP-1分泌,表明胆汁酸通过细胞内cAMP的产生诱导肠内分泌细胞分泌GLP-1,调节机体的糖代谢[25]。已有研究发现,肝细胞中TGR5表达作为调节全身葡萄糖稳态的调节器,在使用TGR5激动剂化合物18提高TGR5HEP+/+小鼠的胰岛素敏感性,并发现这种效应独立于体重的增加及GLP-1分泌[26]。所以胆汁酸介导的葡萄糖代谢的调节是复杂的。
3.3 胆汁酸与胆固醇代谢
NASH形成的重要因素为脂毒性,而当胆固醇未能及时在肝脏中转化为胆汁酸而在肝脏内过量蓄积从而导致肝脏损伤加速NASH的进程。微粒体胆固醇7ɑ合成酶可促进胆汁酸的合成过程,导致肝微粒体胆固醇含量相对减少,进而上调低密度脂蛋白受体(low-density lipoprotein-R,LDL-R)的表达和活性,降低血浆低密度脂蛋白胆固醇(low-density lipoprotein-C,LDL-C)水平,通过此机制降低血胆固醇。Lefebvre等[27]发现,在FXR-/-小鼠中观察到的血浆高密度脂蛋白胆固醇(high-density lipoprotein-C,HDL-C)水平升高,并且清除率受体B1 (SRB1)表达减少,肝脏对高密度脂蛋白胆固醇酯的选择性摄取减少而不是HDL-C增多。奥贝胆酸(obeticholic acid,OCA)作为FXR激动剂有助于改善NASH脂质累积与减轻纤维化[28]。1项关于在金色叙利亚仓鼠的脂蛋白代谢模拟人类血脂异常的研究中发现其体内表达胆固醇酯转运蛋白(cholesterolester transfer protien,CETP),加入奥贝胆酸饮食的仓鼠显著提高了CETP活性并增加循环中的LDL而降低循环中的HDL水平,在胆固醇代谢中发挥重要作用,可延缓NAFLD疾病进程[29]。高脂饮食喂养小鼠肝细胞的线粒体DNA(mtDNA)诱导培养的Kupffer细胞表达TNF-α和IL-6,并且肝细胞来源的mtDNA激活巨噬细胞中的Toll样受体9(toll-like receptors,TLR9)诱导各种炎症细胞因子和趋化因子的表达增加了肝细胞内的甘油三酯蓄积,激活星状细胞的纤维化加速NASH疾病进展[30]。TGR5在NAFLD患者体内表达呈减少的趋势,而表现出Caspase-1激活增加和肝脏脂肪酸氧化率增加、摄取率减少,增加脂肪变性。
3.4 胆汁酸与肠道菌群
肠道菌群是人体内正常的微生物,其与人体共生并大量存在于肠道中被称为“人体最大的器官”,肠道屏障功能可以维持肠道菌群和宿主免疫系统之间的平衡。大量研究证明,NAFLD、肠道菌群和胆汁酸代谢构成一个闭环的恶性循环,在肠道菌群失调或者胆汁酸代谢紊乱的小鼠中。研究表明[31],进食高饱和脂肪酸,可以改变肠道菌群生存条件使肠道菌群丰度降低导致宿主胆汁酸池组成变化,造成人体生态失衡,扰乱免疫稳态从而促进NAFLD发生。通过宏基因组分析,肠道微生物的基因组携带有胆酸盐水解酶功能基因,且胆盐水解酶(BSHs)在肠道微生物组中富集,BSH活性通过提高肠道菌群的存活、菌群定植、胆汁酸代谢通路调节肠道黏膜的防御机制以及胆汁酸自身的抗菌特性阻止肠道菌群过度生长,减轻菌群紊乱对宿主的影响[32]。胆汁酸谱组成的差异与肠道菌群多样性密切相关,同时肠道菌群失调可导致初级胆汁酸与次级胆汁酸比例失衡,胆汁酸比例失衡导致信号代谢通路紊乱促进NAFLD疾病进程[33]。研究显示,将肥胖小鼠和正常组小鼠的粪便分别移植到2组无菌小鼠肠道内,发现接受前者粪便移植的小鼠明显肥胖,猜测可能与拟杆菌门减少及厚壁菌门增加相关,并且肥胖小鼠存在胆汁酸池的异常,在其回肠中观察到FXR mRNA、FGF-15 mRNA 表达增加和肝脏微粒体胆固醇7ɑ羟化酶mRNA表达减少[34]。近年来发现肠道菌群依赖FXR受体通路参与调节肝脏脂肪变性,经过抗生素处理的高脂饮食小鼠出现胆汁酸池成分的改变,其中抑制FXR信号传导的结合胆汁酸增加显著[35]。血清神经酰胺的释放受肠道FXR受体激活,并且FXR受体促进肝脏SREBP1C基因表达促进脂质合成的过程导致过多脂质沉积在肝脏加速NAFLD病程进展[36]。肠道菌群缺乏导致体内胆汁酸池增加,胆汁酸池组成增加介导TGR5信号通路表达上调,GLP-1表达升高,减少脂质聚集作为无菌小鼠抵御肥胖的重要原因[37]。因此通过肠道菌群宏基因组的分析和胆汁酸含量变化可能作为NAFLD无创诊断的方法。
3.5 胆汁酸与宿主免疫
肝脏作为人体内最复杂的免疫器官,其免疫细胞构成一个复杂的免疫协调网络,其中包含Kupffer细胞、树突状细胞、自然杀伤细胞、中性粒细胞、调节性T淋巴细胞等先天免疫细胞。同时各种炎性因子及代谢紊乱刺激先天免疫细胞通过相关信号通路激活免疫系统从而影响NAFLD病程进展,先天性免疫激活促进NAFLD向NASH的演化[30]。当宿主代谢紊乱时先天性细胞免疫和免疫信号调节途径被激活,产生大量炎症细胞因子损伤肝脏加速NAFLD疾病进程[38]。宿主免疫失调与胆汁酸代谢紊乱密切相关,胆汁酸激活FXR及TGR5受体参与宿主的先天免疫系统,这2种受体有助于维持肝脏和肠道免疫的耐受状态。FXR和TGR5受体敲除小鼠的免疫学特征表明这些小鼠在稳态时均倾向于促炎表型,并且在炎症模型中比同期的小鼠更容易出现严重的免疫功能障碍[39]。研究表明[40],FXR-Cyp4f轴可降低细胞内1-脱氧鞘脂水平,主要保护肝细胞免受其细胞毒性减少细胞凋亡。最近,mtDNA被认为是内源性损伤相关分子模式(damage-associated molecular patterns,DAMPs)之一,当释放到细胞质和细胞外环境时,激活固有免疫反应和促进炎症[30]。