留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

血栓通对阿尔茨海默症模型小鼠认知功能及神经异常兴奋性的作用及其机制研究

刘慧 严国纪 吴嘉 王丹 习杨彦彬 李珊珊

刘慧, 严国纪, 吴嘉, 王丹, 习杨彦彬, 李珊珊. 血栓通对阿尔茨海默症模型小鼠认知功能及神经异常兴奋性的作用及其机制研究[J]. 昆明医科大学学报, 2024, 45(2): 23-31. doi: 10.12259/j.issn.2095-610X.S20240204
引用本文: 刘慧, 严国纪, 吴嘉, 王丹, 习杨彦彬, 李珊珊. 血栓通对阿尔茨海默症模型小鼠认知功能及神经异常兴奋性的作用及其机制研究[J]. 昆明医科大学学报, 2024, 45(2): 23-31. doi: 10.12259/j.issn.2095-610X.S20240204
Hui LIU, Guoji YAN, Jia WU, Dan WANG, YANGYanbin XI, Shanshan LI. Effects and Mechanisms of Xueshuantong on the Cognitive Function and Abnormal Neural Excitability in Mice with Alzheimer’ s Disease[J]. Journal of Kunming Medical University, 2024, 45(2): 23-31. doi: 10.12259/j.issn.2095-610X.S20240204
Citation: Hui LIU, Guoji YAN, Jia WU, Dan WANG, YANGYanbin XI, Shanshan LI. Effects and Mechanisms of Xueshuantong on the Cognitive Function and Abnormal Neural Excitability in Mice with Alzheimer’ s Disease[J]. Journal of Kunming Medical University, 2024, 45(2): 23-31. doi: 10.12259/j.issn.2095-610X.S20240204

血栓通对阿尔茨海默症模型小鼠认知功能及神经异常兴奋性的作用及其机制研究

doi: 10.12259/j.issn.2095-610X.S20240204
基金项目: 云南省教育厅科学研究基金资助项目(2023Y0608);云南省科技厅基础研究专项基金资助项目(202101AT070001)
详细信息
    作者简介:

    刘慧(2000~),女,云南曲靖人,医学学士,在读本科生

    通讯作者:

    习杨彦彬, E-mail:xiyangyanbin@kmmu.edu.cn

    李珊珊,E-mail:94186610@qq.com

  • 中图分类号: R741.05

Effects and Mechanisms of Xueshuantong on the Cognitive Function and Abnormal Neural Excitability in Mice with Alzheimer’ s Disease

  • 摘要:   目的  探究血栓通[主要有效成分为三七皂苷(panax notoginseng,PNS)]对阿尔茨海默症(Alzheimer’s disease,AD)模型小鼠认知功能及神经兴奋性的影响,并探讨其潜在分子机制。   方法  用APP/PS1小鼠作为AD研究动物模型,在小鼠淀粉样蛋白尚未检测到阶段(2月龄)开始每日以60 mg/kg对血栓通组(APP/PS1+PNS)行灌胃给药,每日1次,连续给药6个月(给药至8月龄);对照组小鼠予同等体积的0.9%氯化钠(APP/PS1+vehicle)灌胃处理,同月龄野生型小鼠予0.9%氯化钠灌胃处理作为正常对照组(WT+ vehicle),每组各15只。6个月后,新物体识别实验、Morris水迷宫实验检测小鼠的认知功能;EEG脑电检测、Western blot、细胞表面生物素化试验以检测各组小鼠皮质与海马中BACE1的活性、Nav1.1α的分布、表达以及Navβ2的表达与酶解情况(Navβ2的酶解片段Navβ2 full length及Navβ2-CTF表达检测)。   结果  新物体识别实验显示,与对照组APP/PS1小鼠相比,血栓通用药后APP/PS1小鼠的辨别指数(discrimination index,DI)上升(P < 0.05);Morris水迷宫检测结果发现,血栓通灌胃6个月后小鼠在探索实验中逃避潜伏期缩短(P < 0.05),撤除平台后在目标象限停留时间增加(P < 0.05)、穿梭平台次数增加(P < 0.05);EEG脑电检测结果发现,血栓通给药后减少了APP/PS1小鼠棘波放电出现的频率(P < 0.05)。血栓通给药后显著降低了BACE1蛋白水平的表达(P < 0.05),而全长片段Navβ2的蛋白水平显著上升(P < 0.05),并纠正了Nav1.1α在神经元内外的异常分布(P < 0.05)。   结论  血栓通可以改善AD模型小鼠的学习记忆能力、纠正大脑异常兴奋性,其作用机制可能与抑制BACE1的活性从而减少Navβ2由 APP/PS1诱导的过度酶解,纠正皮质、海马神经元Nav1.1α的异常表达与分布,调节神经元的兴奋性有关。
  • 图  1  Morris水迷宫任务显示血栓通对APP/PS1小鼠空间学习记忆变化的影响

