Investigation and Analysis of Vitamin K Level Distribution in 1177 Infants of Different Age Groups
-
摘要:
目的 探讨对比各年龄段婴儿血清维生素K1与K2水平,了解维生素K1与K2在不同年龄段婴儿体内的分布情况。 方法 选取课题单位(儿科、新生儿科、儿童保健科、产科)出生/就诊的儿童作为研究对象,按年龄为0~3 d(591例)、4~7 d(255例)、8~15 d(104例)、1个月(118例)、2个月(40例)、3个月(69例)进行分组。收集患者的一般资料,采用统一平台的高效液相色谱-质谱(LC-MS)法测定患者血清维生素K1与K2水平,从维生素K1与K2不同年龄段的水平分布,缺乏率进行数据分析。 结果 各年龄段的维生素K1与K2水平分布具有统计学意义(P <0.001);新生儿极易缺乏维生素K1,随着年龄增长,维生素K2的缺乏率高于维生素K1。 结论 维持维生素K1及K2的正常对于各年龄段婴幼儿的正常生长发育至关重要,应当密切关注婴幼儿维生素K1及K2的监测和补充。 Abstract:Objective T o investigate the distributions of vitamin K1 and K2 in infants of different age groups by comparing the serum levels of vitamin K1 and K2 in them. Methods 1177 infants from 0 to 3 months were divided into 6 age groups. Those born/treated in the subject units(pediatrics, neonatology, child health care, obstetrics) were selected as the study subjects and grouped by age: 0~3 days(591 cases), 4~7 days(255 cases), 8~5 days(104 cases), 1 month(118 cases), 2 months(40 cases), and 3 months(69 cases). General data of the infants were collected, and the serum vitamin K1 and K2 levels were determined by HPLC-mass spectrometry(LC-MS) on a unified platform, and analyzed from the distribution of vitamin K1 and K2 at different ages. Results The distributions of vitamin K1 and K2 levels were statistically significant(P <0.001); newborns were highly vulnerable to vitamin K1 deficiency, and vitamin K2 deficiency was higher than vitamin K1 with age. Conclusion Maintaining the normal growth of vitamin K1 and K2 is crucial for the normal growth and development of infants of all ages, so we should pay close attention to the monitoring and supplement of vitamin K1 and K2. -
Key words:
- Vitamin K1 /
- Vitamin K2 /
- Horizontal distribution
-
表 1 不同年龄段婴儿维生素K1与K2的分布及在3个月内婴儿体内的浓度
Table 1. Comparative distribution of vitamin K1 and K2 detection in infants across different age groups and testing the hypothesis of the concentration distribution of vitamin K1 and K2 in infants within three months
分组 n 0~3 d 4~7 d 8~15 d 1个月 2个月 3个月 χ2 P 维生素K1 1177 591 255 104 118 40 69 84.345 <0.001* 维生素K2 1177 591 255 104 118 40 69 58.474 <0.001* *P<0.05。 表 2 婴儿不同年龄段维生素K1与K2水平例数分布n(%)
Table 2. Distribution of vitamin K1 and K2 levels in infants across different age groups n(%)
分组(n) 维生素K1(ng/mL) 维生素K2(ng/mL) <0.1 0.1~2.2 >2.2 <0.1 0.1~0.86 >0.86 0~3 d(591) 123(20.8) 188(31.8) 280(47.4) 182(30.8) 375(63.5) 34(5.7) 4~7 d(255) 0(0) 100(44.4) 155(55.6) 76(33.8) 177(69.4) 2(0.8) 8~15 d(104) 2(1.9) 36(34.6) 66(63.5) 42(40.4) 61(58.7) 1(0.9) 16~30 d(118) 3(2.5) 65(55.1) 50(42.4) 56(47.5) 60(50.8) 2(1.7) 31~60 d(40) 11(27.5) 22(55.0) 7(17.5) 29(72.5) 11(27.5) 0(0) 61~90 d(69) 26(37.7) 34(49.3) 9(13.0) 42(60.9) 26(37.7) 1(1.4) -
