[1]
|
Zohre M,Azita T,Safoura T,et al. Ovarian cancer in the world: Epidemiology and risk factors[J]. International Journal of Women,s Health,2019,11(1):287-299.
|
[2]
|
Valmiki S,Aid M A,Chaitou A R,et al. Extracellular matrix: A treasure trove in ovarian cancer dissemination and chemotherapeutic resistance[J]. Cureus,2021,13(3):e13864-13864.
|
[3]
|
Mylena O,Emma W,Kerry M,et al. Mechanisms of chemotherapy resistance in ovarian cancer[J]. Cancer Drug Resistance (Alhambra,Calif. ),2022,5(2):304-316.
|
[4]
|
Glasgow A M,Argenta P,Abrahante E J,et al. Biological insights into chemotherapy resistance in ovarian cancer[J]. International Journal of Molecular Sciences,2019,20(9):2131-2131. doi: 10.3390/ijms20092131
|
[5]
|
廉阳秧. 上皮性卵巢癌差异表达基因的生物信息学分析[D]. 昆明: 昆明医科大学, 2016.
|
[6]
|
Wu C,Zheng X,Li X,et al. Reduction of gastric cancer proliferation and invasion by miR-15a mediated suppression of Bmi-1 translation[J]. Oncotarget,2016,7(12):14522-14536. doi: 10.18632/oncotarget.7392
|
[7]
|
Penny S M. Ovarian cancer: An overview[J]. Radiol Technol,2020,91(6):561-575.
|
[8]
|
Liu Q,Novak M K,Pepin R M,et al. MicroRNA-mediated regulation of microRNA machinery controls cell fate decisions[J]. ELife,2021,10:e72289. doi: 10.7554/eLife.72289
|
[9]
|
Kabakov A V,Kazakov O V,Poveshchenko A F,et al. Correlation between structural transformations in mesenteric lymph nodes and the levels microRNA during polychemotherapy of breast cancer[J]. Bulletin of Experimental Biology and Medicine,2022,172(4):467-471. doi: 10.1007/s10517-022-05415-4
|
[10]
|
杨雷,魏丽军,王福花,等. miR-93-3p和CDC42在上皮性卵巢癌化疗耐药组织中的表达及临床意义[J]. 实用医学杂志,2020,36(9):1217-1222. doi: 10.3969/j.issn.1006-5725.2020.09.020
|
[11]
|
Kulkarni B,Kirave P,Gondaliya P,et al. Exosomal miRNA in chemoresistance,immune evasion,metastasis and progression of cancer[J]. Drug Discovery Today,2019,24(10):2058-2067. doi: 10.1016/j.drudis.2019.06.010
|
[12]
|
Bugra S T,Demet A,Betul C,et al. The expression levels of miRNA-15a and miRNA-16-1 in circulating tumor cells of patients with diffuse large B-cell lymphoma[J]. Molecular Biology Reports,2018,46(1):975-980.
|
[13]
|
Xu,P,Wang Y,Deng Z,et al. MicroRNA-15a promotes prostate cancer cell ferroptosis by inhibiting GPX4 expression[J]. Oncology Letters,2022,23(2):67. doi: 10.3892/ol.2022.13186
|
[14]
|
Chu J,Zhu Y,Liu Y,et al. E2F7 overexpression leads to tamoxifen resistance in breast cancer cells by competing with E2F1 at miR-15a/16 promoter[J]. Oncotarget,2015,6(31):31944-31957. doi: 10.18632/oncotarget.5128
|
[15]
|
Dhar K S D,Banerjee S M,Dahai J,et al. Therapeutic evaluation of microRNA-15a and microRNA-16 in ovarian cancer[J]. Oncotarget,2016,7(12):15093-15104. doi: 10.18632/oncotarget.7618
|
[16]
|
Dey A,Xiong X,Crim A,et al. Evaluating the mechanism and therapeutic potential of PTC-028,a novel inhibitor of BMI-1 function in ovarian cancer[J]. Molecular Cancer Therapeutics,2018,17(1):39-49. doi: 10.1158/1535-7163.MCT-17-0574
|
[17]
|
Xin T,Zhang F B,Sui G J,et al. Bmi-1 siRNA inhibited ovarian cancer cell line growth and decreased telomerase activity[J]. British Journal of Biomedical Science,2012,69(2):62-66. doi: 10.1080/09674845.2012.12002438
|
[18]
|
Zhang X L,Sun B L,Tian S X,et al. MicroRNA-132 reverses cisplatin resistance and metastasis in ovarian cancer by the targeted regulation on Bmi-1[J]. European Review for Medical and Pharmacological Sciences,2019,23(9):3635-3644.
|
[19]
|
Salem A,Hagen K,Silvia D,et al. Polycomb protein BMI-1 as a potential therapeutic target in mucinous ovarian cancer[J]. Anticancer Research,2022,42(4):1739-1747. doi: 10.21873/anticanres.15650
|