留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吲哚在生物材料表面大肠杆菌生物膜中的研究进展

苏丹燕 唐文甜 杨谨旭 刘华 李邦胜 赵应鼎 黄云超

肖冉萍, 张烨, 赵洪梅, 郭宇, 谭小兵. 昆明人群上颌磨牙MB2根管特征的CBCT研究[J]. 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220111
引用本文: 苏丹燕, 唐文甜, 杨谨旭, 刘华, 李邦胜, 赵应鼎, 黄云超. 吲哚在生物材料表面大肠杆菌生物膜中的研究进展[J]. 昆明医科大学学报, 2023, 44(12): 184-190. doi: 10.12259/j.issn.2095-610X.S20231229
Ran-ping XIAO, Ye ZHANG, Hong-mei ZHAO, Yu GUO, Xiao-bing TAN. Characteristics of Second Mesiobuccal Canals in Maxillary Molars in Kunming Population with Cone-beam Computed Tomography Technology[J]. Journal of Kunming Medical University. doi: 10.12259/j.issn.2095-610X.S20220111
Citation: Danyan SU, Wentian TANG, Jinxu YANG, Hua LIU, Bangsheng LI, Yingding ZHAO, Yunchao HUANG. Research Progress of Indole in E. coli Biofilms on the Surface of Biomaterials[J]. Journal of Kunming Medical University, 2023, 44(12): 184-190. doi: 10.12259/j.issn.2095-610X.S20231229

吲哚在生物材料表面大肠杆菌生物膜中的研究进展

doi: 10.12259/j.issn.2095-610X.S20231229
基金项目: 国家自然科学基金资助项目(81960335);云南省卫生健康委临床医学中心建设项目(ZX2019-05-01)
详细信息
    作者简介:

    苏丹燕(1996~),女,广西平南人,在读硕士研究生,主要从事胸部肿瘤及生物材料感染相关研究工作

    通讯作者:

    黄云超,E-mail:huangych2001@aliyun.com

  • 中图分类号: R318.08

Research Progress of Indole in E. coli Biofilms on the Surface of Biomaterials

  • 摘要: 大肠杆菌是一种适应性很强的条件致病菌,可以在植入物表面形成生物膜并产生持久细胞,导致危及生命的感染,抗生素难以治疗。因此,急需1种有效的大肠杆菌生物膜抑制剂来应对公共健康威胁。吲哚是近年发现的大肠杆菌新型群体感应信号分子,在调控细菌生长及生物膜形成方面具有重要意义,是未来研究新型抗生物膜制剂的潜在靶标。综述大肠杆菌生物膜的形成、吲哚的微生物代谢及其调控大肠杆菌生物膜形成研究进展,以期为临床治疗及药物研发提供帮助。
  • 上颌磨牙根管系统的解剖形态变异较大,尤其是近中颊侧第二根管(second mesiobuccal,MB2)增加了临床治疗难度。已有研究发现接受根管治疗的上颌第1磨牙有46.5%遗漏MB2,其中72.7%与其根尖周病变有关[1]。MB2发生率有明显地区和种族差异,我国人群上颌第1磨牙MB2平均发生率为85.4%[2]。笔者采用锥形束CT(cone-beam computed tomography,CBCT)对来自昆明人群上颌第1和第2磨牙的根管系统进行分析研究,总结MB2发生率及根管口分布规律。

    选取2018年10月至2018年12月到云南省第一人民医院口腔医学中心进行诊治并行CBCT检查的403名患者,按照准入标准筛选人群,分析上颌第1和第2磨牙的CBCT检查资料。

    年龄17~80岁;无牙根吸收或折断影像;无金属或瓷类修复材料;牙根发育成熟、根尖孔完全闭合。

    口腔放射科医师严格按照厂家说明进行扫描,仪器为RAYSCAN α-3D口腔数字化体层摄影及全景X射线机(RAY公司),扫描参数设置:90 kVp、4 mA、像素100 μm 、视野100 cm2(10×10 cm)、扫描时间9~14 s、最小层面厚度0.3 mm。