在宿主免疫中,Toll样受体(Toll-like receptors,TLRs) 和NOD样受体(nucleotide-binding and oligomerization domain-like receptors,NLRs)在宿主免疫调节中起关键作用,其中NOD样受体中研究最为广泛的是NLRP3介导的炎症小体。胆汁酸通过TGR5-cAMP-PKA轴抑制NLRP3激活,TGR5胆汁酸受体诱导的PKA激酶激活导致NLRP3泛素化,胆汁酸和TGR5激活阻断了NLRP3炎症小体依赖的炎症。肝脏中,TGR5-cAMP信号通过抑制核因子NF-κb介导的炎性细胞因子产生发挥抗炎作用[14]。同时先天性免疫激活通过促进活化Kupffer细胞活化NF-κB,诱导TNF-α和IL-6参与肝脏炎症反应。当代谢失衡以及脂质累积导致脂毒性,介导应激信号释放触发无菌炎症通路加速NAFLD疾病进程[41]。TGR5-/-小鼠介导NLRP3炎症小体活导致促炎因子升高,巨噬细胞M1型极化增强,增加脂肪炎症反应[42]。
3.6 遗传因素
有报道证明,Patatin样磷脂结构域蛋白质3(patatin-like phospholipase domain-containing 3 ,PNPLA3)基因变异与脂肪肝存在较强的联系,NAFLD疾病进展可能与PNPLA3的不同等位基因突变体之间相互作用密切相关,其可能通过影响脂滴中甘油三酯释放加速NAFLD过程。同时PNPLA3I148M突变体通过调节肝星状细胞活性,导致促炎和促纤维化的表型和含膜结合O-酰基转移酶结构域7(membrane-bound O-acyitransferase 7,MBOAT7)的遗传风险变异体引起脂肪变性同时参与NAFLD病变全程[43]。近年来发现,跨膜6超家族成员2 (transmembrane 6 superfamily member ,TM6SF2)变异由编码E167K替换后成为NAFLD肝脏脂肪变性的遗传决定因素,全基因外显子研究表明TM6SF2 E167K替代部分可以通过改变TM6SF2和微粒体甘油三酯转运蛋白表达促进脂肪变性和脂质异常,影响NAFLD的发生发展[44]。
4. 小结
随着临床研究及动物实验研究的推进,胆汁酸代谢紊乱促进NAFLD疾病发展,而胆汁酸通过FXR及TGR5受体调节糖脂代谢、宿主免疫以及肠道菌群的代谢从而延缓NAFLD病程进展的发病机制逐渐明确。胆汁酸调控的信号代谢通路错综复杂关联在一起,使得许多环节可能未被完全阐述,而一些代表性胆汁酸受体,如FXR、TGR5等其受体具有靶点作用,未来可通过对胆汁酸受体激动剂及位点药物的研究为NAFLD治疗提供新的方向。综上所述,胆汁酸信号代谢通路是NAFLD疾病发展过程中重要的靶点,但对于其具体作用仍需要深入研究。
-
[1] Younossi Z M,Koenig A B,Abdelatif D,et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence,incidence,and outcomes[J]. Hepatology,2016,64(1):73-84. doi: 10.1002/hep.28431 [2] Li J,Zou B,Yeo Y H,et al. Prevalence,incidence,and outcome of non-alcoholic fatty liver disease in Asia,1999-2019: A systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol,2019,4(5):389-398. doi: 10.1016/S2468-1253(19)30039-1 [3] Machado M V,Cortez-Pinto H. Non-alcoholic fatty liver disease: What the clinician needs to know[J]. World J Gastroenterol,2014,20(36):12956-12980. doi: 10.3748/wjg.v20.i36.12956 [4] Chávez-Talavera O,Tailleux A,Lefebvre P,et al. Bile acid control of metabolism and inflammation in obesity,type2 diabetes,dyslipidemia,and nonalcoholic fatty liver disease[J]. Gastroenterology,2017,152(7):1679-1694. doi: 10.1053/j.gastro.2017.01.055 [5] Bechmann L P,Kocabayoglu P,Sowa J P,et al. Free fatty acids repress small heterodimer partner (SHP) activation and adiponectin counteracts bile acid-induced liver injury in superobese patients with nonalcoholic steatohepatitis[J]. Hepatology,2013,57(4):1394-1406. [6] Puri P,Daita K,Joyce A,et al. The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids[J]. Hepatology,2018,67(2):534-548. doi: 