留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

miRNA在非酒精性脂肪性肝病中的研究进展

陈杭 崔琦 黄敏杉 刘建军 马岚青

陈杭, 崔琦, 黄敏杉, 刘建军, 马岚青. miRNA在非酒精性脂肪性肝病中的研究进展[J]. 昆明医科大学学报, 2024, 45(1): 1-7. doi: 10.12259/j.issn.2095-610X.S20240101
引用本文: 陈杭, 崔琦, 黄敏杉, 刘建军, 马岚青. miRNA在非酒精性脂肪性肝病中的研究进展[J]. 昆明医科大学学报, 2024, 45(1): 1-7. doi: 10.12259/j.issn.2095-610X.S20240101
Hang CHEN, Qi CUI, Minshan HUANG, Jianjun LIU, Lanqing MA. Research Progress of miRNA in Non-alcoholic Fatty Liver Disease[J]. Journal of Kunming Medical University, 2024, 45(1): 1-7. doi: 10.12259/j.issn.2095-610X.S20240101
Citation: Hang CHEN, Qi CUI, Minshan HUANG, Jianjun LIU, Lanqing MA. Research Progress of miRNA in Non-alcoholic Fatty Liver Disease[J]. Journal of Kunming Medical University, 2024, 45(1): 1-7. doi: 10.12259/j.issn.2095-610X.S20240101

miRNA在非酒精性脂肪性肝病中的研究进展

doi: 10.12259/j.issn.2095-610X.S20240101
基金项目: 国家自然科学基金资助项目(82160117)
详细信息
    作者简介:

    陈杭(1994~),男,四川宜宾人,在读博士研究生,主要从事消化系统、肝病研究工作

    崔琦与陈杭对本文有同等贡献

    通讯作者:

    马岚青,E-mail:malanqing@aliyun.com

  • 中图分类号: R575

Research Progress of miRNA in Non-alcoholic Fatty Liver Disease

More Information
    Corresponding author: 马岚青,医学博士,博士生导师,主任医师。现任昆明医科大学第一附属医院消化内科副主任(主持工作),昆明医科大学第一附属医院内科住院医师规范化培训基地主任,昆明医科大学第一附属医院内科教研室主任。美国加州大学圣地亚哥分校医学中心访问学者。中华医学会消化病学分会全国青年委员会委员;中华医学会消化病学分会肿瘤协助组委员;中国女医师协会消化病专业分会委员;云南省医院协会消化内科专业委员会主任委员;云南女医师协会消化病学分会主任委员;云南省医师协会消化医师分会副主任委员;云南省医学会消化病学分会委员;中国医师协会内镜医师培训学院导师。云南省中青年学术和技术带头人,云南省“万人计划”名医,云南省医学学科领军人才、带头人,云南省政府特殊津贴专家,国家自然科学基金评委。擅长消化内镜诊治技术如EMR/ESD/POEM/STER/EFTR、肝病、幽门螺杆菌感染性疾病及消化系统急、难、危重症诊治。主持4项国家自然科学基金及6项云南省自然科学基金项目,以第一作者及通讯作者发表SCI论文20余篇,总影响因子IF > 100,获国家级发明专利及新型实用专利5项,副主编及编委发表论著4部,获省级自然科学奖、科技进步奖一等奖、三等奖共5项。
  • 摘要: 非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)是一种最常见的慢性肝病,全球患病率约为30.05%~32.40%,并且与多种其他疾病密切相关。近年来,miRNA(microRNA,miRNA)作为无创生物标志物在NAFLD的发病机制和诊断中扮演了重要角色。miRNA是一种小分子RNA,通过控制靶基因的转录和翻译来调节基因表达和蛋白质合成。miRNA在脂肪代谢和胰岛素抵抗中都起着重要作用,并在NAFLD的发病机制中发挥着具体的调控角色。就miRNA在脂肪代谢、胰岛素抵抗、NAFLD发生发展中的作用及机制的作一综述。
  • [1] Rinella M E,Neuschwander-Tetri B A,Siddiqui M S,et al. AASLD practice guidance on the clinical assessment and management of nonalcoholic fatty liver disease[J]. Hepatology,2023,77(5):1797-1835. doi: 10.1097/HEP.0000000000000323
    [2] Cotter T G,Rinella M. Nonalcoholic fatty liver disease 2020: The state of the disease[J]. Gastroenterology,2020,158(7):1851-1864. doi: 10.1053/j.gastro.2020.01.052
    [3] Powell E E,Wong V W,Rinella M. Non-alcoholic fatty liver disease[J]. Lancet,2021,397(10290):2212-2224. doi: 10.1016/S0140-6736(20)32511-3
    [4] Younossi Z M,Golabi P,Paik J M,et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review[J]. Hepatology,2023,77(4):1335-1347. doi: 10.1097/HEP.0000000000000004
    [5] Riazi K,Azhari H,Charette J H,et al. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol,2022,7(9):851-861. doi: 10.1016/S2468-1253(22)00165-0
    [6] Li J,Zou B,Yeo Y H,et al. Prevalence,incidence,and outcome of non-alcoholic fatty liver disease in Asia,1999–2019: A systematic review and meta-analysis[J]. The Lancet Gastroenterology & Hepatology,2019,4(5):389-398.
    [7] Saliminejad K,Khorram Khorshid H R,Soleymani Fard S,et al. An overview of microRNAs: Biology,functions,therapeutics,and analysis methods[J]. J Cell Physiol,2019,234(5):5451-5465. doi: 10.1002/jcp.27486
    [8] Shi Y,Liu Z,Lin Q,et al. MiRNAs and cancer: Key link in diagnosis and therapy[J]. Genes (Basel),2021,12(8):1289-1302. doi: 10.3390/genes12081289
    [9] Feng Y,Li J,Zhang Y. Chemical knockdown of microRNA with small-molecule chimeras[J]. Chembiochem,2020,21(22):3180-3185. doi: 10.1002/cbic.202000287
    [10] Chen P S,Lin S C,Tsai S J. Complexity in regulating microRNA biogenesis in cancer[J]. Exp Biol Med (Maywood),2020,245(5):395-401. doi: 10.1177/1535370220907314
    [11] Hill M,Tran N. miRNA interplay: Mechanisms and consequences in cancer[J]. Dis Model Mech,2021,14(4):1-4. doi: 10.1242/dmm.047662
    [12] Bartel D P. Metazoan microRNAs[J]. Cell,2018,173(1):20-51. doi: 10.1016/j.cell.2018.03.006
    [13] Jie M,Feng T,Huang W,et al. Subcellular localization of miRNAs and implications in cellular homeostasis[J]. Genes (Basel),2021,12(6):856. doi: 10.3390/genes12060856
    [14] Arguello G,Balboa E,Arrese M,et al. Recent insights on the role of cholesterol in non-alcoholic fatty liver disease[J]. Biochim Biophys Acta,2015,1852(9):1765-1778. doi: 10.1016/j.bbadis.2015.05.015
    [15] Pang L,Liu K,Liu D,et al. Differential effects of reticulophagy and mitophagy on nonalcoholic fatty liver disease[J]. Cell Death Dis,2018,9(2):90. doi: 10.1038/s41419-017-0136-y