    选取上颌第1和第2磨牙轴状面(釉牙骨质界到根尖)、矢状面(近中向远中)和冠状面(颊侧向舌侧)连续观察,记录MB2有无及根管类型,测量MB2-MB1距离(MB2-MB1)、MB2-垂线(MB2与MB1-P连线的垂线)距离、MB1-P距离(MB1-P)、DB-P距离(DB-P),2名牙髓科主治医师独立分析(Xelis dental-CDViewer 1.0.5.2),有争议时与口腔放射科医师共同决定。

    采用SPSS20.0统计软件进行统计分析,计量资料用($\bar x \pm s $)表示,计数资料用率/构成比表示,组间采用χ2检验,检验水准α = 0.05,以P < 0.05为差异有统计学意义。

    总共分析403个患者的CBCT资料,最终358名患者的1279颗牙齿获准入选,其中包括183名男性和175名女性的645颗上颌第1磨牙和634颗上颌第2磨牙。

    本研究人群共有645颗上颌第1磨牙,其中640颗为典型3牙根(99.2%),2颗为2牙根4根管(0.31%),还有3颗为2牙根3根管(0.47%)。上颌第1磨牙MB2平均发生率为86.51%,男性高于女性(89.16% > 83.71%,P < 0.05),左右无显著性差异(85.45%、87.58%,P > 0.05),17~19岁组MB2发生率明显低于其他3组(70.0%,P < 0.05),其他3组间无显著性差异(分别为88.61%、87.39%、79.75%,P > 0.05)。

    上颌第2磨牙总共634颗,其中524颗为典型3牙根(82.6%),65颗为2牙根(10.3%),42颗为融合单根(6.6%),MB2平均发生率为52.05%,男女间无显著性差异(分别为53.96%和50.00%,P > 0.05),左右无显著性差异(分别为48.74%和55.38%,P > 0.05),各年龄组无显著性差异(分别为40.00%、51.08%、52.44%、59.38%,P > 0.05),见表1

    表  1  昆明人群上颌第1和第2磨牙MB2发生率(%)
    Table  1.  MB2 in maxillary first and second molars in Kunming population (%)
    牙位项目上颌第1磨牙上颌第2磨牙
    数量MB2发生率数量MB2发生率
    性别 n = 332 n = 296 89.16 n = 328 n = 177 53.96
    n = 313 n = 262 83.71 n = 306 n = 153 50.00
    牙位 n = 323 n = 276 85.45 n = 318 n = 155 48.74
    n = 322 n = 282 87.58 n = 316 n = 175 55.38
    年龄(岁) 17~19 n = 20 n = 14 70.00 n = 20 n = 8 40.00
    20~39 n = 316 n = 280 88.61 n = 325 n = 166 51.08
    40~59 n = 230 n = 201 87.39 n = 225 n = 118 52.44
    > 59 n = 79 n = 63 79.75 n = 64 n = 38 59.38
    下载: 导出CSV 
    | 显示表格

    根据Vertucci标准[4]进行根管类型分析,上颌第1磨牙MB2:Ⅱ型(2-1)15.59%、Ⅲ型(1-2-1)6.27%、Ⅳ型(2-2)64.52%、Ⅴ型(1-2)13.62%;上颌第2磨牙MB2类型为:Ⅱ型(17.27%)、Ⅲ型(7.27%)、Ⅳ型(50.00%)、Ⅴ型(25.46%),见表2

    表  2  昆明人群上颌第1和第2磨牙MB2根管构成(%)
    Table  2.  The composition of MB2 in maxillary first and second molars in Kunming population (%)
    牙位
    根管类型
    上颌第1磨牙上颌第2磨牙
    数量构成比(%)数量构成比(%)
    n = 87 15.59 n = 57 17.27
    n = 35 6.27 n = 24 7.27
    n = 360 64.52 n = 165 50.00
    n = 76 13.62 n = 84 25.46
    合计 n = 558 100 n = 330 100
    下载: 导出CSV 
    | 显示表格

