Correlation of KRAS Gene 3′ UTR Polymorphisms with Cervical Cancer and Cervical Intraepithelial Neoplasia in Chinese Han Population in Yunnan Province
-
摘要:
目的 探究KRAS基因中3′ UTR区域的rs712和rs7973450位点与云南汉族人群宫颈癌(cervical cancer,CC)和宫颈上皮内瘤变(cervical intraepithelial neoplasia,CIN)的相关性。 方法 共纳入CIN患者461例、CC患者961例及其健康对照983例,采用TaqMan探针法进行基因分型检测,并分析2个SNP位点与CIN及CC的相关性。 结果 rs7973450位点的A等位基因可能是CIN(P = 0.004,OR = 0.651,95%CI 0.487 ~ 0.871)与CC(P = 7.00 × 10-4,OR = 0.667,95%CI 0.529 ~ 0.844)发生的保护性因素。rs712位点在CIN组、CC组和对照组间等位基因和基因型分布频率的差异无统计学意义(P > 0.017);单倍型分析的结果显示,单倍型rs712A-rs7973450G与更高的CIN(P = 4.00 × 10-4,OR = 1.714,95%CI 1.269 ~ 2.314)和CC(P = 3.84 × 10-5,OR = 1.667,95%CI 1.305 ~ 2.131)发生风险相关;单倍型rs712A-rs7973450A则与更低的CC发生风险相关(P = 0.012,OR = 0.790,95%CI 0.658 ~ 0.950)。 结论 位于KRAS基因3′ UTR区域的SNP位点rs7973450的A等位基因可能是云南汉族人群CIN和CC发生的保护性因素。 Abstract:Objective To investigate the correlation between rs712 and rs7973450 located at the 3′ UTR region of the KRAS gene and the risk of cervical cancer (CC) and cervical intraepithelial neoplasia (CIN) in Chinese Han population in Yunnan province. Methods A total of 2405 individuals (461 subjects with CIN, 961 subjects with CC and 983 healthy controls) were enrolled. The SNPs were genotyped used TaqMan assay and the correlation of these SNPs with CIN and CC was analyzed. Results The A allele of rs7973450 might be a protective factor for the occurrence of CIN (P = 0.004, OR= 0.651, 95%CI 0.487 ~ 0.871) and CC (P = 7.00 × 10-4, OR= 0.667, 95%CI 0.529 ~ 0.844). There was no significant difference in allelic and genotypic distribution of rs712 among CIN, CC and Control groups (P > 0.017). The haplotype assay showed thatrs712A-rs7973450G was associated with increased risk of CIN (P = 4.00 × 10-4; OR= 1.714, 95%CI 1.269 ~ 2.314) and CC (P = 3.84 × 10-5, OR= 1.667, 95%CI 1.305 ~ 2.131). While haplotype rs712A-rs7973450A was associated with a lower risk of CC (P = 0.012, OR= 0.790, 95%CI 0.658 ~ 0.950). Conclusion The A allele of rs7973450 in 3′ UTR of KRAS gene might be the protective factor for the occurrence of CIN and CC in a Chinese Han population in Yunnan province. -
表 1 研究对象分组及均衡性检验[($\bar x \pm s $)/n(%)]
Table 1. Grouping of study subjects [($\bar x \pm s $)/n(%)]
资料特征 CIN组 CC组 对照组 F P 人数(n) 416 961 983 − − 年龄分布(岁) 45.00 ± 9.55 46.25 ± 9.81 45.77 ± 8.87 2.605 0.074 临床分期 CIN2 51(12.3) − − − − CIN3 365(87.7) − − − − Ⅰ − 624(64.9) − − − Ⅱ − 270(29.1) − − − Ⅲ ~ Ⅳ − 67(7.0) − − − 病理类型 SCC − 799(83.1) − − − AC − 162(16.9) − − − 表 2 KRAS基因2个SNP位点在CIN组、CC组和对照组间等位基因和基因型频率分布[n(%)]
