Practice and Exploration of the Cultivation of Scientific Innovation Ability Based on RBL Teaching Method
-
摘要:
目的 探索基于研究的学习(research based learning,RBL)教学法对本科生科研创新能力的影响。 方法 一共212 名本科生纳入研究,其中传统教学组有104名,RBL教学组有108名,之后,教师对2组学生的科研创新能力进行客观评价,并调查了学生对教学效果的满意度。 结果 RBL教学组本科生的科研创新能力总分高于传统教学组(P < 0.001),RBL教学组本科生在实验设计、实验操作、报告撰写、结果汇报、提问问题与回答问题能力,以及对教学效果的满意度均高于传统教学组(P < 0.01)。 结论 RBL 教学法可以提高本科生的科研创新能力。 Abstract:Objective To explore the impact of research based learning(RBL) teaching method on undergraduate research innovation ability. Methods A total of 212 undergraduate students were involved in this study. Among them, 104 undergraduate students participated in the traditional teaching method, and 108 undergraduate students participated in the RBL teaching method. After they finished the comprehensive experiment in medical immunology, we assessed the scientific innovation ability and the degree of satisfaction of teaching effectiveness. Results The undergraduate research and innovation capabilities of the RBL teaching group are higher than those of the traditional teaching group(P < 0.001). The undergraduate students in the RBL teaching group have higher abilities in experimental design, experimental operation, report writing, result presentation, questioning and answering, as well as satisfaction with teaching effectiveness, compared to the traditional teaching group(P < 0.01). Conclusion The RBL teaching method can significantly improve the scientific innovation ability of undergraduate students. -
目前预防感染性疾病的最有效方法为疫苗接种。然而,没有任何一个疫苗能够对机体产生100%的保护。疫苗的保护性抗体反应是遗传因素如年龄、性别等与其他因素共同作用的结果。Tan PL等[1]开展的双生子疫苗反应性研究表明:接种麻疹、腮腺炎、风疹联合疫苗后,抗体反应的遗传力分别为88.5%,45.7%和38.8%。Newport M J等[2]研究也发现:接种乙肝、脊髓灰质炎、破伤风、白喉疫苗后,诱导机体产生抗体的遗传力分别为77%,60%,44%和49%。在疫苗免疫反应的相关遗传因素中,抗原加工和呈递的中枢-人类白细胞抗原(human leucocyte antigen,HLA)基因呈递系统占据了重要位置。外来抗原进入细胞后,在胞质中被编码蛋白酶组件的低分子多肽(low molecular mass protein,LMP)降解,变成5~25个氨基酸肽前体,然后被抗原加工相关转运体(transporter associated with antigen processing,TAP)结合并运送到内质网,被内质网氨肽酶(endoplasmic reticulum aminopeptidases,ERAP)进一步将其切割成片段大小适合的抗原肽,经由HLA I类分子结合后形成HLA抗原符合体,表达于抗原呈递细胞表面,诱导免疫应答[3- 4]。