    本研究人群上颌第1磨牙MB2与其它根管口关系为:与MB1距离(1.70±0.72)mm,与垂线距离(0.78±0.49)mm;有MB2上颌第1磨牙MB1-P为(6.45±1.16)mm,DB-P为(5.12±1.08)mm,无MB2上颌第1磨牙MB1-P为(5.48±0.08)mm,DB-P为(4.48±0.08)mm(表3)。

    表  3  昆明人群上颌第1磨牙各根管口间距($\bar x \pm s $,mm)
    Table  3.  The distance between canal orifices in maxillary first molars in a Kunming population ($\bar x \pm s $,mm)
    上颌第1磨牙MB1-MB2MB2-垂线MB1-PDB-PMB1-P/DB-P
    有MB2 $\bar x \pm s $ 1.70 ± 0.72 0.78 ± 0.49 6.45 ± 1.16 5.12 ± 1.08 1.28 ± 0.08
    最大值 4.58 7.63 10.72 9.74 -
    最小值 0.41 0.18 0.80 2.80 -
    无MB2 $\bar x \pm s $ - - 5.48 ± 0.08 4.48 ± 0.08 1.23 ± 0.02
    最大值 - - 7.70 6.70 -
    最小值 - - 3.97 3.19 -
    下载: 导出CSV 
    | 显示表格

    上颌磨牙根管治疗时MB2的存在对牙髓专科医师是一大挑战,MB2根管口常为继发性牙本质所覆盖,其位置确认、探查及疏通都比较困难[5]。近年来人们对上颌磨牙MB2根管进行了大量研究,不同方法的结果差异较大。CBCT作为一种无损性三维检查方法,可以更准确地判断MB2,是根管形态体内研究的金标准[6]

    本研究人群上颌第1磨牙绝大部分为3个牙根(99.2%),有2颗牙齿仅有颊根和腭根2牙根,但每个牙根均包含2根管,另有3颗牙齿也是2牙根,但根管为3个(近中颊、远中颊和腭根管)。本研究人群上颌第1磨牙MB2平均发生率为86.51%,青年人发生率较低,随年龄增长MB2明显增加,与Zhang[2]和Tian等研究结果一致。可能的原因是继发性牙本质沿根管颊舌向不断沉积,导致1个宽大的扁根管分为2个根管。Zhang等[8]研究发现我国四川地区人群上颌第1磨牙MB2发生率为52%,低于本研究结果。Kewalramani R等[9]研究发现印度人群上颌第1磨牙MB2发生率为61.9%(低于本研究人群),20~40岁最高,> 40岁次之,< 20岁最低(分别为67.4%、57.5%、50.6%),与本研究结果相似。最近一项大型研究[10]综合分析全世界21个国家和地区人群总共5250颗上颌第1磨牙,发现MB2平均发生率为73.8%,男性高于女性(76.3% > 71.8%),与本研究结果一致。

    本研究人群上颌第1磨牙近颊根管大部分为Vertucci Ⅳ型,即MB2有独立的根管口和根尖孔,其次为Ⅱ型和Ⅴ型,提示MB2与MB1间有融合或交通,Ⅲ型最少,MB2与MB1由融合到分开再发生融合,形态最为复杂。Faraj等[11]研究伊拉克人群上颌第1磨牙的根尖孔解剖,结果发现有MB2的牙齿66.28%为1根尖孔,33.72%为2根尖孔,与本研究结果一致。MB2根管口多为椭圆形,与MB1形态一致,但明显要细小,常有偏向近中腭侧的弯曲,然后再移向中心,最后到达根尖,治疗时应特别注意。

    本研究人群上颌第2磨牙MB2平均发生率为52.05%,高于我国台湾地区人群(35.97%)[12],随年龄增长上颌第2磨牙MB2发生率没有明显增加,其近颊根管类型构成比与上颌第1磨牙相似,也是Ⅳ型最常见,其次为Ⅴ型和Ⅱ型,Ⅲ型最少。

    既往研究MB2定位时常沿MB1和P根管口画条参照线,MB2位于参照线近中侧,距离MB1根管口2~3 mm处[13]。本研究人群上颌第1磨牙MB2均位于参照线近中侧,与MB1距离为(1.70±0.72)mm,与垂线距离为(0.78±0.49)mm。