Table 2. The allelic and genotypic frequency distribution of the SNPs in KRAS gene among the CIN,CC and control groups [n(%)]
SNPs 等位基因/基因型 对照组 CIN组 CC组 χ² P HWEa,P rs712 A 405(20.6) 181(21.8) 412(21.4) 0.633 0.729 0.469 C 1561(79.4) 651(78.2) 1510(78.6) A/A 38(3.9) 24(5.8) 46(4.8) 2.726 0.605 A/C 329(33.4) 133(32.0) 320(33.3) C/C 616(62.7) 259(62.3) 595(61.9) rs7973450 A 1837(93.4) 751(90.3) 1739(90.5) 13.782 0.001* 0.093 G 129(6.6) 81(9.7) 183(9.5) A/A 855(87.0) 337(81.0) 783(81.4) 14.89 0.005* A/G 127(12.9) 77(18.5) 173(18.0) G/G 1(0.1) 2(0.5) 5(0.6) *P < 0.017(Bonferroni校正,n = 3)。 表 3 rs7973450在CIN组、CC组和对照组间等位基因和基因型频率的两两比较[n(%)]
Table 3. Pairwise comparison of allele and genotype frequencies of rs7973450 among CIN group,CC group,and control group [n(%)]
等位基因/基因型 A G A/A A/G G/G 对照组 1837(93.4) 129(6.6) 855(87.0) 127(12.9) 1(0.1) CIN组 751(90.3) 81(9.7) 337(81.0) 77(18.5) 2(0.5) CC组 1739(90.5) 183(9.5) 783(81.4) 173(18.0) 5(0.6) CIN vs 对照组 χ2 8.484 9.444 P 0.004* 0.009* OR(95%CI) 0.651(0.487 ~ 0.871) CC vs 对照组 χ2 11.535 12.637 P 7.00 × 10-4* 0.002* OR(95%CI) 0.667(0.529 ~ 0.844) CC vs CIN χ2 0.031 0.058 P 0.861 0.971 OR(95%CI) 1.024(0.778 ~ 1.350) 表 4 KRAS基因中2个SNP在不同病理类型CC病例组和对照组间等位基因和基因型分布情况[n(%)]
Table 4. The allelic and genotypic distribution of two SNPs inKRASgene among different pathological types of CC case and control groups [n(%)]
SNPs 等位基因/基因型 对照组 SCC组 AC组 χ² P rs712 A 405(20.6) 342(21.4) 70(21.6) 0.416 0.812 C 1561(79.4) 1256(78.6) 254(78.4) A/A 38(3.9) 35(4.4) 11(6.8) 3.684 0.450 A/C 329(33.4) 272(34.0) 48(29.6) C/C 616(62.7) 492(61.6) 103(63.6) rs7973450 A 1837(93.4) 1452(90.9) 287(88.6) 13.438 0.001* G 129(6.6) 146(9.1) 37(11.4) A/A 855(87.0) 655(82.0) 128(79.0) 24.134 7.51×10−5* A/G 127(12.9) 142(17.8) 31(19.1) G/G 1(0.1) 2(0.2) 3(1.9) *P < 0.017(Bonferroni校正,n = 3)。 表 5 rs7973450在SCC组、AC组和对照组间等位基因和基因型频率的两两比较[n(%)]
Table 5. Pairwise comparison of allele and genotype frequencies of rs7973450 among SCC group,AC group,and control group [n(%)]
等位基因/基因型 A G A/A A/G G/G 对照组 1837(93.4) 129(6.6) 855(87.0) 127(12.9) 1(0.1) SCC 1452(90.9) 146(9.1) 655(82.0) 142(17.8) 2(0.2) AC 287(88.6) 37(11.4) 128(79.0) 31(19.1) 3(1.9) SCC vs 对照组 χ2 8.207 8.754 P 0.004* 0.013* OR(95%CI) 0.698(0.546 ~ 0.894) AC vs 对照组 χ2 9.764 17.117 P 0.002* 2.00×10−4* OR(95%CI) 0.545(0.370 ~ 0.801) SCC vs AC χ2 1.630 6.924 P 0.202 0.031 OR(95%CI) 1.282(0.875 ~ 1.879) 表 6 KRAS基因中2个SNP在不同临床分期CC病例组和对照组间等位基因和基因型分布情况[n(%)]
Table 6. The allelic and genotypic distribution of two SNPs in KRAS gene among different clinical stages of CC case and control groups [n(%)]