[1] Zurynski Y,Grover CJ,Jalaludin B,et al. Vitamin K deficiency bleeding in Australian infants 1993-2017: An Australian paediatric surveillance unit study[J]. Arch Dis Child,2020,105(5):433-438. doi: 10.1136/archdischild-2018-316424 [2] 刘黎明,史晓薇,帖利军,等. 维生素K与儿童健康关系的研究[J]. 中国妇幼保健研究,2019,30(9):1039-1047. [3] 董润锜. 维生素 K2 的生物学效应及临床意义的研究进展[J]. 河南医学研究,2021,30(18):3451-3454. [4] 完颜泽伟. 维生素K缺乏与儿童骨代谢异常相关性研究[D]. 合肥: 安徽医科大学硕士学位论文, 2021. [5] 杨婷婷. 矮小症患儿维生素K2水平与骨代谢之间关系的研究[J]. 检验医学与临床,2022,19(17):2393-2397. [6] 陈淑玲,赵瑾珠,郝燕. 维生素 K与儿童骨健康的研究进展[J]. 中国儿童保健杂志,2021,29(7):742-745. [7] 方瑞斌,雷泽,刘忠厚. 维生素K2与骨健康[J]. 中国骨质疏松杂志,2013,19(2):191-198. [8] 张曙冬,凌昱,王黎. 血清维生素水平与营养性矮小症患儿生长发育指标的相关性研究[J]. 临床和实验医学杂志,2021,20(21):2328-2331. [9] 中国抗癌协会肿瘤营养专业委员会. 注射用多种维生素(13)临床应用专家共识[J]. 肿瘤代谢与营养电子杂志,2022,9(5):581-593. [10] 尚颖,宋淑军,司少艳. 维生素K抗肿瘤作用的研究进展[J]. 癌症进展,2022,20(12):1200-1204. [11] Shetty A,Dasari S,Banerjee S,et al. Hepatoma-derived growth factor: A survival-related protein in prostate oncogenesis and a potential target for vitamin K2[J]. Urol Oncol,2016,34(11):483.e1-483.e8. doi: 10.1016/j.urolonc.2016.05.027 [12] Karasawa S,Azuma M,Kasama T,et al. Vitamin K2 covalently binds to Bak and induces Bak-mediated apoptosis[J]. Mol Pharmacol,2013,83(3):613-620. doi: 10.1124/mol.112.082602 [13] Fredericks W J,McGarvey T,Wang H,et al. The TERE1 protein interacts with mitochondrial TBL2: Regulation of trans-membrane potential,ROS/RNS and SXR target genes[J]. J Cell Biochem,2013,114(9):70-87. [14] 郭安然,刘秀香. 维生素K对2型糖尿病作用机制的研究进展[J]. 中国医药导报,2022,19(16):34-37. [15] Li Y H,Lu C H,Lin F H,et al. Plasma growth arrest-specific 6 protein and genetic variations in the GAS6 genein patients with metabolic syndrome[J]. Metab Syndr Relat Disord,2019,17(1):22-28. doi: 10.1089/met.2017.0143 [16] 范梅琳. 血清Gas6水平与2型糖尿病的相关型研究[J]. 健康必读,2021,34(6):37. [17] Lee CH,Chu NF,Shieh YS,et al. The growth arrest-specific 6 (Gas6) gene polymorphism c. 834+7G>A is associated with type 2 diabetes[J]. Diabetes Res Clin Pract,2012,95(2):2-6. [18] Ferland G. The discovery of vitamin K and its clinical applications[J]. Ann Nutr Metab,2012,61(3):213-218. doi: 10.1159/000343108 [19] Ferland G. Vitamin K and the nervous system: An overview of its actions[J]. Adv Nutr,2012,3(2):204-212. doi: 10.3945/an.111.001784 [20] Ferland G. Vitamin K,an emerging nutrient in brain function[J]. Biofactors,2012,38(2):151-170. doi: 10.1002/biof.1004 [21] Klingenberg C,Wheeler KI,McCallion N,et al. Volume-targeted versus pressure-limited ventilation in neonates[J]. Cochrane Database of Systematic Reviews,2017,10(10):CD003666. [22] Gottimukkala SB,Lobo L,Gautham KS,et al. Intermittent phototherapy versus continuous phototherapy for neonatal jaundice[J]. Cochrane Database of Systematic Reviews,2023,3(3):CD008168.