留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MSC-exo一种新型细胞递送工具转运靶向基因调控胰腺癌增殖效应分析

朱磊 李瑞雪 鲍长磊 黄晨宸 梁书鑫 赵振林 朱洪

朱磊, 李瑞雪, 鲍长磊, 黄晨宸, 梁书鑫, 赵振林, 朱洪. MSC-exo一种新型细胞递送工具转运靶向基因调控胰腺癌增殖效应分析[J]. 昆明医科大学学报, 2024, 45(2): 39-48. doi: 10.12259/j.issn.2095-610X.S20240206
引用本文: 朱磊, 李瑞雪, 鲍长磊, 黄晨宸, 梁书鑫, 赵振林, 朱洪. MSC-exo一种新型细胞递送工具转运靶向基因调控胰腺癌增殖效应分析[J]. 昆明医科大学学报, 2024, 45(2): 39-48. doi: 10.12259/j.issn.2095-610X.S20240206
Lei ZHU, Ruixue LI, Changlei BAO, Chenchen HUANG, Shuxin LIANG, Zhenlin ZHAO, Hong ZHU. Effect of MSC-exo,a New Cell Delivery Tool,on Gene Delivery and Proliferation of Pancreatic Cancer[J]. Journal of Kunming Medical University, 2024, 45(2): 39-48. doi: 10.12259/j.issn.2095-610X.S20240206
Citation: Lei ZHU, Ruixue LI, Changlei BAO, Chenchen HUANG, Shuxin LIANG, Zhenlin ZHAO, Hong ZHU. Effect of MSC-exo,a New Cell Delivery Tool,on Gene Delivery and Proliferation of Pancreatic Cancer[J]. Journal of Kunming Medical University, 2024, 45(2): 39-48. doi: 10.12259/j.issn.2095-610X.S20240206

MSC-exo一种新型细胞递送工具转运靶向基因调控胰腺癌增殖效应分析

doi: 10.12259/j.issn.2095-610X.S20240206
基金项目: 深圳市科技创新基础研究基金资助项目(JCYJ20190807103605679)
详细信息
    作者简介:

    朱磊(1984~),男,云南昆明人,医学硕士,主治医师,主要从事MSC在胰腺癌中的机制研究工作

    通讯作者:

    朱洪,E-mail:zhuhong@kmmu.edu.cn

  • 中图分类号: R4

Effect of MSC-exo,a New Cell Delivery Tool,on Gene Delivery and Proliferation of Pancreatic Cancer

  • 摘要:   目的  观察1种新型细胞递送工具(MSC-exo)转运靶向基因调控胰腺癌增殖效应。  方法  透射电子显微镜(transmission electron microscope,TEM)和纳米颗粒跟踪分析技术(nanoparticle tracking analysis,NTA)鉴定人间充质干细胞外泌体(human mesenchymal stem cell exosomes,MSC-exo)并转运miR-450a-5p进入CFPAC-1,探讨miR-450a-5p靶向BZW2抑制胰腺癌细胞增殖效应。基因技术处理Pc-BZW2,CCK-8、EdU、细胞划痕、Transwell验证MSC-exo与MSC-exo-miR-450a-5p对细胞的抑制作用。  结果  与胰腺正常组织相比miR-450a-5p在胰腺癌组织中低表达(P<0.05),CFPAC-1细胞MSC-exo-miR-450a-5p外泌体标记蛋白CD63、TSG101表达高于MSC-exo(P<0.05)。CCK-8、EdU、细胞划痕、Transwell实验显示MSC-exo-miR-450a-5p较MSC-exo可显著抑制CFPAC-1细胞增殖、侵袭和迁移(P<0.05)。通过双荧光素酶实验证实,miR-450a-5p靶向BZW2,并且RT-qPCR和免疫印迹检测miR-450a-5p和 BZW2表达成负性相关(P<0.05)。过表达BZW2,CCK-8、EdU、细胞划痕、Transwell实验均证实,pc-BZW2逆转MSC-exo-miR-450a-5p对CFPAC-1的抑癌功能,免疫印迹检测PCNA、Ki-67、MMP2、MMP9,结果与上述实验一致(P<0.05)。  结论  hMSC-exo是1种新的递送系统,靶向BZW2转运miR-450a-5p抑制胰腺癌细胞的生物学恶性,为胰腺癌靶向治疗研究提供了重要线索。
  • 图  1  胰腺癌组织和细胞中miR-450a-5p呈低表达($\bar x \pm s$, n=6)