    Zhang等[2]分析南京地区人群1008颗上颌第1磨牙CBCT资料,经受试者工作特征曲线分析后首次提出:MB1-P和DB-P比值可用于预测上颌第1磨牙MB2的存在,大于1.26提示有MB2可能性很大。本研究人群有MB2的上颌第1磨牙MB1-P/DB-P比值为1.28±0.08,表明该理论有一定诊断价值,但需要更多的临床数据证实。Su等[14]研究发现上颌磨牙有和无MB2的MP(比值比 = 1.891)和MD间距(比值比 = 1.448)存在显著性差异,提示有MB2的上颌磨牙根管治疗时应该改良髓腔入路设计以便MB2的定位,但未对MP/MD比值与MB2的相关性进行研究。

    本研究利用CBCT技术研究昆明人群上颌第1和第2磨牙的根管系统特征,结果发现上颌第1和第2磨牙MB2发生率分别为86.51%和52.05%,其中IV型最为常见,上颌第1磨牙MB1-P/DB-P比值可辅助用于术前判断MB2的有无。术前充分了解牙齿根管形态,术中测量MB1-P和DB-P间距辅助诊断,根据MB2与其他根管口位置的关系,结合口腔手术显微镜和超声器械的使用,可更好定位MB2,提高上颌磨牙的根管治疗成功率。本研究纳入病例较少,不能完全反映昆明人群上颌磨牙的根管特征,需要在临床中进一步验证。

  • 图  1  生物膜形成模式图

    Figure  1.  Diagram of bioflm formation

    图  2  参与大肠杆菌界间通讯过程的吲哚系统示意图

    Figure  2.  Schematic representation of the indole system that participates in inter-kingdom communication processes in E. coli

