-
摘要: 非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)是一种最常见的慢性肝病,全球患病率约为30.05%~32.40%,并且与多种其他疾病密切相关。近年来,miRNA(microRNA,miRNA)作为无创生物标志物在NAFLD的发病机制和诊断中扮演了重要角色。miRNA是一种小分子RNA,通过控制靶基因的转录和翻译来调节基因表达和蛋白质合成。miRNA在脂肪代谢和胰岛素抵抗中都起着重要作用,并在NAFLD的发病机制中发挥着具体的调控角色。就miRNA在脂肪代谢、胰岛素抵抗、NAFLD发生发展中的作用及机制的作一综述。Abstract: Nonalcoholic fatty liver disease(NAFLD) is the most common chronic liver disease, with a global prevalence of approximately 30.05% to 32.4%. It is closely associated with various other diseases. In recent years, microRNAs(miRNAs) have played a crucial role as non-invasive biomarkers in understanding the pathogenesis and diagnosis of NAFLD. miRNAs play significant roles in both lipid metabolism and insulin resistance, exerting specific regulatory functions in the development and progression of NAFLD. miRNAs are small RNA molecules that regulate the gene expression and protein synthesis by controlling the transcription and translation of target genes. This article provides a comprehensive overview of the roles and mechanisms of miRNAs in lipid metabolism, insulin resistance, and the occurrence and development of NAFLD.
-
Key words:
- Nonalcoholic fatty liver disease /
- miRNA /
- Insulin Resistance
-
口腔微生物区系是人体微生物组的重要组成部分,其中细菌是导致龋病的主要微生物[1-2]。诸多微生物代谢糖类产酸,当酸性产物超出唾液可缓冲能力时,牙体硬组织脱矿,产酸耐酸菌成为优势菌群,从而导致龋病的发生[3-4]。高通量测序技术 (High throughput sequencing)已成为研究口腔微生态和感染性疾病病因的常用手段。傈僳族是云南15个特有少数民族之一,中国第十九大少数民族,总人口有63.5万余,96.9%在云南(61万),主要集中在云南省怒江傈僳族自治州,聚居地多为地理位置偏僻的山区,具有独特的饮食结构和文化背景。2009年卢敏[5]的研究结果显示迪庆地区傈僳族3~6岁乳牙龋患率为50.6%;2014年唐红萍[6]的调查显示怒江地区傈僳族1~6岁乳牙龋患率为50.3%,为云南省15个特有少数民族中乳牙龋患率最高的民族;Shinan Zhang等[7]2019年对云南省5岁傈僳族儿童的龋病状况调查研究显示其患龋率高达80%。目前,尚无傈僳族口腔微生物的研究。因此,本研究采用16S rRNA基因高通量测序对云南省傈僳族口腔微生物的多样性和群落构成进行分析,并与当地汉族同龄儿童进行对照,为少数民族儿童龋病的预防和诊治提供参考依据。
1. 资料与方法
1.1 研究对象
按照WHO口腔健康调查基本方法第5版龋病诊断标准,由2位受过规范培训并通过标准一致性检验的口腔医生(Kappa > 0.8)对怒江州6所幼儿园380名5岁儿童进行检查和记录,其中傈僳族儿童202名,汉族儿童178名。纳入标准 [8]:(1)高龋组dmfs ≥ 6;(2)无龋组dmfs = 0且牙齿未做过任何治疗;(3)全身健康,无系统性疾病;(4)无口腔粘膜和牙周疾病;(5)无釉质或牙本质矿化不全;(6)未佩戴正畸矫治器;(7)取样前1个月未接受抗生素治疗或涂氟等龋病防治治疗。最终选取符合条件的80例儿童,分为傈僳族高龋组(Lisu_CA),傈僳族无龋组(Lisu_CF),汉族高龋组(Han_CA),汉族无龋组(Han_CF),每组各20例。该研究获得昆明医科大学医学道德伦理委员会批准。
1.2 样本采集
向学校及家长说明研究目的及过程,学校及家长均知情同意。唾液采集时间为上午9时左右,采集前,先让受试者用20 mL生理盐水漱口1 min,自然口含唾液数分钟后,由同一名操作者将1支进行了编码的5 mL灭菌离心管置于受检者下唇黏膜处,收集非刺激性唾液。唾液收集1~3 mL后,向离心管滴入250 µL无菌石蜡油以隔绝空气,并在2 h内保存在-80 ℃冰箱中。
1.3 细菌基因组DNA的提取及质量控制
室温下解冻样本,7500 r/min离心10 min,去净上清液,收集沉淀用于DNA提取。使用QIAamp DNA Mini Kit(Qiagen,Hilden,GER)试剂盒,提取细菌基因组DNA。使用分光光度仪检测基因组DNA的纯度、浓度。检测合格的DNA进行后续测序实验。
1.4 PCR扩增16SrRNA基因V4区
