Research Progress of Artificial Intelligence in the Diagnosis and Treatment of Anorectal Diseases
-
摘要: 过去20 a,人工智能的发展突飞猛进,其越来越多地应用于医学领域,包括医学影像辅助诊疗、健康管理、疾病风险预测等。本文基于深度学习的人工智能辅助检测和诊断系统在肛肠疾病方面的应用现状,总结当前国内外人工智能技术在肛肠疾病诊治方面相关的新方法。主要综述人工智能技术在肛瘘,肛周脓肿,痔疮等肛肠疾病诊治中的研究进展。Abstract: In the past 20 years, the development of artificial intelligence has made rapid progress, and it is increasingly applied in the medical field, including medical image-assisted diagnosis and treatment, health management, disease risk prediction and so on. In this paper, the application status of artificial intelligence-assisted detection and diagnosis system based on deep learning in anorectal diseases is summarized, and the new methods related to the diagnosis and treatment of anorectal diseases at home and abroad are summarized. It mainly reviews the research progress of artificial intelligence technology in the diagnosis and treatment of anal fistula, perianal abscess, hemorrhoids and other anorectal diseases.
-
Key words:
- Anorectal diseases /
- Artificial intelligence /
- Deep learning /
- Research progress
-
[1] 刘访,苏丹,林宏城,等. 任东林教授中西医结合防治肛肠疾病的学术理念及其临床经验撷菁[J]. 结直肠肛门外科,2023,29(2):151-157. [2] 程议乐,武永连,李万里,等. 国内肛肠疾病流行病学调查研究进展[J]. 中国肛肠病杂志,2022,42(6):74-76. [3] 覃金玲,王业皇,谭静玲,等. 华东地区肛肠疾病流行病学相关因素分析[J]. 中国肛肠病杂志,2016,36(2):25-28. [4] Navkar N V,Balakrishnan S,Kharbech S,et al. 3D visualization of perianal fistulas using parametric models[J]. Tech Coloproctol,2022,26(4):291-300. doi: 10.1007/s10151-022-02573-5 [5] Nakata N. Recent technical development of artificial intelligence for diagnostic medical imaging[J]. Jpn J Radiol,2019,37(2):103-108. doi: 10.1007/s11604-018-0804-6 [6] Nakaura T,Higaki T,Awai K,et al. A primer for understanding radiology articles about machine learning and deep learning[J]. Diagn Interv Imaging,2020,101(12):765-770. doi: 10.1016/j.diii.2020.10.001 [7] De Reyni è s A,Assi é G,Rickman D S,et al. Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival[J]. J Clin Oncol,2009,27(7):1108-1115. doi: 10.1200/JCO.2008.18.5678 [8] Egger J,Gsaxner C,Pepe A,et al. Medical deep learning-A systematic meta-review[J]. Comput Methods Programs Biomed,2022,221:106874. doi: 10.1016/j.cmpb.2022.106874 [9] Kim T M,Choi S J,Ko J Y,et al. Fully automatic volume measurement of the adrenal gland on CT using deep learning to classify adrenal hyperplasia[J]. Eur Radiol,2023,33(6):4292-4302. [10] Robinson-Weiss C,Patel J,Bizzo B C,et al. Machine Learning for Adrenal Gland Segmentation and Classification of Normal and Adrenal Masses at CT[J]. Radiology,2023,306(2):e220101. doi: 10.1148/radiol.220101 [11] 李昕,郑丽华. 肛瘘常用手术方式[J]. 中国临床医生杂志,2023,51(1):3-6. [12] Charalampopoulos A,Papakonstantinou D,Bagias G,et al. Surgery of simple and complex anal fistulae in adults: A review of the literature for optimal surgical outcomes[J]. Cureus,2023,15(3):e35888. [13] Gao H,Cheng X,Gao L,et al. Time-scheduled dotted and solid thread-ligating therapy combined with vacuum sealing drainage for treating high complex anal fistula[J]. Am J Transl Res,2021,13(10):11737-11744. [14] 王淙锦,杨雅兰,庄华,等. 克罗恩病相关性肛瘘和普通性肛瘘间的超声影像学特征比较[J]. 西部医学,2022,34(03):458-463. [15] Zhou Z. Pay attention to the imaging diagnosis of complex anal fistula[J]. Zhonghua Wei Chang Wai Ke Za Zhi,2015,18(12):1193-1196. [16] Han L,Chen Y,Cheng W,et al. Deep learning-based CT image characteristics and postoperative anal function restoration for patients with complex anal fistula[J]. J Healthc Eng,2021,2021:1730158. [17] Iqbal N,Sackitey C,Gupta A,et al. The development of a minimum dataset for MRI reporting of anorectal fistula: a multi-disciplinary,expert consensus process[J]. European Radiology,2022,32(12):8306-8316. doi: 10.1007/s00330-022-08931-z [18] 袁军,陈欣悦,常时新,等. 基于T1增强成像的人工智能算法在肛瘘内口诊断中的可行性研究[J]. 