10.1002/hep.29359 [7] Chow M D,Lee Y H,Guo G L. The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Mol Aspects Med,2017,56(4):34-44. [8] Xue R,Su L,Lai S,et al. Bile acid receptors and the gut-liver axis in nonalcoholic fatty liver disease[J]. Cells,2021,10(11):2806. doi: 10.3390/cells10112806 [9] Yang Z X,Shen W,Sun H. Effects of nuclear receptor FXR on the regulation of liver lipid metabolism in patients with non-alcoholic fatty liver disease[J]. Hepatol Int,2010,4(4):741-748. doi: 10.1007/s12072-010-9202-6 [10] Jiao N,Baker S S,Chapa-Rodriguez A,et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD[J]. Gut,2018,67(10):1881-1891. doi: 10.1136/gutjnl-2017-314307 [11] Arab J P,Karpen S J,Dawson P A,et al. Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives[J]. Hepatology,2017,65(1):350-362. doi: 10.1002/hep.28709 [12] Sinal C J,Tohkin M,Miyata M,et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis[J]. Cell,2000,102(6):731-744. doi: 10.1016/S0092-8674(00)00062-3 [13] Manchekar M,Kapil R,Sun Z,et al. Relationship between amphipathic β Structures in the β1domain of apolipoprotein B and the properties of the secreted lipoprotein particles in McA-RH7777 cells[J]. Biochemistry,2017,56(31):4084-4094. doi: 10.1021/acs.biochem.6b01174 [14] Chiang J Y. Bile acid metabolism and signaling[J]. Compr Physiol,2013,3(3):1191-1212. [15] Deng W,Fan W,Tang T,et al. Farnesoid X receptor deficiency induces hepatic lipid and glucose metabolism disorder via regulation of pyruvate dehydrogenase kinase 4[J]. Oxid Med Cell Longev,2022,2022:3589525. [16] Herzig S,Long F,Jhala U S,et al. CREB regulates hepatic gluconeogenesisthrough the coactivator PGC-1[J]. Nature,2001,413(6852):179-183. doi: 10.1038/35093131 [17] Carino A,Cipriani S,Marchianò S,et al. Gpbar1 agonism promotes a Pgc-1α-dependent browning of white adipose tissue and energy expenditure and reverses diet-induced steatohepatitis in mice[J]. Sci Rep,2017,7(1):13689. doi: 10.1038/s41598-017-13102-y [18] Velazquez-Villegas L A,Perino A,Lemos V,et al. TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue[J]. Nat Commun,2018,9(1):245. doi: 10.1038/s41467-017-02068-0 [19] Thomas C,Gioiello A,Noriega L,et al. TGR5-mediated bile acid sensing controls glucose homeostasis[J]. Cell Metab,2009,10(3):167-177. doi: 10.1016/j.cmet.2009.08.001 [20] Fang S,Suh J M,Reilly S