    A:各组小鼠在训练期间从第1天到第6天的逃避潜伏期;B:探针实验测试期间在目标象限所花费的时间;C:探针实验中在目标平台的穿梭次数;D:探针实验中APP/PS1小鼠的游泳路径。($ \bar x \pm s $,n=15),*P < 0.05 vs. WT+Vehicle,#P<0.05 vs. APP/PS1+PNS。

    Figure  1.  Morris water maze task shows the effect of xueshuantong on spatial learning and memory changes in APP/PS1 mice

    图  2  血栓通对APP/PS1小鼠新物体识别任务的影响

    A:APP/PS1小鼠对熟悉物体和新物体的探索时间的比较;B:从不同的组中获得的DI指数。($ \bar x \pm s $,n=15),*P < 0.05 vs WT+Vehicle,#P < 0.05 vs APP/PS1+PNS,&P < 0.05 vs Novel。

    Figure  2.  Effect of xueshuantong on novel object recognition task in APP/PS1 mice

    图  3  通过EEG记录检测血栓通给药诱导的神经元高兴奋性改善和异常神经活动

    A:2月龄各组小鼠的EEG记录情况;B:8月龄各组小鼠的EEG记录情况。

    Figure  3.  Detection of improved neuronal hyperexcitability and abnormal neural activity induced by xueshuantong administration by EEG recordings

    图  4  血栓通改变APP/PS1小鼠中Nav1.1α的分布和Navβ2的裂解

    A:各组小鼠额叶皮层和海马中BACE1、Navβ2全长、Navβ2-CTF的蛋白电泳图;B:各组小鼠额叶皮层和海马中BACE1的蛋白表达比较;C:各组小鼠额叶皮层和海马中Navβ2全长的蛋白表达比较;D:各组小鼠额叶皮层和海马中Navβ2-CTF的蛋白表达比较;E:各组小鼠额叶皮层和海马中的Nav1.1α的总量、细胞外Nav1.1α和细胞内Nav1.1α的蛋白电泳图;F:各组小鼠额叶皮层和海马中Nav1.1α总量的蛋白表达比较;G:各组小鼠额叶皮层和海马中细胞外Nav1.1α的蛋白表达比较;H:各组小鼠额叶皮层和海马中细胞外Nav1.1α的蛋白表达比较。($ \bar x \pm s $,n=15),*P<0.05 vs. WT+ Vehicle,#P<0.05 vs. APP/PS1 + PNS。

    Figure  4.  Xueshuantong alters Nav1.1α distribution and Navβ2 cleavage in APP/PS1 mice