细菌使用16SrRNA基因通用引物515F(5′ —TCTACACTCTTTCCCTACACGACGCTCTTCCGATCTGTGYCAGCMGCCGCGGTA—3′ )和806R(5′ —GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGACTACNVGGGTWTCTAAT—3′ ) 进行V4区目的基因扩增。PCR产物扩增用illumina Hiseq测序平台单端测序分析,由重庆市肿瘤医院完成。
1.5 数据分析
1.5.1 质量控制
使用Qiime进行序列过滤,在Mothur中调用uchime去除嵌合体,最终获得用于分析的优质序列。
1.5.2 群落结构分析
对所有样本的优质序列按97%的相似度进行OTU聚类,采用RDP-classifier对OTU代表序列进行注释,得到并统计每个OTU的分类学信息及每个样本包含的OTU信息。(1)绘制稀释曲线,评估样本量是否充足,测序深度是否合理;(2)使用Mothur计算α多样性指数:Chao、ACE、Simpson和Shannon指数。Chao指数和ACE指数用于估计物种丰度,Chao指数在生态学中常用来估计物种总数,Ace指数是用来估计群落中OTU数目的指数,Simpson指数、Shannon指数用于计算菌群多样性,Simpson指数值越大,说明群落多样性越低;Shannon指数越大,说明群落多样性越高;(3)Qiime进行主成分分析(principal co-ordinates analysis,PCoA),一个点代表一个样本,两点间距离越近,说明样本间相似度越高,微生物群落差异越小;(4)使用Wilcox秩和检验(Wilcoxon rank-sum test)对2组样本的物种进行显著性差异分析,并对P值进行多种方法的校正;(5)使用PICRUSt对OTU丰度表进行标准化,再根据COG数据库的信息从eggNOG数据库中解析得到功能丰度谱。
1.6 统计学处理
采用SPSS 24.0软件进行统计分析,采用χ2检验比较各物种检出率,使用秩和检验比较组间样本在不同分类水平上的含量,显著性水平设为0.05。
2. 结果
2.1 高通量测序基本分析
通过Illumina HiSeq测序平台对傈僳族、汉族儿童口腔唾液样本进行生物多样性检测,共计获得27195786条测序Reads,平均读长252 bp。随着样本测序深度的增加,稀释曲线趋向平坦,可观察物种数目变化不大,表明测序覆盖良好,数据有效(图1)。按照 97%的相似性对各样本优质序列进行OUT聚类,共得到3965个OTUs,傈僳族2113个OTU,汉族2777个OTU,归属于16个门,23个纲,57个目,102个科,202个属。
2.2 Alpha多样性分析
由图2可见:4个组ACE指数和Chao指数均较大,表明群落丰富度高,Shannon指数大,Simpson指数小,表明群落多样性较高,但差异均无统计学意义(P > 0.05)。
2.3 PCoA分析(主成分分析)
用PCoA评价4组间细菌群落结构的相似性。4组样本间距离较近,有龋组与无龋组菌群结构差异无统计学意义(P > 0.05),傈僳族组与汉族组间差异无统计学意义( P > 0.05),见 图3。
2.4 群落物种组成情况
通过silva132/16s_bacteria数据库进行相似性比对和物种注释,在门、属分类水平下对各样本物种丰度进行统计,分析表明傈僳族和汉族的高龋、无龋组优势菌门一致,分别是厚壁菌门(Firmicutes),拟杆菌门(Bacteroidetes),变形菌门(Proteobacteria),放线菌门(Actinobacteria),梭杆菌门(Fusobacteria),见图4。在属水平上,4组中含量大于1%的菌属一致,为以下15种:链球菌属(Streptococcus)、普氏菌属7(Prevotella_7)、罗氏菌属(Rothia)、奈瑟菌属 (Neisseria)、嗜血杆菌(Haemophilus)、牙龈卟啉菌属(Porphyromonas)、孪生菌属(Gemella)、韦永氏球菌属(Veillonella)、颗粒链菌属 (Granulicatella)、大肠志贺氏杆菌属(Escherichia-Shigella)、普氏菌属(Prevotella)、放线菌属(Actinomyces)、纤毛菌属 (Leptotrichia)、梭杆菌属 (Fusobacterium)、拟普雷沃菌属(Alloprevotella),见图5。
2.5 优势菌群比较分析
在检出率 > 1%的菌属中,傈僳族CA组的优势菌属为 Streptococcus,傈僳族CF组中Haemophilus、Escherichia-Shigella、Fusobacterium含量显著高于傈僳族CA组(P < 0.05),见 图6。在汉族组中,CA组和CF组间各菌属无显著差异。在高龋组中,傈僳族Gemella丰度显著高于汉族(P < 0.05), Escherichia-Shigella丰度显著低于汉族(P < 0.05),见 图7。
2.6 PICRUSt功能预测分析
4组样本的COG功能分类柱状图显示其微生物功能特征相似(图8)。其功能丰度由高到低分别是J翻译、核糖体结构和生物起源(8.95%);R一般功能预测(8.77%);E氨基酸运输和代谢(7.75%);L复制、重组和修复(7.7%);M细胞膜/细胞壁/胞外被膜的生物起源(7.33%);G碳水化合物运输和代谢(6.97%);P无机离子运输和代谢(5.85%);K转录(5.67%);C能量生产和转换(5.02%);O翻译后修饰、蛋白质转换、分子伴侣(4.3%);F核苷酸运输和代谢(4.0%);H辅酶运输和代谢(3.85%)。
3. 讨论
龋病影响全球各年龄段人群的最常见的多因素慢性疾病之一,据报道,全球有24亿人患龋,其中6.21亿是儿童[9]。严重的龋病不仅会影响患儿的生活质量,还会给家庭带来沉重的经济负担。龋病的预防策略是建立在对其病因的全面了解和有效控制危险因素的基础之上。下一代测序技术已成为人们了解口腔微生物组健康和疾病状态的有效工具[10-11],其以16srRNA基因的一个或多个区域为目标描述微生物群落,这些区域的高变性可以作为样本中细菌类群的良好标记。近年来,该方法被用于一系列探究龋病微生物群落的研究[12],从而更好地了解与龋病相关的微生物因素。唾液样本易于获取,可充分代表口腔中不同位点的微生物群落信息[13-14],被广泛运用于口腔微生态研究[15-16]。