ERAP是氨基肽酶M1家族一员,其基因位于5q15区域,包括ERAP1和ERAP2基因。ERAP1基因长47379 bp,包括20个外显子;ERAP2基因长41438 bp,由19个外显子组成。ERAP是一个高度多态的基因系统,存在大量单核苷酸多态性(single nucleotide polymorphism,SNP)。目前的研究证实[5],ERAP的SNPs与自身免疫性疾病、感染性疾病等具有相关性。由于ERAP在抗原呈递中的作用,研究推测,这些SNP可能改变抗原肽段的呈递,从而影响免疫应答,导致不同的疾病结局[6-8]。
全球开展的脊髓灰质炎(以下简称“脊灰”)疫苗的接种,让脊灰可成为第二个通过疫苗接种消灭的传染病。笔者前期开展的脊灰序贯免疫接种临床研究表明[9-10],在接种2剂脊灰灭活疫苗(inactivated polio vaccine,IPV)和1剂二价脊灰减毒活疫苗(bivalent oral polio vaccine,bOPV)后,各型抗体滴度和II型脊灰抗体阳转率均显示差异。基于以上研究,本研究共选取与ERAP功能密切相关的6个ERAP1和2个ERAP2的SNPs进行基因分型,分析ERAP多态性与脊灰疫苗诱导的抗体应答的相关性,尝试探讨宿主遗传因素在脊灰疫苗诱导的免疫应答中的作用。
1. 材料与方法
1.1 样本来源
选取广西壮族自治区参加中国医学科学院医学生物学研究所 “随机、盲法、单中心、平行对照试验评价I型+III型口服脊髓灰质炎减毒活疫苗(人二倍体细胞)和I型+III型脊髓灰质炎减毒活疫苗糖丸(人二倍体细胞)与IPV联合序贯免疫接种在2月龄婴儿中的免疫原性和安全性临床试验”研究项目的243名壮族2~3月龄儿童为研究对象,取得监护人知情同意并通过广西伦理审查委员会伦理审核(伦理批件号:GXIRB2015-0024)。
1.2 疫苗接种和抗体检测
入组个体均在2月龄和3月龄各接种1剂IPV,4月龄接种1剂bOPV,完成基础免疫接种程序。分别在免疫前和基础免疫后28 d采集受试者血液2.5 mL,对血清和血浆进行分离,血清保存于-20 ℃冰箱中,血浆保存在-80 ℃冰箱中。采用微量中和试验对脊灰I、II、III型中和抗体进行检测,依据WHO规定定义血清抗体阳转[11-12]。
1.3 DNA提取
使用Qiagen血基因组DNA试剂盒,提取外周血DNA,使用超微量紫外可见分光光度计进行DNA浓度和纯度检测,样品保存于-80 ℃冰箱中保存。
1.4 ERAP1和ERAP2 SNP分型
采用TaqMan探针法基因分型法对ERAP1基因rs27037 (G > T)、rs27044 (C > G)、rs30187 (C > T)、rs26618 (T > C)、rs26653 (C > G)、rs3734016 (C > T)和ERAP2基因rs2549782 (T > G)、rs2248374 (G > A)进行分型,见表1。PCR反应体积为5 μL,包括Mix 2.5 μL、双蒸水1.25 μL、引物0.25 μL、DNA样本1 μL,反应条件为95 ℃温度下预变性10 min,92 ℃温度下变性15 s,60 ℃温度下退火延伸1 min,共40个循环,40 ℃长延伸5 min。使用TaqMan Genotyper Software软件对结果进行分析。随机选取每个位点的不同基因型样本进行测序验证。
表 1 SNPs的位点信息Table 1. SNPs information基因 SNP位点 位置 突变类型 ERAP1 rs27037(G/T) chr5:96758990 intron rs27044(C/G) chr5:96783148 Gln730Glu(Q>E) rs30187(C/T) chr5:96788627 Lys528Arg(K>R) rs26618(T/C) chr5:96795133 Ile276Met(I>M) rs26653(C/G) chr5:96803547 Arg127Pro(R>P) rs3734016(C/T) chr5:96803761 Glu56Lys(E>K) ERAP2 rs2549782(T/G) chr5:96895296 Lys392Asn(K>N) rs2248374(G/A) chr5:96900192 splice region variant 1.5 统计学处理
哈迪-温伯格平衡(Hardy-Weinberg equilibrium,HW)使用PLINK软件进行样本检验。脊髓灰质炎疫苗诱导的抗体阳转组与非阳转组的等位基因、基因型的频率差异使用χ2检验进行分析,多重比较采用Bonferroni校正。脊灰中和抗体效价经log2转换后采用GraphPad Prism 7软件中的T检验分析性别及等位基因间脊灰GMT水平差异,用方差分析(One-way ANOVA)3组数据基因型之间脊灰GMT水平差异,多重比较采用Tukey校正。P < 0.05为差异有统计学意义。
2. 结果
2.1 研究对象基本特征