  • [1] Grossberg G T, Tong G, Burke A D, et al. Present Algorithms and future treatments for Alzheimer's disease. [J] Journal of Alzheimer's Disease, 2019, 67(4): 1157-1171.
    [2] 王高瑞,陈姿羽,吴辉,等. 基于网络药理学和实验验证的血栓通改善缺血性脑微循环障碍作用机制研究[J]. 药学学报,2022,57(7):2077-2086.
    [3] Liu L,Zhang Q,Xiao S,et al. Inhibition of shear-induced platelet aggregation by xueshuantong via targeting piezo1 channel-mediated Ca2+ signaling pathway[J]. Frontiers in Pharmacology,2021,12:606245. doi: 10.3389/fphar.2021.606245
    [4] Han S,Chen Y,Wang J,et al. Anti-thrombosis effects and mechanisms by xueshuantong capsule under different flow conditions[J]. Frontiers in Pharmacology,2019,10(FEB):35. doi: 10.3389/fphar.2019.00035
    [5] Zhang J,Guo F,Zhou R,et al. Proteomics and transcriptome reveal the key transcription factors mediating the protection of Panax notoginseng saponins (PNS) against cerebral ischemia/reperfusion injury[J]. Phytomedicine,2021,92:153613. doi: 10.1016/j.phymed.2021.153613
    [6] Peiran L,Ying L,Mingzhuo Z,et al. The development of a Panax notoginseng medicinal liquor processing technology using the response surface method and a study of its antioxidant activity and its effects on mouse melanoma B16 cells[J]. Food & Function,2017,8(11):4251-4264.
    [7] Han J Y,Li Q,Ma Z Z,et al. Effects and mechanisms of compound Chinese medicine and major ingredients on microcirculatory dysfunction and organ injury induced by ischemia/reperfusion[J]. Pharmacology & Therapeutics,2017,177:146-173.
    [8] Zhong L,Zhou X L,Liu Y S,et al. Estrogen receptor α mediates the effects of notoginsenoside R1 on endotoxin-induced inflammatory and apoptotic responses in H9c2 cardiomyocytes[J]. Molecular Medicine Reports,2015,12(1):119-126. doi: 10.3892/mmr.2015.3394
    [9] Lee C Y,Hsieh S L,Hsieh S,et al. Inhibition of human colorectal cancer metastasis by notoginsenoside R1,an important compound from Panax notoginseng[J]. Oncol Rep,2017,37(1):399-407. doi: 10.3892/or.2016.5222
    [10] Li W,Wu Y,Wan M,et al. Simultaneous determination of three saponins in human plasma after oral administration of compound danshen dripping pills by LC-MS/MS and its application in a pharmacokinetic study[J]. J Pharm Biomed Anal,2019,169:254-259. doi: 10.1016/j.jpba.2019.03.008
    [11] Jian W,Yu S,Tang M,et al. A combination of the main constituents of Fufang Xueshuantong Capsules shows protective effects against streptozotocin-induced retinal lesions in rats[J]. Journal of Ethnopharmacology,2016,182:50-56. doi: 10.1016/j.jep.2015.11.021
    [12] Gao L,Zhao H,Liu Q,et al. Improvement of hematoma absorption and neurological function in patients with acute intracerebral hemorrhage treated with Xueshuantong[J]. Journal of the Neurological Sciences,2012,323(1-2):236-240. doi: 10.1016/j.jns.2012.09.028
    [13] Li Z,Li H,Zhao C H,et al. Protective effect of notoginsenoside R1 on an APP/PS1 mouse model of Alzheimer & aposs disease by up-regulating insulin degrading enzyme and inhibiting Aβ accumulation[J]. CNS & Neurological Disorders-Drug Targets,2015,14(3):360-369.
    [14] Huang J L,Xin J,Xin T,et al. Neuroprotective properties of panax notoginseng saponins via preventing oxidative stress injury in SAMP8 mice[J]. Evidence-Based Complementray and Alternative Medicine,2017,2017:8713561.
    [15] Huang J,Wu D,Wang J,et al. Effects of Panax notoginseng saponin on α,β,and γ secretase involved in Aβ deposition in SAMP8 mice[J]. Neuroreport,2014,25(2):89-93. doi: 10.1097/WNR.0000000000000048
    [16] Xi Y,Yan B,Wang Y C,et al. Sodium channel voltage-gated beta 2 plays a vital role in brain aging associated with synaptic plasticity and expression of COX5A and FGF-2[J]. Mol Neurobiol,2016,53(2):955-967. doi: 10.1007/s12035-014-9048-3
    [17] Tao H,Xiao Z,Rui M,et al. Navβ2 knockdown improves cognition in APP/PS1 mice by partially inhibiting seizures and APP amyloid processing[J]. Oncotarget,2017,8(59):99284-99295. doi: 10.18632/oncotarget.21849