SNPs 等位基因/基因型 对照组 Ⅰ期 Ⅱ期 Ⅲ~Ⅳ期 χ2 P rs712 A 405(20.6) 276(22.1) 105(19.4) 31(23.1) 2.279 0.517 C 1561(79.4) 972(77.9) 435(80.6) 103(76.9) A/A 38(3.9) 33(5.3) 9(3.3) 4(6.0) 3.445 0.751 A/C 329(33.4) 210(33.6) 87(32.2) 23(34.3) C/C 616(62.7) 381(61.1) 174(64.5) 40(59.7) rs7973450 A 1837(93.4) 1132(90.7) 488(90.4) 119(88.8) 12.140 0.007* G 129(6.6) 116(9.3) 52(9.6) 15(11.2) A/A 855(87.0) 510(81.7) 220(81.5) 53(79.1) 16.066 0.013 A/G 127(12.9) 112(18.0) 48(17.8) 13(19.4) G/G 1(0.1) 2(0.3) 2(0.7) 1(1.5) *P < 0.008(Bonferroni校正,n = 6)。 表 7 rs7973450在不同临床分期CC病例组和对照组间等位基因分布频率的两两比较[n(%)]
Table 7. Pairwise comparison of allele distribution frequencies of rs7973450 among different clinical stages of CC case groups and control group [n(%)]
等位基因/基因型 A G 对照组 1837(93.4) 129(6.6) Ⅰ期 1132(90.7) 116(9.3) Ⅱ期 488(90.4) 52(9.6) Ⅲ~Ⅳ期 119(88.8) 15(11.2) Ⅰ期 vs 对照组 χ2 8.099 P 0.004* OR(95%CI) 0.685(0.528 ~ 0.890) Ⅱ期 vs 对照组 χ2 5.951 P 0.015 OR(95%CI) 0.659(0.470 ~ 0.923) Ⅲ~Ⅳ期 vs 对照组 χ2 4.215 P 0.040 OR(95%CI) 0.557(0.316 ~ 0.981) 表 8 KRAS基因2个SNP位点在CIN组、CC组和对照组间的单倍型分析[n(%)]
Table 8. Haplotype analysis of two SNP in KRAS gene among CIN,CC and control groups [n(%)]
位点 rs712- rs7973450 基因型 A/A A/G C/A 对照组 292.67(14.9) 112.33(5.7) 1544.3(78.6) CIN组 102.31(12.3) 78.69(9.5) 648.7(78.0) CC组 234.71(12.2) 177.29(9.2) 1504.30(78.3) CIN vs 对照组 D' 0.886 r2 0.241 OR(95%CI) 0.796(0.625 ~ 1.014) 1.714(1.269 ~ 2.314) 0.940(0.771 ~ 1.145) P 0.064 4×10−4* 0.539 CC vs 对照组 D' 0.910 r2 0.272 OR(95%CI) 0.790(0.658 ~ 0.950) 1.667(1.305 ~ 2.131) 0.958(0.821 ~ 1.117) P 0.012* 3.84×10−5* 0.582 -
[1] Sung H,Ferlay J,Siegel R L,et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2021,71(3):209-249. doi: 10.3322/caac.21660 [2] Zheng R,Zhang S,Zeng H,et al. Cancer incidence and mortality in China,2016[J]. Journal of the National Cancer Center,2022,2(1):1-9. doi: 10.1016/j.jncc.2022.02.002 [3] Crosbie E J,Einstein M H,Franceschi S,et al. Human papillomavirus and cervical cancer[J]. Lancet,2013,382(9895):889-899. doi: 10.1016/S0140-6736(13)60022-7 [4] Zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application[J]. Nature reviews Cancer,2002,2(5):342-350. doi: 10.1038/nrc798 [5] Bowden S J,Bodinier B,Kalliala I,et al. Genetic variation in cervical preinvasive and invasive disease: A genome-wide association study[J]. Lancet Oncol,2021,22(4):548-557. doi: 10.1016/S1470-2045(21)00028-0 [6] Chen B,Yi C,Wang J,et al. A comprehensive study of CD44 rs 187115 variant and cancer risk in a central Chinese population[J]. J Cell Biochem,2019,120(8):12949-12957. doi: 10.1002/jcb.28566 [7] Wang F,Shan S,Huo Y,et al. MiR-155-5p inhibits PDK1 and promotes autophagy via the mTOR pathway