受试者共243例,男月龄(2.388±0.269)月,女月龄(2.352±0.252)月,其中男性128例,女性115例。I、II、III型脊灰中和抗体GMT水平在男女之间差异无统计学意义(P > 0.05),见表2。
表 2 研究对象基本特征($\bar x \pm s $ )Table 2. Basic characteristics of the subjects ($\bar x \pm s $ )型别 性别(n) GMT t P I型 男(128) 11.628 ± 2.043 1.350 0.178 女(115) 11.964 ± 1.814 II型 男(128) 6.110 ± 1.806 0.945 0.345 女(115) 6.335 ± 1.910 III型 男(128) 11.409 ± 1.699 1.292 0.198 女(115) 11.675 ± 1.492 2.2 样本的代表性检测
Hardy-Weinberg检验结果表明所选的8个SNP位点在人群中的分布符合Hardy-Weinberg平衡(P > 0.05),表明样本具有代表性。
2.3 ERAP等位基因与抗体GMT的相关性分析
ERAP1中6个SNPs位点的等位基因型均未显示与脊髓灰质炎病毒I、II、III型抗体水平具有相关性(P > 0.05)。由于ERAP2中的2个SNPs 位点高度连锁,其等位基因与脊髓灰质炎疫苗诱导的抗体水平的相关性一致。在I型脊灰抗体应答中,携带ERAP2 rs2549782-G等位基因型个体的GMT低于携带T等位基因型个体(11.590 ± 1.979 vs 11.950 ± 1.895,Padj = 0.031)。同样,携带ERAP2 rs2248374-A等位基因个体GMT低于携带rs2248374-G等位基因个体(11.590 ± 1.979 vs 11.950 ± 1.895,Padj = 0.031)。但在II、III型脊髓灰质炎疫苗抗体应答中,所有SNP等位基因型均未显示差异(P > 0.05),见表3。
表 3 ERAP基因的SNPs位点等位基因与脊灰中和抗体(GMT)水平的相关性($\bar x \pm s $ )Table 3. Correlation between ERAP SNPs alleles and GMT of neutralizing antibody against poliovirus ($\bar x \pm s $ )基因 SNP位点 脊灰抗体型 等位基因 n GMT P ERAP1 rs27037 I G 295 11.860 ± 1.873 0.351 T 191 11.670 ± 2.038 II G 295 6.205 ± 1.765 0.961 T 191 6.233 ± 1.986 III G 295 11.600 ± 1.463 0.838 T 191 11.430 ± 1.801 rs27044 I C 252 11.870 ± 1.913 0.282 G 234 11.700 ± 1.968 II C 252 6.272 ± 1.733 0.416 G 234 6.156 ± 1.937 III C 252 11.620 ± 1.450 0.760 G 234 11.450 ± 1.755 rs30187 I C 249 11.860 ± 1.915 0.338 T 237 11.710 ±1.966 II C 249 6.297 ± 1.784 0.245 T 237 6.131 ± 1.923 III C 249 11.610 ± 1.467 0.815 T 237 11.460 ± 1.738 rs26618 I C 157 11.740 ± 1.902 0.579 T 329 11.810 ± 1.960 II C 157 6.277 ± 1.804 0.497 T 329 6.187 ± 1.878 III C 157 11.650 ± 1.410 0.657 T 329 11.480 ± 1.690 rs26653 I C 247 11.760 ± 1.947 0.657 G 239 11.820 ± 1.936 II C 247 6.114 ± 1.899 0.155 G 239 6.322 ± 1.802 III C 247 11.470 ± 1.725 0.910 G 239 11.800 ± 1.472 rs3734016 I C 428 11.730 ± 1.954 0.077 T 58 12.190 ± 1.792 II C 428 6.170 ± 1.858 0.129 T 58 6.558 ± 1.790 III C 428 11.510 ± 1.634 0.582 T 58 11.720 ± 1.374 ERAP2 rs2549782 I G 221 11.590 ± 1.979 0.031* T 265 11.950 ± 1.895 II G 221 6.187 ± 1.836 0.992 T 265 6.241 ± 1.870 III G 221 11.560 ± 1.578 0.943 T 265 11.510 ± 1.630 rs2248374 I A 221 11.590 ± 1.979 0.031* G 265 11.950 ± 1.895 II A 221 6.187 ± 1.836 0.992 G 265 6.241 ± 1.870 III A 221 11.560 ± 1.578 0.943 G 265 11.510 ± 1.630 *P < 0.05。 2.4 ERAP基因型与脊灰抗体GMT的相关性分析