M,et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance[J]. Nat Med,2015,21(2):159-165. doi: 10.1038/nm.3760 [21] Seok S,Sun H,Kim Y C,et al. Defective FXR-SHP regulation in obesity aberrantly increases miR-802 expression,promoting insulin resistance and fatty liver[J]. Diabetes,2021,70(3):733-744. doi: 10.2337/db20-0856 [22] Ding L,Yang L,Wang Z,et al. Bile acid nuclear receptor FXR and digestive system diseases[J]. Acta Pharm Sin B,2015,5(2):135-144. doi: 10.1016/j.apsb.2015.01.004 [23] Goldspink D A,Lu V B,Billing L J,et al. Mechanistic insights into the detection of free fatty and bile acids by ileal glucagon-like peptide-1 secreting cells[J]. Mol Metab,2018,7:90-101. doi: 10.1016/j.molmet.2017.11.005 [24] Drucker D J. The biology of incretin hormones[J]. Cell Metab,2006,3(3):153-165. doi: 10.1016/j.cmet.2006.01.004 [25] Katsuma S,Hirasawa A,Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1[J]. Biochem Biophys Res Commun,2005,329(1):386-390. doi: 10.1016/j.bbrc.2005.01.139 [26] Holter M M,Chirikjian M K,Briere D A,et al. Compound 18 improves glucose tolerance in a hepatocyte TGR5-dependent manner in mice[J]. Nutrients,2020,12(7):2124. doi: 10.3390/nu12072124 [27] Lefebvre P,Cariou B,Lien F,et al. Role of bile acids and bile acid receptors in metabolic regulation[J]. Physiol Rev,2009,89(1):147-191. doi: 10.1152/physrev.00010.2008 [28] Fiorucci S,Di Giorgio C,Distrutti E. Obeticholic acid: An update of its pharmacological activities in liver disorders[J]. Handb Exp Pharmacol,2019,256:283-295. [29] Briand F,Brousseau E,Quinsat M,et al. Obeticholic acid raises LDL-cholesterol and reduces HDL-cholesterol in the diet-induced NASH (DIN) hamster model[J]. Eur J Pharmacol,2018,818:449-456. doi: 10.1016/j.ejphar.2017.11.021 [30] Yu Y,Liu Y,An W,et al. STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis[J]. J Clin Invest,2019,129(2):546-555. [31] Devkota S,Wang Y,Musch M W,et al. Dietary-fat-induced taurocholic acid promotespathobiont expansion and colitis in Il10-/- mice[J]. Nature,2012,487(7405):104-108. doi: 10.1038/nature11225 [32] Jones B V,Begley M,Hill C,et al. Functional and comparative metagenomic analysisof bile salt hydrolase activity in the human gut microbiome[J]. Proc Natl Acad Sci US A,2008,105(36):13580-13585. doi: 10.1073/pnas.0804437105 [33] Sayin S I,Wahlström A,Felin J,et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid,a