  • [1] Li S,Duan W,Lei Y,et al. Effects of lipid emulsions on the formation of Escherichia coli-Candida albicans mixed-species biofilms on PVC[J]. Sci Rep,2021,11(1):16929. doi: 10.1038/s41598-021-96385-6
    [2] Mei J,Xu D,Wang L,et al. Biofilm microenvironment-responsive self-assembly nanoreactors for all-stage biofilm associated Infection through bacterial cuproptosis-like death and macrophage re-rousing[J]. Adv Mater,2023,35(36):e2303432. doi: 10.1002/adma.202303432
    [3] Li Q,Liu Q,Wang Z,et al. Biofilm homeostasis Interference therapy via 1O2-Sensitized hyperthermia and Immune microenvironment re-rousing for biofilm-associated Infections elimination[J]. Small,2023,19(22):e2300592. doi: 10.1002/smll.202300592
    [4] Xu Q,Chen S,Jiang L,et al. Sonocatalytic hydrogen/hole-combined therapy for anti-biofilm and infected diabetic wound healing[J]. Natl Sci Rev,2023,10(5):nwad063. doi: 10.1093/nsr/nwad063
    [5] 杨政鸿,何大千,宁明杰,等. 不同3D打印精度制作的生物材料表面形貌对表皮葡萄球菌生物膜形成影响[J]. 昆明医科大学学报,2022,43(2):12-17. doi: 10.12259/j.issn.2095-610X.S20220228
    [6] 张国婧,万子琳,王小燕,等. 表皮葡萄球菌胞间黏附素基因操纵子对细菌与真菌混合生物膜相关炎症作用影响的体内研究[J]. 中国修复重建外科杂志,2021,35(10):1328-1335.
    [7] Lei Y,Xu Y,Jing P,et al. The effects of TGF-β1 on staphylococcus epidermidis biofilm formation in a tree shrew biomaterial-centered infection model[J]. Ann Transl Med,2021,9(1):57. doi: 10.21037/atm-20-4526
    [8] 李民杰. 大肠杆菌运动调控在生物材料植入感染中的作用研究[D]. 昆明: 昆明医科大学, 2021.
    [9] Wang X,Zhang J,Chen W,et al. Study on the effects of estradiol in staphylococcus epidermidis device-related capsule formation[J]. Aesthetic Plast Surg,2020,44(2):558-569. doi: 10.1007/s00266-019-01567-3
    [10] Karygianni L,Ren Z,Koo H,et al. Biofilm matrixome: Extracellular components in structured microbial communities[J]. Trends Microbiol,2020,28(8):668-681. doi: 10.1016/j.tim.2020.03.016
    [11] Rosman C W K,van Dijl J M,Sjollema J. Interactions between the foreign body reaction and Staphylococcus aureus biomaterial-associated infection. Winning strategies in the derby on biomaterial implant surfaces[J]. Crit Rev Microbiol,2022,48(5):624-640. doi: 10.1080/1040841X.2021.2011132
    [12] Zarkan A,Liu J,Matuszewska M,et al. Local and universal action: The paradoxes of Indole signalling in bacteria[J]. Trends Microbiol,2020,28(7):566-577. doi: 10.1016/j.tim.2020.02.007
    [13] Bjarnsholt T,Buhlin K,Dufrêne Y F,et al. Biofilm formation-what we can learn from recent developments[J]. J Intern Med,2018,284(4):332-345. doi: 10.1111/joim.12782
    [14] Arciola C R,Campoccia D,Montanaro L. Implantinfections: adhesion,biofilm formation and immune evasion[J]. Nat Rev Microbiol,2018,16(7):397-409. doi: 10.1038/s41579-018-0019-y
    [15] 羊扬,刘云,张信军,等. 大肠杆菌群体感应系统的研究进展[J]. 中国兽医学报,2018,38(8):1624-1631. doi: 10.16303/j.cnki.1005-4545.2018.08.27
    [16] Flemming H C,Wuertz S. Bacteria and archaea on earth and theirabundance in biofilms[J]. Nat Rev Microbiol,2019,17(4):247-260. doi: 10.1038/s41579-019-0158-9
    [17] 吴丽娜,董鹏程,张一敏,等. 大肠杆菌生物膜形成特性及控制措施的研究进展[J]. 食品科学,2019,40(15):307-313. doi: 10.7506/spkx1002-6630-20180910-100
    [18] Berne C,Ellison C K,Ducret A,et al. Bacterial adhesion at the single-cell level[J]. Nat Rev Microbiol,2018,16(10):616-627. doi: 10.1038/s41579-018-0057-5