饮食、水源、居住条件等环境因素的差异可直接或间接影响口腔微生物群落,此外,不同的宿主遗传背景对口腔微环境也有影响[17-18]。本研究选取同一地区傈僳族儿童及当地汉族儿童作为对照,对于研究口腔微生物对龋病的影响更有价值。傈僳族为云南15个特有少数民族之一,多聚居于云南西北部偏远地区,交通尚不发达,经济水平相对落后,饮食以玉米、荞麦为主。以往对云南少数民族儿童的研究主要集中于患龋状况及龋风险因素的调查,而其龋病唾液微生物群落结构却未有报道,本研究可为云南少数民族儿童口腔微生物多样性及群落结构的研究提供良好的数据信息。
本实验中各样本克隆文库的覆盖率达99%,稀释曲线后段趋于平坦,说明本研究建立的克隆文库库容良好,可代表样本的真实情况; 所有样本ACE指数和Chao指数均大于500,Simpson指数小于0.15,Shannon指数大于3,说明所有样本的微生物群落丰富度和多样性均较好。主坐标分析表明4组样本距离较近,各组样本间菌群结构相似。这一发现与之前的一些研究结果一致[19-20]。也有其他研究表明,健康对照组显示出比患龋者更高的微生物多样性,这表明更多样化的群落可能对应于更健康的生态系统[21-22]。因此,这一结论仍然存在争议。样本量、测序方法、个体差异和其他一些因素都会影响结果。
在门水平上,本实验的菌门分别为厚壁菌门(Firmicutes),拟杆菌门(Bacteroidetes),变形菌门(Proteobacteria),放线菌门(Actinobacteria),梭杆菌门(Fusobacteria),这与Jiang S[20]对有龋和无龋儿童唾液微生物研究中的发现一致,说明口腔中的细菌群落结构相对稳定,有龋及无龋并不会显著影响微生物的群落结构。在属水平上,4个组中含量超过1%的菌属一致,但相对丰度不同。这些结果支持“生态菌斑假说”,该假说认为龋病是常驻微生物动态平衡被破坏的结果,而不是特定微生物活动的结果[23-24]。有龋及无龋儿童的唾液及牙菌斑微生物研究在属水平上也发现了类似的菌群分布[20]。
链球菌属是自然界中分布较广,种类较复杂的一类革兰阳性球菌。在本研究所检测到的微生物中,链球菌属在4组样本中所占比例均最大,远大于其它各属所占的比例。其在傈僳族CA组中丰度显著较CF组多,提示链球菌属在龋病发生发展中确实起到促进作用[25],可作为儿童唾液菌群中龋病的潜在生物标志物。同时,傈僳族CF组中Haemophilus、Fusobacterium丰度显著高于CA组,这与Chen W等[26]的研究一致,这些物种可能对致龋菌起到拮抗作用。Gemella在傈僳族样本中整体丰度较高,在过去的研究中其在健康个体、患病个体中均有检出[27-28],因其包含9个物种,而二代高通量测序技术只能将物种精确注释到属水平,故Gemella在傈僳族儿童口腔微环境中的作用有待进一步研究。Escherichia-Shigella多在人类肠道中分布,已被证明是人类细菌性痢疾的致病菌[29],但其在口腔微环境中的作用尚不清楚,而它在人类口腔样本中的高丰度分布及在高龋、无龋样本中的显著差异表明其作为口腔优势菌属作用不容忽视。
使用PICRUSt程序基于COG数据库进行功能预测。4个组均表现出相似的微生物功能特征,可能受到广泛分布的核心微生物群的影响。通过比较功能分类的相对丰度,笔者发现代谢功能在样本中富集,表明口腔细菌群落中的微生物代谢活跃。
综上所述,本研究初步揭示了云南傈僳族、汉族高龋及无龋儿童口腔微生物的多样性、丰度和组成差异不大。但2个民族不同患龋状态儿童有特异性菌属。造成差异的原因需要进一步研究。
-
[1] Rinella M E,Neuschwander-Tetri B A,Siddiqui M S,et al. AASLD practice guidance on the clinical assessment and management of nonalcoholic fatty liver disease[J]. Hepatology,2023,77(5):1797-1835. doi: 10.1097/HEP.0000000000000323 [2] Cotter T G,Rinella M. Nonalcoholic fatty liver disease 2020: The state of the disease[J]. Gastroenterology,2020,158(7):1851-1864. doi: 10.1053/j.gastro.2020.01.052 [3] Powell E E,Wong V W,Rinella M. Non-alcoholic fatty liver disease[J]. Lancet,2021,397(10290):2212-2224. doi: 10.1016/S0140-6736(20)32511-3 [4] Younossi Z M,Golabi P,Paik J M,et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review[J]. Hepatology,2023,77(4):1335-1347. doi: 10.1097/HEP.0000000000000004 [5] Riazi K,Azhari H,Charette J H,et al. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol,2022,7(9):851-861. doi: 10.1016/S2468-1253(22)00165-0 [6] Li J,Zou B,Yeo Y H,et al. Prevalence,incidence,and outcome of non-alcoholic fatty liver disease in Asia,1999–2019: A systematic review and meta-analysis[J]. The Lancet Gastroenterology & Hepatology,2019,4(5):389-398. [7] Saliminejad K,Khorram Khorshid H R,Soleymani Fard S,et al. An overview of microRNAs: Biology,functions,therapeutics,and analysis methods[J]. J Cell Physiol,2019,234(5):5451-5465. doi: 10.1002/jcp.27486 [8] Shi Y,Liu Z,Lin Q,et al. MiRNAs and cancer: Key link in diagnosis and therapy[J]. Genes (Basel),2021,12(8):1289-1302. doi: 10.3390/genes12081289 [9] Feng Y,Li J,Zhang Y. Chemical knockdown of microRNA with small-molecule chimeras[J]. Chembiochem,2020,21(22):3180-3185. doi: 10.1002/cbic.202000287 [10] Chen P S,Lin S C,Tsai S J. Complexity in regulating microRNA biogenesis in cancer[J]. Exp Biol Med (Maywood),2020,245(5):395-401. doi: 10.1177/1535370220907314 [11] Hill M,Tran N. miRNA interplay: Mechanisms and consequences in cancer[J]. Dis Model Mech,2021,14(4):1-4. doi: 10.1242/dmm.047662 [12] Bartel D P. Metazoan microRNAs[J]. Cell,2018,173(1):20-51. doi: 10.1016/j.cell.2018.03.006 [13] Jie M,Feng T,Huang W,et al. Subcellular localization of miRNAs and implications in cellular homeostasis[J]. Genes (Basel),2021,12(6):856. doi: 10.3390/genes12060856 [14] Arguello G,Balboa E,Arrese M,et al. Recent insights on the role of cholesterol in non-alcoholic fatty liver disease[J]. Biochim Biophys Acta,2015,1852(9):1765-1778. doi: 10.1016/j.bbadis.2015.05.015 [15] Pang L,Liu K,Liu D,et al. Differential effects of reticulophagy and mitophagy on nonalcoholic fatty liver disease[J]. Cell Death Dis,2018,9(2):90. doi: 10.1038/s41419-017-0136-y [16] Teratani T, Tomita K, Suzuki T, et al. A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells[J]. Gastroenterology, 2012, 142(1): 152-164 e10 [17] Pirola C J,Fernandez Gianotti T,Castano G O,et al. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis[J]. Gut,2015,64(5):800-812. doi: 10.1136/gutjnl-2014-306996 [18] Laudadio I,Manfroid I,Achouri Y,et al. A feedback loop between the liver-enriched transcription factor network and miR-122 controls hepatocyte differentiation[J]. Gastroenterology,2012,142(1):119-129. doi: 10.1053/j.gastro.2011.09.001 [19] Becker P P,Rau M,Schmitt J,et al. Performance of serum microRNAs -122,-192 and -21 as biomarkers in Patients with non-alcoholic steatohepatitis[J]. PLoS One,2015,10(11):e0142661. doi: 10.1371/journal.pone.0142661 [20] Esau C,Davis S,Murray S F,et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting[J]. Cell Metab,2006,3(2):87-98. doi: 10.1016/j.cmet.2006.01.005 [21] Krutzfeldt J,Rajewsky N,Braich R,et al. Silencing of microRNAs in vivo with 'antagomirs'[J]. Nature,2005,438(7068):685-689. doi: 10.1038/nature04303 [22] Vega-Badillo J,Gutierrez-Vidal R,Hernandez-Perez H A,et al. Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects[J]. Liver Int,2016,36(9):1383-1391. doi: 10.1111/liv.13109 [23] Wu H,Ng R,Chen X,et al. MicroRNA-21 is a potential link between non-alcoholic fatty liver disease and hepatocellular carcinoma via modulation of the HBP1-p53-Srebp1c pathway[J]. Gut,2016,65(11):1850-1860. doi: 10.1136/gutjnl-2014-308430 [24] Rodrigues P M,Afonso M B,Simao A L,et al. miR-21 ablation and obeticholic acid ameliorate nonalcoholic steatohepatitis in mice[J]. Cell Death Dis,2017,8(4):e2748. doi: 10.1038/cddis.2017.172 [25] Sun C,Huang F,Liu X,et al. miR-21 regulates triglyceride and cholesterol metabolism in non-alcoholic fatty liver disease by targeting HMGCR[J]. International Journal of Molecular Medicine,2015,35(3):847-853. doi: 10.3892/ijmm.2015.2076 [26] Ahn J,Lee H,Jung C H,et al. Lycopene inhibits hepatic steatosis via microRNA-21-induced downregulation of fatty acid-binding protein 7 in mice fed a high-fat diet[J]. Mol Nutr Food Res,2012,56(11):1665-74. doi: 10.1002/mnfr.201200182 [27] Yang Y,Guo J X,Shao Z Q. miR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: An experimental study[J]. Asian Pac J Trop Med,2017,10(1):87-91. doi: 10.1016/j.apjtm.2016.09.011 [28] Lin Y,Ding D,Huang Q,et al. Downregulation of miR-192 causes hepatic steatosis and lipid accumulation by inducing SREBF1: Novel mechanism for bisphenol A-triggered non-alcoholic fatty liver disease[J]. Biochim Biophys Acta Mol Cell Biol Lipids,2017,1862(9):869-882. [29] Borji M,Nourbakhsh M,Shafiee S M,et al. Down-regulation of SIRT1 expression by mir-23b contributes to lipid accumulation in HepG2 cells[J]. Biochem Genet,2019,57(4):507-521. doi: 10.1007/s10528-019-09905-5 [30] Ali O,Darwish H A,Eldeib K M,et al. miR-26a Potentially contributes to the regulation of fatty acid and sterol metabolism in vitro human hepG2 cell model of nonalcoholic fatty liver disease[J]. Oxid Med Cell Longev,2018,2018(1):8515343. [31] Xu Y,Zalzala M,Xu J,et al. A metabolic stress-inducible miR-34a-HNF4alpha pathway regulates lipid and lipoprotein metabolism[J]. Nat Commun,2015,6(1):7466. doi: 10.1038/ncomms8466 [32] Jia N,Lin X,Ma S,et al. Amelioration of hepatic steatosis is associated with modulation of gut microbiota and suppression of hepatic miR-34a in