    [16] Teratani T, Tomita K, Suzuki T, et al. A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells[J]. Gastroenterology, 2012, 142(1): 152-164 e10
    [17] Pirola C J,Fernandez Gianotti T,Castano G O,et al. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis[J]. Gut,2015,64(5):800-812. doi: 10.1136/gutjnl-2014-306996
    [18] Laudadio I,Manfroid I,Achouri Y,et al. A feedback loop between the liver-enriched transcription factor network and miR-122 controls hepatocyte differentiation[J]. Gastroenterology,2012,142(1):119-129. doi: 10.1053/j.gastro.2011.09.001
    [19] Becker P P,Rau M,Schmitt J,et al. Performance of serum microRNAs -122,-192 and -21 as biomarkers in Patients with non-alcoholic steatohepatitis[J]. PLoS One,2015,10(11):e0142661. doi: 10.1371/journal.pone.0142661
    [20] Esau C,Davis S,Murray S F,et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting[J]. Cell Metab,2006,3(2):87-98. doi: 10.1016/j.cmet.2006.01.005
    [21] Krutzfeldt J,Rajewsky N,Braich R,et al. Silencing of microRNAs in vivo with 'antagomirs'[J]. Nature,2005,438(7068):685-689. doi: 10.1038/nature04303
    [22] Vega-Badillo J,Gutierrez-Vidal R,Hernandez-Perez H A,et al. Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects[J]. Liver Int,2016,36(9):1383-1391. doi: 10.1111/liv.13109
    [23] Wu H,Ng R,Chen X,et al. MicroRNA-21 is a potential link between non-alcoholic fatty liver disease and hepatocellular carcinoma via modulation of the HBP1-p53-Srebp1c pathway[J]. Gut,2016,65(11):1850-1860. doi: 10.1136/gutjnl-2014-308430
    [24] Rodrigues P M,Afonso M B,Simao A L,et al. miR-21 ablation and obeticholic acid ameliorate nonalcoholic steatohepatitis in mice[J]. Cell Death Dis,2017,8(4):e2748. doi: 10.1038/cddis.2017.172
    [25] Sun C,Huang F,Liu X,et al. miR-21 regulates triglyceride and cholesterol metabolism in non-alcoholic fatty liver disease by targeting HMGCR[J]. International Journal of Molecular Medicine,2015,35(3):847-853. doi: 10.3892/ijmm.2015.2076
    [26] Ahn J,Lee H,Jung C H,et al. Lycopene inhibits hepatic steatosis via microRNA-21-induced downregulation of fatty acid-binding protein 7 in mice fed a high-fat diet[J]. Mol Nutr Food Res,2012,56(11):1665-74. doi: 10.1002/mnfr.201200182
    [27] Yang Y,Guo J X,Shao Z Q. miR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: An experimental study[J]. Asian Pac J Trop Med,2017,10(1):87-91. doi: 10.1016/j.apjtm.2016.09.011
    [28] Lin Y,Ding D,Huang Q,et al. Downregulation of miR-192 causes hepatic steatosis and lipid accumulation by inducing SREBF1: Novel mechanism for bisphenol A-triggered non-alcoholic fatty liver disease[J]. Biochim Biophys Acta Mol Cell Biol Lipids,2017,1862(9):869-882.
    [29] Borji M,Nourbakhsh M,Shafiee S M,et al. Down-regulation of SIRT1 expression by mir-23b contributes to lipid accumulation in HepG2 cells[J]. Biochem Genet,2019,57(4):507-521. doi: 10.1007/s10528-019-09905-5
    [30] Ali O,Darwish H A,Eldeib K M,et al. miR-26a Potentially contributes to the regulation of fatty acid and sterol metabolism in vitro human hepG2 cell model of nonalcoholic fatty liver disease[J]. Oxid Med Cell Longev,2018,2018(1):8515343.
    [31] Xu Y,Zalzala M,Xu J,et al. A metabolic stress-inducible miR-34a-HNF4alpha pathway regulates lipid and lipoprotein metabolism[J]. Nat Commun,2015,6(1):7466. doi: 10.1038/ncomms8466