进一步的基因型比对分析表明,在II、III型脊灰抗体应答中,所有SNPs等位基因型均未显示差异(P > 0.05)。ERAP2中2个SNP基因型携带者间I型脊灰病毒中和抗体GMT水平差异有统计学意义(P = 0.043)。rs2549782基因型GT诱导的中和抗体低于TT (11.590±1.942 vs 12.280±1.802,Padj = 0.043),rs2248374基因型AG诱导的中和抗体低于GG (11.590±1.942 vs 12.280±1.802,Padj = 0.043),见表4。
表 4 ERAP基因SNPs的基因型与脊灰I型中和抗体GMT水平的相关性($\bar x \pm s $ )Table 4. Correlation between ERAP SNPs genotypes and GMT of neutralizing antibody against polio type1 ($\bar x \pm s $ )ERAP SNP位点 抗体型别 基因型 n GMT P ERAP1 rs27037 I型 GG 86 12.099 ± 1.792 0.109 GT 123 11.535 ± 1.948 TT 34 11.910 ± 2.202 rs27044 I型 CC 58 12.010 ± 2.001 0.563 CG 136 11.750 ± 1.841 GG 49 11.630 ± 2.150 rs30187 I型 CC 56 11.990 ± 2.033 0.626 CT 137 11.750 ± 1.822 TT 50 11.650 ± 2.167 rs26618 I型 CC 20 11.930 ± 1.591 0.672 CT 117 11.670 ± 2.005 TT 106 11.890 ± 1.939 rs26653 I型 CC 57 11.780 ± 2.083 0.830 CG 133 11.730 ± 1.839 GG 53 11.930 ± 2.064 rs3734016 I型 CC 189 11.690 ± 1.968 0.235 CT 50 12.080 ± 1.854 TT 4 12.900 ± 1.286 ERAP2 rs2549782 I型 GG 48 11.600 ± 2.046 0.043* GT 125 11.590 ± 1.942 TT 70 12.280 ± 1.802 rs2248374 I型 AA 48 11.600 ± 2.046 0.043* AG 125 11.590 ± 1.942 GG 70 12.280 ± 1.802 *P < 0.05。 2.5 ERAP中SNPs与脊灰II型抗体阳转的相关性分析
脊灰疫苗基础免疫1月后,I、III型抗体完全阳转,而II型阳转率为79.8%。因此,根据抗体阳转情况,将样本分为II型抗体阳转组和非阳转组,比较2组间SNP等位基因及基因型频率。结果表明,ERAP基因SNPs不同等位基因型以及基因型携带者的脊灰阳转率在2组间差异无统计学意义(P > 0.05),数据未显示。
3. 讨论
解析疫苗免疫应答水平在人群中的异质性与遗传变异的关系一直是疫苗学研究的热点。本研究以ERAP基因的8个SNP位点为研究对象,探究ERAP基因多态性与脊灰疫苗序贯免疫诱导的抗体应答的相关性。
HLA I类抗原呈递基因系统对抗原的加工过程中,ERAP1和ERAP2相互协同完成对抗原肽的剪切[5]。ERAP1和ERAP2一方面可以将与HLA I类结合的前体肽修饰到正确的长度,另一方面增加了HLA I类分子和抗原肽复合物的构象稳定性[13]。ERAP基因多态性可影响ERAP对抗原肽的切割,导致抗原肽不能有效的被切割成最终正常大小,从而影响后续的与HLA I类分子结合过程以及抗原提呈给CD8+T细胞的过程,从而影响免疫应答[14-16]。