    [19] Arnaouteli S,Bamford N C,Stanley-Wall N R,et al. Bacillus subtilis biofilm formation and social interactions[J]. Nat Rev Microbiol,2021,19(9):600-614. doi: 10.1038/s41579-021-00540-9
    [20] Filipović U,Dahmane R G,Ghannouchi S,et al. Bacterial adhesion on orthopedic implants[J]. Adv Colloid Interface Sci,2020,283:102228. doi: 10.1016/j.cis.2020.102228
    [21] Yan J,Bassler B L. Surviving as a community: Antibiotic tolerance and persistence in bacterial biofilms[J]. Cell Host Microbe,2019,26(1):15-21. doi: 10.1016/j.chom.2019.06.002
    [22] Yin W,Wang Y,Liu L,et al. Biofilms: The microbial "protective clothing" in extreme environments[J]. Int J Mol Sci,2019,20(14):3423. doi: 10.3390/ijms20143423
    [23] Roy R,Tiwari M,Donelli G,et al. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action[J]. Virulence,2018,9(1):522-554. doi: 10.1080/21505594.2017.1313372
    [24] Del Pozo J L. Biofilm-related disease[J]. Expert Rev Anti Infect Ther,2018,16(1):51-65. doi: 10.1080/14787210.2018.1417036
    [25] Balzan S,de Almeida Quadros C,de Cleva R,et al. Bacterial translocation: Overview of mechanisms and clinical impact[J]. J Gastroenterol Hepatol,2007,22(4):464-471. doi: 10.1111/j.1440-1746.2007.04933.x
    [26] Krawczyk B,Śledzińska A,Szemiako K,et al. Characterisation of Escherichia coli isolates from the blood of haematological adult patients with bacteraemia: Translocation from gut to blood requires the cooperation of multiple virulence factors[J]. Eur J Clin Microbiol Infect Dis,2015,34(6):1135-1143. doi: 10.1007/s10096-015-2331-z
    [27] Azimi S,Klementiev A D,Whiteley M,et al. Bacterial quorum sensing during Infection[J]. Annu Rev Microbiol,2020,74:201-219. doi: 10.1146/annurev-micro-032020-093845
    [28] Coquant G,Grill J P,Seksik P. Impactof N-acyl-homoserine lactones,quorum sensing molecules,on gut Immunity[J]. Front Immunol,2020,11:1827. doi: 10.3389/fimmu.2020.01827
    [29] Ahmed U K B,Ballard J D. Autoinducing peptide-based quorum signaling systems in clostridioides difficile[J]. Curr Opin Microbiol,2022,65:81-86. doi: 10.1016/j.mib.2021.10.017
    [30] Yi L,Dong X,Grenier D,et al. Research progress of bacterialquorum sensing receptors: Classification,structure,function and characteristics[J]. Sci Total Environ,2021,763:143031.
    [31] Khera R,Mehdipour A R,Bolla J R,et al. Cryo-EM structures of pentameric autoinducer-2 exporter from Escherichia coli reveal its transport mechanism[J]. EMBO J,2022,41(18):e109990. doi: 10.15252/embj.2021109990
    [32] Huang S,Liu X,Yang W,et al. Insights into adaptive mechanisms of extreme acidophiles[J]. Msystems,2022,7(2):e0149121. doi: 10.1128/msystems.01491-21
    [33] Kim C S,Gatsios A,Cuesta S,et al. Characterization of autoinducer-3 structure and biosynthesis in E. coli[J]. ACS Cent Sci,2020,6(2):197-206. doi: 10.1021/acscentsci.9b01076
    [34] Cui B,Chen X,Guo Q,et al. The cell-cell communication signal indole controls the physiology and interspecies communication of acinetobacter baumannii[J]. Microbiol Spectr,2022,10(4):e0102722. doi: 10.1128/spectrum.01027-22
    [35] Wu S,Liu J,Liu C,et al. Quorum sensing for population-level control of bacteria and potential therapeutic applications[J]. Cell Mol Life Sci,2020,77(7):1319-1343. doi: 10.1007/s00018-019-03326-8