in cervical cancer[J]. Int J Biochem Cell Biol,2018,99:91-99. doi: 10.1016/j.biocel.2018.04.005 [8] Huang L,Guo Z,Wang F,et al. KRAS mutation: from undruggable to druggable in cancer[J]. Signal Transduct Target Ther,2021,6(1):386. doi: 10.1038/s41392-021-00780-4 [9] Wang D, Liu Q, Ren Y, et al. Association analysis of miRNA-related genetic polymorphisms in miR-143/145 and KRAS with colorectal cancer susceptibility and survival [J]. Biosci Rep, 2021, 41(4): BSR20204136. [10] Paranjape T,Heneghan H,Lindner R,et al. A 3′-untranslated region KRAS variant and triple-negative breast cancer: a case-control and genetic analysis[J]. Lancet Oncol,2011,12(4):377-386. doi: 10.1016/S1470-2045(11)70044-4 [11] Li Z H,Pan X M,Han B W,et al. A let-7 binding site polymorphism rs712 in the KRAS 3′ UTR is associated with an increased risk of gastric cancer[J]. Tumour Biol,2013,34(5):3159-3163. doi: 10.1007/s13277-013-0885-x [12] Hussen B M,Hidayat H J,Salihi A,et al. MicroRNA: A signature for cancer progression[J]. Biomed Pharmacother,2021,138:111528. doi: 10.1016/j.biopha.2021.111528 [13] Kim M,Slack F J. MicroRNA-mediated regulation of KRAS in cancer[J]. J Hematol Oncol,2014,7:84. doi: 10.1186/s13045-014-0084-2 [14] 国家癌症中心,国家肿瘤质控中心宫颈癌质控专家委员会. 中国宫颈癌规范诊疗质量控制指标(2022版)[J]. 中华肿瘤杂志,2022,44(7):615-22. [15] Bhatla N,Aoki D,Sharma D N,et al. Cancer of the cervix uteri[J]. Int J Gynaecol Obstet,2018,143(S2):22-36. [16] WHO guideline for screening and treatment of cervical pre-cancer lesions for cervical cancer prevention [M]. 2nd ed. Geneva: World Health Organization, 2021. [17] Simanshu D K,Nissley D V,Mccormick F. RAS Proteins and Their Regulators in Human Disease[J]. Cell,2017,170(1):17-33. doi: 10.1016/j.cell.2017.06.009 [18] Zhu G,Pei L,Xia H,et al. Role of oncogenic KRAS in the prognosis,diagnosis and treatment of colorectal cancer[J]. Molecular Cancer,2021,20(1):143. doi: 10.1186/s12943-021-01441-4 [19] Li Z,Chen Y,Wang D,et al. Detection of KRAS mutations and their associations with clinicopathological features and survival in Chinese colorectal cancer patients[J]. J Int Med Res,2012,40(4):1589-1598. doi: 10.1177/147323001204000439 [20] Fernández-Medarde A,Santos E. Ras in cancer and developmental diseases[J]. Genes Cancer,2011,2(3):344-358. doi: 10.1177/1947601911411084 [21] Hu H, Cheng R, Wang Y, et al. Oncogenic KRAS signaling drives evasion of innate immune surveillance in lung adenocarcinoma by activating CD47 [J]. J Clin Invest, 2023, 133(2): e153470. [22] Kumar M S,Swanton C. KRAS 3′-UTR variants and stratification of breast-cancer risk[J]. Lancet