naturally occurring FXR antagonist[J]. Cell Metab,2013,17(2):225-235. doi: 10.1016/j.cmet.2013.01.003 [34] Ridaura V K,Faith J J,Rey F E,et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice[J]. Science,2013,341(6150):1241214. doi: 10.1126/science.1241214 [35] Parséus A,Sommer N,Sommer F,et al. Microbiota-induced obesity requires farnesoid X receptor[J]. Gut,2017,66(3):429-437. doi: 10.1136/gutjnl-2015-310283 [36] Jiang C,Xie C,Li F,et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease[J]. J Clin Invest,2015,125(1):386-402. doi: 10.1172/JCI76738 [37] Selwyn F P,Csanaky I L,Zhang Y,et al. Importance of large intestine in regulating bile acids and glucagon-like peptide-1 in germ-free mice[J]. Drug Metab Dispos,2015,43(10):1544-1556. doi: 10.1124/dmd.115.065276 [38] Sutti S,Bruzzì S,Albano E. The role of immune mechanisms in alcoholic and nonalcoholic steatohepatitis: A 2015 update[J]. Expert Rev Gastroenterol Hepatol,2016,10(2):243-253. doi: 10.1586/17474124.2016.1111758 [39] Biagioli M,Carino A. Signaling from intestine to the host: How bile acids regulate intestinal and liver immunity[J]. Handb Exp Pharmacol,2019,256:95-108. [40] Gai Z,Gui T,Alecu I,et al. Farnesoid X receptor activation induces the degradation of hepatotoxic 1-deoxysphingolipids in non-alcoholic fatty liver disease[J]. Liver Int,2020,40(4):844-859. doi: 10.1111/liv.14340 [41] Guo C,Xie S,Chi Z,et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome[J]. Immunity,2016,45(4):802-816. doi: 10.1016/j.immuni.2016.09.008 [42] Shi Y,Su W,Zhang L,et al. TGR5 regulates macrophage inflammation in nonalcoholic steatohepatitis by modulating NLRP3 inflammasome activation[J]. Front Immunol,2021,11:609060. doi: 10.3389/fimmu.2020.609060 [43] Lallukka S,Sädevirta S,Kallio M T,et al. Predictors of liver fat and stiffness in nonalcoholic fatty liver disease (NAFLD) - an 11-year prospective study[J]. Sci Rep,2017,7(1):14561. doi: 10.1038/s41598-017-14706-0 [44] Eslam M,Mangia A,Berg T,et al. Diverse impacts of the rs58542926 E167K variant in TM6SF2 on viral and metabolic liver disease phenotypes[J]. Hepatology,2016,64(1):34-46. doi: 10.1002/hep.28475 期刊类型引用(2)
1. 张珂承,吴仪伟,蒋元霜,陈琰. 胆汁酸代谢与代谢性疾病关系和作用机制的研究进展. 中国医药导报. 2024(13): 188-190 . 百度学术
2. 郭亮,王永展,崔秀冰,马宏涛. 益肝宝颗粒对实验性高脂血症大鼠血脂的影响. 黑龙江医药科学. 2024(05): 53-56 . 百度学术
其他类型引用(1)
-

计量
- 文章访问数: 1440
- HTML全文浏览量: 1478
- PDF下载量: 44
- 被引次数: 3