    [32] Jia N,Lin X,Ma S,et al. Amelioration of hepatic steatosis is associated with modulation of gut microbiota and suppression of hepatic miR-34a in gynostemma pentaphylla (Thunb. ) makino treated mice[J]. Nutr Metab (Lond),2018,15(1):86. doi: 10.1186/s12986-018-0323-6
    [33] Zeng N,Huang R,Li N,et al. MiR-451a attenuates free fatty acids-mediated hepatocyte steatosis by targeting the thyroid hormone responsive spot 14 gene[J]. Mol Cell Endocrinol,2018,474(1):260-271.
    [34] Zhang T,Zhao X,Steer C J,et al. A negative feedback loop between microRNA-378 and Nrf1 promotes the development of hepatosteatosis in mice treated with a high fat diet[J]. Metabolism,2018,85(1):183-191.
    [35] Lei L,Zhou C,Yang X,et al. Down-regulation of microRNA-375 regulates adipokines and inhibits inflammatory cytokines by targeting AdipoR2 in non-alcoholic fatty liver disease[J]. Clin Exp Pharmacol Physiol,2018,45(8):819-831. doi: 10.1111/1440-1681.12940
    [36] Guo J,Dou L,Meng X,et al. Hepatic miR-291b-3p mediated glucose metabolism by directly targeting p65 to upregulate PTEN expression[J]. Sci Rep,2017,7(1):39899. doi: 10.1038/srep39899
    [37] Xu L,Li Y,Yin L,et al. miR-125a-5p ameliorates hepatic glycolipid metabolism disorder in type 2 diabetes mellitus through targeting of STAT3[J]. Theranostics,2018,8(20):5593-5609. doi: 10.7150/thno.27425
    [38] Jordan S D,Kruger M,Willmes D M,et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism[J]. Nat Cell Biol,2011,13(4):434-446. doi: 10.1038/ncb2211
    [39] Yang W M,Min K H,Lee W. Induction of miR-96 by dietary saturated fatty acids exacerbates hepatic insulin resistance through the suppression of INSR and IRS-1[J]. PLoS One,2016,11(12):e0169039. doi: 10.1371/journal.pone.0169039
    [40] Jampoka K,Muangpaisarn P,Khongnomnan K,et al. Serum miR-29a and miR-122 as potential biomarkers for non-alcoholic fatty liver disease (NAFLD)[J]. Microrna,2018,7(3):215-222. doi: 10.2174/2211536607666180531093302
    [41] Ramirez C M,Goedeke L,Rotllan N,et al. MicroRNA 33 regulates glucose metabolism[J]. Mol Cell Biol,2013,33(15):2891-2902. doi: 10.1128/MCB.00016-13
    [42] Garcia-Jacobo R E,Uresti-Rivera E E,Portales-Perez D P,et al. Circulating miR-146a,miR-34a and miR-375 in type 2 diabetes patients,pre-diabetic and normal-glycaemic individuals in relation to beta-cell function,insulin resistance and metabolic parameters[J]. Clin Exp Pharmacol Physiol,2019,46(12):1092-1100. doi: 10.1111/1440-1681.13147
    [43] Zhou M,Hou Y,Wu J,et al. miR-93-5p promotes insulin resistance to regulate type 2 diabetes progression in HepG2 cells by targeting HGF[J]. Mol Med Rep,2021,23(5):329. doi: 10.3892/mmr.2021.11968
    [44] Santos D,Porter-Gill P,Goode G,et al. Circulating microRNA levels differ in the early stages of insulin resistance in prepubertal children with obesity[J]. Life Sci,2023,312(1):121246.
    [45] Dai L L,Li S D,Ma Y C,et al. MicroRNA-30b regulates insulin sensitivity by targeting SERCA2b in non-alcoholic fatty liver disease[J]. Liver Int,2019,39(8):1504-1513. doi: 10.1111/liv.14067
    [46] Zhang C,Wang P,Li Y,et al. Role of microRNAs in the development of hepatocellular carcinoma in nonalcoholic fatty liver disease[J]. Anat Rec (Hoboken),2019,302(2):193-200. doi: 10.1002/ar.23954
    [47] Torres J L,Novo-Veleiro I,Manzanedo L,et al. Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease[J]. World J Gastroenterol,2018,24(36):4104-4118. doi: 10.3748/wjg.v24.i36.4104
    [48] Wang X, He Y, Mackowiak B, et al. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases[J]. Gut, 2021, 70(4): 784-795