gynostemma pentaphylla (Thunb. ) makino treated mice[J]. Nutr Metab (Lond),2018,15(1):86. doi: 10.1186/s12986-018-0323-6 [33] Zeng N,Huang R,Li N,et al. MiR-451a attenuates free fatty acids-mediated hepatocyte steatosis by targeting the thyroid hormone responsive spot 14 gene[J]. Mol Cell Endocrinol,2018,474(1):260-271. [34] Zhang T,Zhao X,Steer C J,et al. A negative feedback loop between microRNA-378 and Nrf1 promotes the development of hepatosteatosis in mice treated with a high fat diet[J]. Metabolism,2018,85(1):183-191. [35] Lei L,Zhou C,Yang X,et al. Down-regulation of microRNA-375 regulates adipokines and inhibits inflammatory cytokines by targeting AdipoR2 in non-alcoholic fatty liver disease[J]. Clin Exp Pharmacol Physiol,2018,45(8):819-831. doi: 10.1111/1440-1681.12940 [36] Guo J,Dou L,Meng X,et al. Hepatic miR-291b-3p mediated glucose metabolism by directly targeting p65 to upregulate PTEN expression[J]. Sci Rep,2017,7(1):39899. doi: 10.1038/srep39899 [37] Xu L,Li Y,Yin L,et al. miR-125a-5p ameliorates hepatic glycolipid metabolism disorder in type 2 diabetes mellitus through targeting of STAT3[J]. Theranostics,2018,8(20):5593-5609. doi: 10.7150/thno.27425 [38] Jordan S D,Kruger M,Willmes D M,et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism[J]. Nat Cell Biol,2011,13(4):434-446. doi: 10.1038/ncb2211 [39] Yang W M,Min K H,Lee W. Induction of miR-96 by dietary saturated fatty acids exacerbates hepatic insulin resistance through the suppression of INSR and IRS-1[J]. PLoS One,2016,11(12):e0169039. doi: 10.1371/journal.pone.0169039 [40] Jampoka K,Muangpaisarn P,Khongnomnan K,et al. Serum miR-29a and miR-122 as potential biomarkers for non-alcoholic fatty liver disease (NAFLD)[J]. Microrna,2018,7(3):215-222. doi: 10.2174/2211536607666180531093302 [41] Ramirez C M,Goedeke L,Rotllan N,et al. MicroRNA 33 regulates glucose metabolism[J]. Mol Cell Biol,2013,33(15):2891-2902. doi: 10.1128/MCB.00016-13 [42] Garcia-Jacobo R E,Uresti-Rivera E E,Portales-Perez D P,et al. Circulating miR-146a,miR-34a and miR-375 in type 2 diabetes patients,pre-diabetic and normal-glycaemic individuals in relation to beta-cell function,insulin resistance and metabolic parameters[J]. Clin Exp Pharmacol Physiol,2019,46(12):1092-1100. doi: 10.1111/1440-1681.13147 [43] Zhou M,Hou Y,Wu J,et al. miR-93-5p promotes insulin resistance to regulate type 2 diabetes progression in HepG2 cells by targeting HGF[J]. Mol Med Rep,2021,23(5):329. doi: 10.3892/mmr.2021.11968 [44] Santos D,Porter-Gill P,Goode G,et al. Circulating microRNA levels