    [18] Hu T,Li S S,Lu M N,et al. Neuroprotection induced by Nav beta 2-knockdown in APP/PS1 transgenic neurons is associated with NEP regulation[J]. Nature Reviews Neuroscience,2019,20(2):2002-2011.
    [19] Lee M,Kim D,Shin H S,et al. High-density EEG recordings of the freely moving mice using polyimide-based microelectrode[J]. Journal of Visualized Experiments Jove,2011(47):2562.
    [20] Corbett B F,Leiser S C,Ling H,et al. Sodium channel cleavage is associated with aberrant neuronal activity and cognitive deficits in a mouse model of Alzheimer's disease[J]. Journal of Neuroscience,2013,33(16):7020-7026. doi: 10.1523/JNEUROSCI.2325-12.2013
    [21] Sheena LP,Regan,Phil G,et al. Growth hormone during in vitro fertilization in older women modulates the density of receptors in granulosa cells,with improved pregnancy outcomes[J]. Fertility and Sterility,2018,110(7):1298-1310. doi: 10.1016/j.fertnstert.2018.08.018
    [22] Huang Y,Guo B,Shi B,et al. Chinese herbal medicine xueshuantong enhances cerebral blood flow and improves neural functions in Alzheimer's disease mice[J]. Journal of Alzheimers Disease,2018,63(3):1089-1107. doi: 10.3233/JAD-170763
    [23] Liu H,Liang J P,Li P B,et al. Core bioactive components promoting blood circulation in the traditional chinese medicine compound xueshuantong capsule (CXC) based on the relevance analysis between chemical HPLC fingerprint and in vivo biological effects[J]. Plos One,2014,9(11):e112675. doi: 10.1371/journal.pone.0112675
    [24] Cheret C,Willem M,Fricker F R,et al. Bace1 and Neuregulin-1 cooperate to control formation and maintenance of muscle spindles[J]. Embo Journal,2013,32(14):2015-2028. doi: 10.1038/emboj.2013.146
    [25] Filser S,Ovsepian S V,Masana M,et al. Pharmacological inhibition of BACE1 impairs synaptic plasticity and cognitive functions[J]. Biological Psychiatry,2015,77(8):729-739. doi: 10.1016/j.biopsych.2014.10.013
    [26] Zhu K,Xiang X,Filser S,et al. Beta-site amyloid precursor protein cleaving enzyme 1 inhibition impairs synaptic plasticity via seizure protein 6[J]. Biological Psychiatry,2016,83(5):428-437.
    [27] Wong H K,Sakurai T,Oyama F,et al. Beta Subunits of voltage-gated sodium channels are novel substrates of beta-site amyloid precursor protein-cleaving enzyme (BACE1) and gamma-secretase[J]. Journal of Biological Chemistry,2005,280(24):23009-23017. doi: 10.1074/jbc.M414648200
  • [1] 李瑞, 苏建培, 李瑾, 邓文君, 张亚洲.  阿尔茨海默病与肌少症的孟德尔随机化研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240804
    [2] 高静, 宋凤杰, 陈瑜, 资润, 张伟.  高频重复经颅磁刺激(rTMS)对脑外伤患者认知功能的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230703
    [3] 曾婷婷, 冯祖幸, 元静, 伍力, 吴长江, 徐莉, 周芳, 王新, 金于雄, 孟骏宇, 付会佐, 杨建中.  男性酒依赖患者酒精依赖程度及影响因素, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220103
    [4] 陈红, 吴键, 张晋珍, 龙云霞, 陈艳, 谷震.  医护一体化结合快速康复外科模式在脑动脉瘤介入栓塞治疗中护理干预效果, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220431
    [5] 何慧萍, 何尧苇, 沈宗霖, 宋肖肖, 李葆罗, 姜红燕.  阿尔茨海默病与轻度认知功能障碍患者精神行为症状比较分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220913
    [6] 彭丽佳, 杨渊, 郭然, 熊莉, 李俊杰, 邵建林, 曾卫军.  右美托嘧啶联合纳布啡用于脑膜瘤手术对患者术后认知功能的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210306
    [7] 荣冬靖, 张育安, 张玉林, 肖怡, 常艳萍.  维持性血液透析患者认知状况与血管硬化的相关性, 昆明医科大学学报.
    [8] 雷学芬, 王琳, 唐浩然, 鲍天昊, 史润娇, 柯阳.  腹腔灌注化疗对昆明小鼠认知功能的影响, 昆明医科大学学报.
    [9] 王炯, 张先政.  胸椎旁神经阻滞与全身麻醉对肺癌根治术患者肺氧合功能、术后疼痛及认知功能的影响, 昆明医科大学学报.
    [10] 唐珩, 杨露, 周磊, 谷涓华, 张玲, 李艳华.  3%七氟烷对老年大鼠认知功能的影响, 昆明医科大学学报.
    [11] 邓苙, 李劲涛, 曹光琼.  NGF-BMSCs移植对阿尔茨海默病大鼠神经行为学的改善, 昆明医科大学学报.
    [12] 黄微.  阿尔茨海默病的 Hcy、 CRP变化与精神行为相关性临床观察, 昆明医科大学学报.
    [13] 张敏莉, 沈忠明, 朱莎, 张娟娟.  地佐辛镇痛对妇科腹腔镜术后认知功能的影响, 昆明医科大学学报.
    [14] 李金路.  丙泊酚对脑损伤大鼠认知功能及BDNF表达的影响, 昆明医科大学学报.
    [15] 黄微.  以睡眠障碍为首要表现的阿尔茨海默病患者的临床观察, 昆明医科大学学报.
    [16] 佘生林.  生活习惯及社会心理因素对广州市社区老人认知功能的影响, 昆明医科大学学报.
    [17] 敖磊.  糖尿病对精神分裂症患者认知功能的影响, 昆明医科大学学报.
    [18] 李桂芬.  脑卒中后抑郁患者认知功能与P300的研究, 昆明医科大学学报.
    [19] 王丹.  癫痫持续状态后患者的认知功能及其影响因素, 昆明医科大学学报.
    [20] 李琪.  血栓通治疗小儿肾病综合征高凝状态及高脂血症的临床分析, 昆明医科大学学报.
  • 加载中
图(4)
计量
  • 文章访问数:  831
  • HTML全文浏览量:  696
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-15
  • 网络出版日期:  2024-02-27
  • 刊出日期:  2024-02-25

目录

    /

    返回文章
    返回