    [36] Yaikhan T,Chuerboon M,Tippayatham N,et al. Indole and derivatives modulate biofilm formation and antibiotic tolerance of klebsiella pneumoniae[J]. Indian J Microbiol,2019,59(4):460-467. doi: 10.1007/s12088-019-00830-0
    [37] Rattanaphan P,Mittraparp-Arthorn P,Srinoun K,et al. Indole signaling decreases biofilm formation and related virulence of Listeria monocytogenes[J]. FEMS Microbiol Lett,2020,367(14):fnaa116. doi: 10.1093/femsle/fnaa116
    [38] Li Y,Feng T,Wang Y. The role of bacterial signaling networks in antibiotics response and resistance regulation[J]. Mar Life Sci Technol,2022,4(2):163-178. doi: 10.1007/s42995-022-00126-1
    [39] Ganin H,Kemper N,Meir S,et al. Indole derivatives maintain the status quo between beneficial biofilms and their plant hosts[J]. Mol Plant Microbe Interact,2019,32(8):1013-1025.
    [40] Denamur E,Clermont O,Bonacorsi S,et al. The population genetics of pathogenic Escherichia coli[J]. Nat Rev Microbiol,2021,19(1):37-54. doi: 10.1038/s41579-020-0416-x
    [41] Gorelika O,Rogada A,Holoidovskyb L,et al. Meijlerb. Indole intercepts the communication between enteropathogenic E. coli and vibrio cholerae[J]. Gut Microbes,2022,14(1):2138677. doi: 10.1080/19490976.2022.2138677
    [42] 韩茵,孙苗苗,王建平,等. 吲哚作为细菌细胞间信号分子的研究进展[J]. 微生物学通报,2015,42(4):736-748. doi: 10.13344/j.microbiol.china.140629
    [43] Wang J,Zhang C,Childers W S. A biosensor for detection of Indole metabolites[J]. ACS Synth Biol,2021,10(7):1605-1614. doi: 10.1021/acssynbio.1c00090
    [44] Fiore A,Murray P J. Tryptophan and indole metabolism in immune regulation[J]. Curr Opin Immunol,2021,70:7-14. doi: 10.1016/j.coi.2020.12.001
    [45] 杨刚,张云露,李思明,等. 色氨酸对肠屏障免疫的调控作用研究进展[J]. 中国畜牧杂志,2021,57(4):6-10+16. doi: 10.19556/j.0258-7033.20200517-03
    [46] Kumar A,Russell R M,Hoskan M A,et al. Indole sensing regulator (IsrR) promotes virulence gene[J]. mBio,2022,13(4):e0193922. doi: 10.1128/mbio.01939-22
    [47] Han T H,Lee J H,Cho M H,et al. Environmental factors affecting indole production in Escherichia coli[J]. Res Microbiol,2011,162(2):108-116. doi: 10.1016/j.resmic.2010.11.005
    [48] Li G,Young K D. Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan[J]. Microbiology (Reading),2013,159(2):402-410.
    [49] Boon N,Kaur M,Aziz A,et al. The signaling molecule Indole Inhibits Induction of the AR2 acid resistance system in Escherichia coli[J]. Front Microbiol,2020,11:474. doi: 10.3389/fmicb.2020.00474
    [50] Kumar A,SperandioV. Indole signaling at the host-microbiota-pathogen Interface[J]. mBio,2019,10(3):e01031-19.
    [51] Kim J,Shin B,Park C,et al. Indole-Induced activities of β-Lactamase and efflux pump confer ampicillin resistance in pseudomonas putida KT2440[J]. Front Microbiol,2017,8:433.
    [52] Cheng C,Yan X,Liu B,et al. SdiA enhanced the drug resistance of cronobacter sakazakii and suppressed Its motility,adhesion and biofilm formation[J]. Front Microbiol,2022,13:901912. doi: 10.3389/fmicb.2022.901912
    [53] Mayer C,Borges A,Flament-Simon S C,et al. Quorum sensing architecture network in Escherichia coli virulence and pathogenesis[J]. FEMS Microbiol Rev,2023,47(4):fuad031. doi: 10.1093/femsre/fuad031
    [54] Xuan G,Dou Q,Kong J,et al. Pseudomonas aeruginosa resists phage Infection via eavesdropping on Indole signaling[J]. Microbiol Spectr,2023,11(1):e0391122. doi: 10.1128/spectrum.03911-22