本研究结果显示,ERAP2基因的2个SNP rs2549782和rs2248374在等位基因型和基因型水平上,均显示与脊灰序贯免疫诱导的脊灰I型抗体的GMT水平相关,且具有一致性。rs2549782位于ERAP催化中心附近,等位基因G的突变可引起非保守的氨基酸取代(赖氨酸变成天冬酰胺),这可能改变ERAP2的酶活性和对底物的特异性,从而引起抗原肽呈递的改变[8]。在本研究的壮族中,rs2248374和rs2549782完全连锁,rs2248374虽然位于内含子区域,但等位基因G的突变可引起无义介导的mRNA降解,影响蛋白表达[17]。因此,ERAP2的2个SNP位点可能同时影响到了蛋白表达和酶的活性。研究发现,rs2248374和rs2549782位点变异与自身免疫性疾病和感染性疾病具有相关性。如在意大利人群研究中,rs2549782-TT基因型在HIV-1人群中高于非感染人群;在西班牙毒品吸入HIV阳性人群中,rs2549782-TT显示高风险[18-19]。笔者前期研究发现携带rs2248374-A等位基因型个体的慢性HCV患病风险高于rs2248374-G携带者[20]。然而,ERAP与疾病关联分析结果在不同人群中并不一致。在荷兰和波兰人群开展的一项研究显示,寻常型银屑病与rs2248374多态性有关[21],但在西班牙人和非裔美国人和智利人群的研究中并没有发现rs2248374多态性和葡萄膜炎、炎症性肠病有关[21-23]。虽然在脊灰疫苗诱导的抗体应答中,未发现不同民族群体间的差异[24-25]。本临床研究中,也未显示壮族和汉族间的差异,但仍需要进一步开展不同群体ERAP基因与抗体应答的研究。此外,由于ERAP变异与疫苗免疫应答方面的研究有限,还需要进一步开展不同疫苗诱导的免疫应答与ERAP多样性的研究。
尽管ERAP位于HLA I类基因抗原呈递通路上,但多项研究表明,HLA I类基因也同样影响抗体阳转及中和抗体水平。在麻腮风联合疫苗诱导的抗体应答中发现,HLA-A*01、HLA-B*07等基因与麻疹抗体非阳转相关,HLA-B*27:05与腮腺炎抗体水平相关[26-27]。在对乙肝疫苗的抗体应答中也发现,HLA-A*11:01、HLA-B*35、HLA-B*46等基因与乙肝疫苗诱导的抗体水平相关[28]。除经典HLA I类基因外,HLA I类抗原呈递基因系统的其他基因多态性也影响着疫苗诱导的抗体应答。对麻疹疫苗无应答和高应答的比对分析发现,将抗原运送至内质网的TAP2基因型可影响麻疹抗体的高应答与无应答[29];Yucesoy等[30]的研究也发现,TAP2基因的rs690550影响着麻疹疫苗诱导的抗体水平。推测因TAP在HLA I类抗原呈递中将LMP加工的短肽片段从胞质内转运至内质网,其多态可能引起TAP的转运的改变,导致后续抗原呈递的不同结局[31]。本研究发现ERAP2与脊髓灰质炎序贯免疫诱导的脊髓灰质炎疫苗诱导的抗体水平相关,但由于本研究仅是相关性研究,具体ERAP2如何影响抗体水平的机制需在未来的研究中通过功能实验进一步研究。
综上,本研究初步探讨了抗原提呈通路基因ERAP1和ERAP2与脊灰疫苗诱导脊灰抗体应答的相关性,结果表明ERAP2基因多态性与脊灰I型抗体GMT相关,可能影响脊灰疫苗诱导的抗体水平。然而,笔者目前对于疫苗诱导的免疫应答机制了解非常有限,本研究仅仅是对抗体反应的一个初步分析,仍需要进一步开展不同疫苗的研究,同时开展功能实验探寻抗原呈递基因在疫苗应答中的作用。
-
表 1 传统教学组和RBL教学组学生基本资料比较($ \bar x \pm s $)
Table 1. Comparison of the basic information between the traditional teaching group and RBL teaching group ($ \bar x \pm s $)
组别 学生
(n)男生
(n)女生
(n)平均
年龄(岁)免疫学
实验基础GPA 传统教学组 104 50 54 21.16 ± 1.16 无 3.52 ± 0.39 RBL教学组 108 53 55 20.89 ± 1.07 无 3.47 ± 0.43 F — — — 1.285 — 1.082 P — — — 0.273 — 0.311 -
[1] 许日华,乐传永. 新型研究型大学战略空间构造与创新[J]. 教育研究,2023,44(7):81-93. [2] 吕莹,陈璧州. 教学研究型大学学生科研能力培养探析[J]. 教育教学论坛,2014(3):69-71. [3] 冯蕊,徐世莲,杨海龙,等. RBL教学法对医学研究生批判性思维的影响[J]. 