    [49] Zhang Z, Moon R, Thorne J L, et al. NAFLD and vitamin D: Evidence for intersection of microRNA-regulated pathways[J]. Nutr Res Rev, 2021,36(1): 1-20
    [50] Serino M. Molecular paths linking metabolic diseases,gut microbiota dysbiosis and enterobacteria infections[J]. J Mol Biol,2018,430(5):581-590. doi: 10.1016/j.jmb.2018.01.010
    [51] Gjorgjieva M,Sobolewski C,Dolicka D,et al. miRNAs and NAFLD: From pathophysiology to therapy[J]. Gut,2019,68(11):2065-2079. doi: 10.1136/gutjnl-2018-318146
    [52] Xin S,Zhan Q,Chen X,et al. Efficacy of serum miRNA test as a non-invasive method to diagnose nonalcoholic steatohepatitis: A systematic review and meta-analysis[J]. BMC Gastroenterol,2020,20(1):186. doi: 10.1186/s12876-020-01334-8
    [53] Jonas W,Schurmann A. Genetic and epigenetic factors determining NAFLD risk[J]. Mol Metab,2021,50(1):101111.
    [54] Kiran S,Kumar V,Kumar S,et al. Adipocyte,immune cells,and miRNA crosstalk: A novel regulator of metabolic dysfunction and obesity[J]. Cells,2021,10(5):1004. doi: 10.3390/cells10051004
    [55] Shen Y,Cheng L,Xu M,et al. SGLT2 inhibitor empagliflozin downregulates miRNA-34a-5p and targets GREM2 to inactivate hepatic stellate cells and ameliorate non-alcoholic fatty liver disease-associated fibrosis[J]. Metabolism,2023,146(1):155657.
    [56] Kan Changez M I, Mubeen M, Zehra M, et al. Role of microRNA in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH): A comprehensive review[J]. J Int Med Res, 2023, 51(9): 3000605231197058.
  • [1] 李媛媛, 宋亚贤, 徐玉善, 曾晓甫, 袁惠, 徐兆, 江艳.  肠道菌群代谢物TMAO与非酒精性脂肪性肝病的关系, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240210
    [2] 邓绍友, 赵玉兰, 王佩锦, 李蓉, 李进涛, 郑红.  恒古骨伤愈合剂联合广谱抗生素改善db/db小鼠胰岛素抵抗和肠道菌群, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230530
    [3] 张学敏, 田云粉.  胆汁酸代谢异常在非酒精性脂肪性肝病发展中的作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231125
    [4] 李露, 田云粉.  肠道菌群与儿童非酒精性脂肪性肝病的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230708
    [5] 李晓红, 赵琳, 张馨文, 陈卓, 马润玫.  GDM孕妇网膜脂肪组织中Chemerin的表达与IRS-1及其酪氨酸磷酸化分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220140
    [6] 张天红, 杨红菊.  外泌体miRNA在肝细胞癌中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220221
    [7] 杨永锐, 王丽媛, 李海雯, 赵智蓉, 普瑞, 吴贵帅, 李树德.  灯盏乙素抑制NOX的表达改善非酒精性脂肪性肝病肝脏纤维化的研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220721
    [8] 徐永芳, 吴娜, 胡月新, 赵永美, 郑绍鼎, 危玲, 郑思佳, 刘建军.  GW7647对大鼠非酒精性脂肪性肝病(NAFLD)的治疗作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210804
    [9] 杨佳, 李娅娴, 王莹莹, 肖琳, 李传印, 谭芳, 马千里, 刘舒媛.  云南汉族人群mircoRNA-149、mircoRNA-219、mircoRNA-let-7基因多态性与非小细胞肺癌发生和发展的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211037
    [10] 范译丹, 陈玉, 饶春梅, 高雪娟, 张芳, 方山丹, 向润清, 范源, 吴洋.  T2DM患者合并非酒精性脂肪肝与胰岛β细胞功能和胰岛素抵抗的关系, 昆明医科大学学报.
    [11] 蒋婷婷.  脂肪因子Vaspin、Apelin及瘦素与多囊卵巢综合征的相关性, 昆明医科大学学报.
    [12] 桂琦.  血清中脂肪因子Apelin、Vaspin、瘦素与子宫内膜癌的相关性, 昆明医科大学学报.
    [13] 鲍娟.  帕金森病患者轻度认知损害与胰岛素抵抗的相关性, 昆明医科大学学报.
    [14] 范敏娟.  瘦素、胰岛素抵抗与阻塞性睡眠呼吸暂停低通气综合征关系的研究, 昆明医科大学学报.
    [15] 白永.  天麻素对胰岛素抵抗模型中CBS表达的影响, 昆明医科大学学报.
    [16] 沈丽新.  非酒精脂肪肝病患者ApoB/ApoA1比值与胰岛素抵抗的相关性研究, 昆明医科大学学报.
    [17] 李若楠.  三七总皂苷调控c-Jun氨基末端激酶改善大鼠肝组织胰岛素抵抗的作用, 昆明医科大学学报.
    [18] 刘淑清.  2型糖尿病胰岛素抵抗与认知功能障碍关系研究, 昆明医科大学学报.
    [19] 丘红梅.  代谢综合征患者胰岛素抵抗与血浆醛固酮相关性研究, 昆明医科大学学报.
    [20] 桂莉.  2型糖尿病大鼠骨骼肌氧化应激与胰岛素抵抗的关系, 昆明医科大学学报.
  • 加载中
计量
  • 文章访问数:  1193
  • HTML全文浏览量:  685
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-20
  • 网络出版日期:  2024-01-10
  • 刊出日期:  2024-01-25

目录

    /

    返回文章
    返回