安徽医药,2023,27(3):447-452. [19] Parian A M,Obi M,Fleshner P,et al. Management of perianal Crohn's disease[J]. Am J Gastroenterol,2023,118(8):1323-1331. doi: 10.14309/ajg.0000000000002326 [20] Song E M,Lee H S,Kim Y J,et al. Incidence and outcomes of perianal disease in an asian population with Crohn's disease: A nationwide population-based study[J]. Dig Dis Sci,2020,65(4):1189-1196. doi: 10.1007/s10620-019-05819-9 [21] Jeri-McFarlane S,Garc í a-Granero Á,Gil-Catalan A,et al. Surgical strategy for supralevator abscess in Perianal Crohn’s disease: emergency surgery and residual complex fistula[J]. Tech Coloproctol,2021,25(10):1163-1164. doi: 10.1007/s10151-021-02460-5 [22] Lee J L,Yoon Y S and Yu C S. Treatment strategy for perianal fistulas in Crohn disease patients: The surgeon's point of view[J]. Ann Coloproctol,2021,37(1):5-15. doi: 10.3393/ac.2021.02.08 [23] Sudoł-Szopi ń ska I,Santoro G A,Kołodziejczak M,et al. Magnetic resonance imaging template to standardize reporting of anal fistulas[J]. Tech Coloproctol,2021,25(3):333-337. doi: 10.1007/s10151-020-02384-6 [24] Jeri-McFarlane S,Garcia-Granero A,Ochogavia-Segui A,et al. Three-dimensional modelling as a novel interactive tool for preoperative planning for complex perianal fistulas in Crohn's disease[J]. Colorectal Dis,2023,25(6):1279-1284. doi: 10.1111/codi.16539 [25] 李兰兰, 邓珂, 张恒, 等 基于深度卷积神经网络的克罗恩病肛瘘磁共振成像诊断模型初探[J]. 中华炎性肠病杂志, 2023, 7(2): 144-150. [26] Azmi F P,Rahman N A A,Mazlan L,et al. A Case of Large Perianal Mucinous Adenocarcinoma Arising from Recurrent Abscess and Complex Fistulae[J]. Case Rep Surg,2020,2020:1798543. [27] Solis E,Liang Y,Ctercteko G,et al. Dangers of delayed diagnosis of perianal abscess and undrained perianal sepsis in Fournier's gangrene: a case series[J]. BMJ Case Rep,2020,13(10):10.1136/bcr-2020-236503. [28] Liu Y H,Lv Z B,Liu J B,et al. Perianorectal abscesses and fistula due to ingested jujube pit in infant: Two case reports[J]. World J Clin Cases,2020,8(20):4930-4937. doi: 10.12998/wjcc.v8.i20.4930 [29] Chang H,Kuo M C,Tang T C,et al. Clinical Features and Recurrence Pattern of Perianal Abscess in Patients with Acute Myeloid Leukemia[J]. Acta Haematol,2017,138(1):10-13. doi: 10.1159/000475589 [30] Ding W,Sun Y R,Wu Z J. Treatment of Perianal Abscess and Fistula in Infants and Young Children: From Basic Etiology to Clinical Features[J]. Am Surg,2021,87(6):927-932. doi: 10.1177/0003134820954829 [31] Han S,Yang J and Xu J. Deep Learning-Based Computed Tomography Image Features in the Detection and Diagnosis of Perianal Abscess Tissue[J]. J Healthc Eng,2021,2021:3706265. [32] Yang J,Han S and Xu J. Deep Learning-Based Magnetic Resonance Imaging Features in Diagnosis of Perianal Abscess and Fistula Formation[J]. Contrast Media Mol Imaging,2021,2021:9066128. [33] 江维,张虹玺,隋楠,等. 中国城市居民常见肛肠疾病流行病学调查[J]. 中国公共卫生,2016,32(10):1293-1296. [34] 中华医学会消化内镜学分会内痔协作组. 中国消化内镜内痔诊疗指南及操作共识(2021)[J]. 中华消化内镜杂志,2021,38(9):676-687. [35] 陆建英,沈文娟,顾莹,等. 深度学习在内镜下内痔诊断及危险分级中的应用[J]. 中国内镜杂志,2023,29(02):1-7. [36] 刘璐,林嘉希,朱世祺,等. 基于ResNet的可解释性计算机视觉模型在内镜下内痔评估中的应用[J]. 现代消化及介入诊疗,2023,08:^972-975+980. [37] Komeda Y, Handa H, Watanabe T, et al. Computer-Aided Diagnosis Based on Convolutional Neural Network System for Colorectal Polyp Classification: Preliminary Experience[J]. Oncology, 2017, 93 Suppl 1(30-34). [38] Chen P J,Lin M C,Lai M J,et al. Accurate Classification of Diminutive Colorectal Polyps Using Computer-Aided Analysis[J]. Gastroenterology,2018,154(3):568-575. doi: 10.1053/j.gastro.2017.10.010 [39] Bedrikovetski S,Dudi-Venkata N N,Kroon H M,et al. Artificial intelligence for pre-operative lymph node staging in colorectal cancer: a systematic review and meta-analysis[J]. BMC Cancer,2021,21(1):1058. doi: 10.1186/s12885-021-08773-w [40] Geng Z,Zhang Y,Yin S,et al. Preoperatively Grading Rectal Cancer with the Combination of Intravoxel Incoherent Motions Imaging and Diffusion Kurtosis Imaging[J]. Contrast Media Mol Imaging,2020,2020:2164509. [41] He B,Ji T,Zhang H,et al. MRI-based radiomics signature for tumor grading of rectal carcinoma using random forest model[J]. J Cell Physiol,2019,234(11):20501-20509. doi: 10.1002/jcp.28650 [42] Inchingolo R,Maino C,Cannella R,et al. Radiomics in colorectal cancer patients[J]. World J Gastroenterol,2023,29(19):2888-2904. doi: 10.3748/wjg.v29.i19.2888 [43] Mitsala A,Tsalikidis C,Pitiakoudis M,et al. Artificial Intelligence in Colorectal Cancer Screening,Diagnosis and Treatment. A New Era[J]. Current Oncology,2021,28(3):1581-1607. doi: 10.3390/curroncol28030149
点击查看大图
计量
- 文章访问数: 1347
- HTML全文浏览量: 522
- PDF下载量: 35
- 被引次数: 0