昆明医科大学学报,2023,44(10):196-202. doi: 10.12259/j.issn.2095-610X.S20231008 [4] Li C. English research learning and functional research based on constructivism theory and few-shot learning[J]. Computational Intelligence And Neuroscience,2022,2022:3698802. [5] Rosario R,Hopper T S,Huang-Saad A. Applying research-based teaching strategies in a biomedical engineering programming course: Introduction to computer aided diagnosis[J]. Biomeical Engineering Education,2022,2(1):41-59. doi: 10.1007/s43683-021-00057-w [6] Benning N,Knaup P. Development of a research-based teaching course as blended-learning format in a medical informatics program[J]. Studies in Health Technology and Informatics,2019,264:1909-1910. [7] 邓颖,黄聪,张楠楠,等. 基于RBL教学模式在药理学教学中进行生物信息与多组学教学的探索[J]. 贵州中医药大学学报,2023,45(04):87-90. [8] Wesselborg B,Hoenen M,Adam-Paffrath R,et al. Interprofessional nutrition management-implementation and evaluation of a course for medical and nursing students using research-based learning method[J]. GMS Journal for Medical Education,2019,36(6):68. [9] 王刚,张秋香,毛丙永,等. 本科生科研兴趣与能力培养的探索与实践[J]. 科教文汇,2020(34):26-27. [10] Holmes N,Wieman C,Bonn D. Teaching critical thinking[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(36):11199-11204. [11] 付坤,王瑞,杨罕,等. 高校本科生科研素养培养教育探索[J]. 实验室研究与探索,2017,36(3):207-211. [12] 毛文,刘清心. 以学生为中心的设计方法课程多元化教学模式探索[J]. 河南教育(高等教育),2023 , (7):93-94. [13] Carter A,Creedy D,Sidebotham M. Efficacy of teaching methods used to develop critical thinking in nursing and midwifery undergraduate students: A systematic review of the literature[J]. Nurse Education Today,2016,40:209-218. doi: 10.1016/j.nedt.2016.03.010 [14] Granjeiro É. Research-based teaching-learning method: A strategy to motivate and engage students in human physiology classes[J]. Advances in Physiology Education,2019,43(4):553-556. doi: 10.1152/advan.00034.2019 [15] 徐志鹏,邱竞帆,王云峰. 在强化医学文献阅读中提升医学生的科学素养和科研创新能力[J]. 南京医科大学学报(社会科学版),2021,21(2):189-192. [16] 钮晓音,郭晓奎. “新医科”背景下的医学教育改革与人才培养[J]. 中国高等医学教育,2021 , (5):1-2. [17] 陈戬,赵耘佩,吴雨菲. 医学本科生创新能力的培养策略研究[J]. 医学研究杂志,2021,50(9):163-165. [18] 张伟,祁俊侠,杨茜璐,等. 基于文献阅读和科研设计培养医学本科生的科研素养[J]. 基础医学教育,2023,25(3):261-265. [19] Ghukasyan G,Kurghinyan M,Hovhannisyan L,et al. Moving research-based learning in life sciences upstream,and beyond borders: An international group research project for high school youth[J]. Omics:A Journal of Integrative Biology,2023,27(9):421-425. doi: 10.1089/omi.2023.0079 -