    [55] Kim J,Park W. Indole: A signaling molecule or a mere metabolic byproduct that alters bacterial physiology at a high concentration?[J]. J Microbiology,2015,53(7):421-428. doi: 10.1007/s12275-015-5273-3
    [56] Wang Y,Bian Z,Wang Y. Biofilm formation and inhibition mediated by bacterial quorum sensing[J]. Appl Microbiol Biotechnol,2022,106(19-20):6365-6381. doi: 10.1007/s00253-022-12150-3
    [57] Liu W,Tang Q,Meng L,et al. Interbacterial chemical communication‐triggered nascent proteomics[J]. Angew Chem Int Ed Engl,2023,62(5):e202214010. doi: 10.1002/anie.202214010
    [58] Sun F,Yuan Q,Wang Y,et al. Sub-minimum inhibitory concentration ceftazidime inhibits Escherichia coli biofilm formation by influencing the levels of the ibpA gene and extracellular indole[J]. Chemother,2020,32(1):7-14. doi: 10.1080/1120009X.2019.1678913
    [59] Feng W,Zhang L,Yuan Q,et al. Effect of sub-minimal inhibitory concentration ceftazidime on the pathogenicity of uropathogenic Escherichia coli[J]. Microb Pathog,2021,151:104748. doi: 10.1016/j.micpath.2021.104748
    [60] Lee J,Page R,García-Contreras R,et al. Structure and function of the E. coli protein YmgB: A protein critical for biofilm formation and acid-resistance[J]. J Mol Biol,2007,373(1):11-26. doi: 10.1016/j.jmb.2007.07.037
    [61] Domka J,Lee J,Wood T K. YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling[J]. Appl Environ Microbiol,2006,72(4):2449-2459. doi: 10.1128/AEM.72.4.2449-2459.2006
  • [1] 王佳, 冯磊, 郑玉磊, 袁勇, 姚瑶, 虎子单, 申妮, 余艳, 丁家伟.  鲍曼不动杆菌多重耐药性与外排泵及生物膜形成相关性研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241216
    [2] 李春, 周琼, 梅聪, 黄洁杰, 王毅鹏, 周松兰, 郑倩, 唐哲.  双歧杆菌三联活菌对小鼠非酒精性脂肪肝模型中肠道微生物组的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231022
    [3] 高斯媛, 胡桂芳, 张一琼, 王明春, 李俊义, 杨继群.  改善某市戒毒所内环境卫生对所内环境微生物及住院患者感染情况的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221007
    [4] 杨雪婷, 张惠锋.  产超广谱β-内酰胺酶肠杆菌科细菌感染患者使用抗菌药物的药物评价, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220621
    [5] 杨政鸿, 宁明杰, 何大千, 杨猛哲, 黄永平, 黄云超.  不同3D打印精度制作的生物材料表面形貌对表皮葡萄球菌生物膜形成影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220228
    [6] 蒋迁, 孙宇, 霍丽珺, 雷雅燕, 裴洛伟.  微酸性电解水对根管内粪肠球菌生物膜抗菌作用的体外研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210303
    [7] 周晶, 霍丽珺, 雷雅燕, 和红兵.  生物膜胞外聚合物研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210429
    [8] 张雅娟, 潘红, 杜佳慧, 吴洁, 邱秀芹, 刘松柏, 贾蓓蓓.  桂皮醛联合万古霉素对耐甲氧西林金黄色葡萄球菌生物膜的抑制作用, 昆明医科大学学报.
    [9] 董知旭, 王宁珊, 李鹏辉, 李志朋.  天麻素衍生物的合成, 昆明医科大学学报.
    [10] 何丽明, 何永文.  口腔修复膜材料在牙种植中引导骨再生的临床效果, 昆明医科大学学报.
    [11] 李玉华.  细菌性阴道炎与8种牙周可疑致病微生物感染的关系, 昆明医科大学学报.
    [12] 蒙俊.  大肠杆菌qseC基因敲除及其缺陷株运动能力研究, 昆明医科大学学报.
    [13] 李云川.  吲哚青绿介导光动力对防治兔眼后发性白内障的影响, 昆明医科大学学报.
    [14] 查旭.  吲哚青绿介导光动力抑制兔眼后发性白内障的实验研究, 昆明医科大学学报.
    [15] 秦亚辉.  非接触消毒方法对生物材料表面细菌生物膜的清除效果评价, 昆明医科大学学报.
    [16] 李晓非.  噬菌体生物扩增技术在结核分枝杆菌利福平耐药性检测中的应用, 昆明医科大学学报.
    [17] 李静华.  吲哚青绿介导光动力防治后囊膜浑浊对兔角膜内皮细胞的影响, 昆明医科大学学报.
    [18] 张利娟.  吲哚美辛联合茶多酚对荷Lewis肺癌小鼠抗肿瘤作用的初步研究, 昆明医科大学学报.
    [19] 高振华.  蛇毒抗菌肽OH-CATH在血浆环境中对大肠杆菌的抗菌作用, 昆明医科大学学报.
    [20] 李思熳.  蛇毒抗菌肽Cathelicidin对大肠杆菌抗菌性的研究, 昆明医科大学学报.
  • 加载中
图(2)
计量
  • 文章访问数:  1547
  • HTML全文浏览量:  1039
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-13
  • 网络出版日期:  2023-12-19
  • 刊出日期:  2023-12-25

目录

/

返回文章
返回