Oncol,2011,12(4):318-319. doi: 10.1016/S1470-2045(11)70065-1 [23] Nelson H H,Christensen B C,Plaza S L,et al. KRAS mutation,KRAS-LCS6 polymorphism,and non-small cell lung cancer[J]. Lung Cancer,2010,69(1):51-3. doi: 10.1016/j.lungcan.2009.09.008 [24] Ibrahim H, Lim Y C. KRAS -associated microRNAs in colorectal cancer[J] 2020, 14(2): 454. [25] Liu H,Huang J,Peng J,et al. Upregulation of the inwardly rectifying potassium channel Kir2.1 (KCNJ2) modulates multidrug resistance of small-cell lung cancer under the regulation of miR-7 and the Ras/MAPK pathway[J]. Mol Cancer,2015,14:59. [26] Johnson S M,Grosshans H,Shingara J,et al. RAS is regulated by the let-7 microRNA family[J]. Cell,2005,120(5):635-647. doi: 10.1016/j.cell.2005.01.014 [27] Ahmed E A, Rajendran P, Scherthan H. The microRNA-202 as a Diagnostic Biomarker and a Potential Tumor Suppressor [J]. Int J Mol Sci, 2022, 23(11): 5870. [28] Gallegos-Arreola M P,Z ú ñiga-Gonz á lez G M,Gómez-Mariscal K,et al. Association of rs712 polymorphism in a let-7 microRNA-binding site of KRAS gene with colorectal cancer in a Mexican population[J]. Iran J Basic Med Sci,2019,22(3):324-327. [29] Jiang Q H,Peng H X,Zhang Y,et al. rs712 polymorphism within let-7 microRNA-binding site might be involved in the initiation and progression of colorectal cancer in Chinese population[J]. OncoTargets and Therapy,2015,8:3041-3045. [30] Huang X,Yang Y,Guo Y,et al. Association of a let-7 KRAS rs712 polymorphism with the risk of breast cancer[J]. Genet Mol Res,2015,14(4):16913-16920. doi: 10.4238/2015.December.14.19 [31] Chin L J,Ratner E,Leng S,et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non–small cell lung cancer risk[J]. Cancer Research,2008,68(20):8535-8540. doi: 10.1158/0008-5472.CAN-08-2129 [32] Fu W,Zhuo Z,Hua R X,et al. Association of KRAS and NRAS gene polymorphisms with Wilms tumor risk: A four-center case-control study[J]. Aging (Albany NY),2019,11(5):1551-1563. doi: 10.18632/aging.101855 [33] Guan Q,Yuan L,Lin A,et al. KRAS gene polymorphisms are associated with the risk of glioma: A two-center case-control study[J]. Transl Pediatr,2021,10(3):579-586. doi: 10.21037/tp-20-359 [34] Lin A,Hua R X,Tang J,et al. KRAS rs7973450 A>G increases neuroblastoma risk in Chinese children: A four-center case-control study[J]. Onco Targets Ther,2019,12:7289-7295. doi: 10.2147/OTT.S223220 [35] Insodaite R,Smalinskiene A,Liutkevicius V,et al. Associations of Polymorphisms Localized in the 3′ UTR Regions of the KRAS,NRAS,MAPK1 genes with laryngeal squamous cell carcinoma[J]. Genes,2021,12(11):1679. doi: 10.3390/genes12111679