differ in the early stages of insulin resistance in prepubertal children with obesity[J]. Life Sci,2023,312(1):121246. [45] Dai L L,Li S D,Ma Y C,et al. MicroRNA-30b regulates insulin sensitivity by targeting SERCA2b in non-alcoholic fatty liver disease[J]. Liver Int,2019,39(8):1504-1513. doi: 10.1111/liv.14067 [46] Zhang C,Wang P,Li Y,et al. Role of microRNAs in the development of hepatocellular carcinoma in nonalcoholic fatty liver disease[J]. Anat Rec (Hoboken),2019,302(2):193-200. doi: 10.1002/ar.23954 [47] Torres J L,Novo-Veleiro I,Manzanedo L,et al. Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease[J]. World J Gastroenterol,2018,24(36):4104-4118. doi: 10.3748/wjg.v24.i36.4104 [48] Wang X, He Y, Mackowiak B, et al. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases[J]. Gut, 2021, 70(4): 784-795 [49] Zhang Z, Moon R, Thorne J L, et al. NAFLD and vitamin D: Evidence for intersection of microRNA-regulated pathways[J]. Nutr Res Rev, 2021,36(1): 1-20 [50] Serino M. Molecular paths linking metabolic diseases,gut microbiota dysbiosis and enterobacteria infections[J]. J Mol Biol,2018,430(5):581-590. doi: 10.1016/j.jmb.2018.01.010 [51] Gjorgjieva M,Sobolewski C,Dolicka D,et al. miRNAs and NAFLD: From pathophysiology to therapy[J]. Gut,2019,68(11):2065-2079. doi: 10.1136/gutjnl-2018-318146 [52] Xin S,Zhan Q,Chen X,et al. Efficacy of serum miRNA test as a non-invasive method to diagnose nonalcoholic steatohepatitis: A systematic review and meta-analysis[J]. BMC Gastroenterol,2020,20(1):186. doi: 10.1186/s12876-020-01334-8 [53] Jonas W,Schurmann A. Genetic and epigenetic factors determining NAFLD risk[J]. Mol Metab,2021,50(1):101111. [54] Kiran S,Kumar V,Kumar S,et al. Adipocyte,immune cells,and miRNA crosstalk: A novel regulator of metabolic dysfunction and obesity[J]. Cells,2021,10(5):1004. doi: 10.3390/cells10051004 [55] Shen Y,Cheng L,Xu M,et al. SGLT2 inhibitor empagliflozin downregulates miRNA-34a-5p and targets GREM2 to inactivate hepatic stellate cells and ameliorate non-alcoholic fatty liver disease-associated fibrosis[J]. Metabolism,2023,146(1):155657. [56] Kan Changez M I, Mubeen M, Zehra M, et al. Role of microRNA in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH): A comprehensive review[J]. J Int Med Res, 2023, 51(9): 3000605231197058. 期刊类型引用(2)
1. 季娟娟,刘亚丽,周治,许艳华,朱亚玲,王睿. 数字化技术对上颌唇向低位尖牙矫治的干预. 昆明医科大学学报. 2023(09): 75-79 . 本站查看
2. 苗喜顺,王芳芳,霍静利,孙小艳,王在智. 固定正畸患者首次治疗后24h正畸疼痛评分与咬合功能相关性分析. 临床研究. 2020(04): 86-88 . 百度学术
其他类型引用(2)
-

计量
- 文章访问数: 1362
- HTML全文浏览量: 782
- PDF下载量: 68
- 被引次数: 4