    A:miR-126-5p在胰腺癌组织中的表达水平低于正常胰腺组织;与Normal组比较,*P<0.05;B:CFPAC-1和PANC-1细胞系的miR-450a-5p表达低于HPC-Y5细胞,与HPC-Y5组比较,***P<0.001。

    Figure  1.  The expression of miR-450a-5p was low in pancreatic cancer tissues and cells. ($\bar x \pm s$,n=6)

    图  2  CFPAC-1细胞摄取MSC-exo-miR-450a-5p

    A:使用生物透射电子显微镜(TEM)观察样品中外泌体的形态和大小;B:外泌体和MSC-exo的平均粒径和主峰;C:标记蛋白(CD63和TSG101)的表达水平在MSC-exo-miR-450a-5p组中较高;D:miR-450a-5p在MSC-exo-miR-450a-5p组中的表达高于MSC-exo组;E:CFPAC-1细胞摄取MSC-exo和MSC-exo-miR-450a-5p。与MSC-exo组比较,***P<0.001。

    Figure  2.  CFPAC-1 cells uptake MSC-exo-miR-450a-5p

    图  3  MSC-exo-miR-450a-5p抑制CFPAC-1细胞生物学行为

    A:MSC-exo-miR-450a-5p显著抑制胰腺癌细胞增殖;B:EdU测定MSC-exo-miR-450a-5P对细胞的增殖影响;C:用蛋白质印迹法检测增殖相关蛋白的水平;D~E:MSC-exo-miR-450a-5p抑制侵袭和迁移;F:MMP2和MMP9的蛋白水平被MSC-exo-miR-450a-5p抑制,与MSC-exo组比较,***P<0.001。

    Figure  3.  MSC-exo-miR-450a-5p inhibits the biological behavior of CFPAC-1 cells

    图  4  miR-450a-5p靶向BZW2

    A:PITA、miRanda和miRmap数据库中miR-450a-5p靶点的交叉点;B:miR-450a-5p和BZW2的组合;C:双荧光素酶报告基因测定,与NC mimic组比较,***P<0.001。

    Figure  4.  MiR-450a-5p targets BZW2

    图  5  BZW2在CFPAC-1细胞中呈高表达

    A:根据“StarBase”数据库,BZW2在胰腺癌组织中的表达水平高于正常组织,与Normal组比较,*P<0.05。B:BZW2在胰腺癌细胞中表达较高,与HPC-Y5组比较,***P<0.001。C:RT-qPCR检测用miR-450a-5p模拟物转染的胰腺癌细胞中BZW2的基因表达;D:免疫印迹分析检测用miR-450a-5p模拟物转染的胰腺癌细胞中BZW2的蛋白表达;E:miR-450a-5p与BZW2的相关性分析,与NC mimic组比较,***P<0.001。

    Figure  5.  BZW2 is highly expressed in CFPAC-1 cells

    图  6  Pc-BZW2逆转MSC-exo-miR-450a-5p的增殖抑制功能

    A:基于CCK-8测定,MSC-exo-miR-450a-5p抑制CFPAC-1增殖,而Pc-BZW2逆转了增殖效应;B:分组处理细胞,EdU实验检测,BZW2逆转MSC-exo-miR-450a-5p对胰腺癌的增殖效应;C:miR-450a-5p抑制PCNA和Ki-67的表达,而Pc-BZW2部分逆转了这种作用;D:分组处理,MSC-exo-miR-450a-5p抑制侵袭过程;E:分组处理, MSC-exo-miR-450a-5p抑制迁移过程;F:MMP2和MMP9的蛋白水平被MSC-exo-miR-450a-5p抑制,但Pc-BZW2可逆转,与MSC-exo组比较,***P<0.001,与MSC-exo-miR-450a-5p+pc-NC组比较,###P<0.001。

    Figure  6.  Pc-BZW2 reverses the proliferation inhibition function of MSC exo miR-450a-5p

    表  1  引物序列

    Table  1.   Primer sequence

    基因上游下游
    miR-450a-5p 5'-TTTTGCGATGTGTTCC-3' 5'-GTGCAGGGTCCGAGGT-3'
    U6 5'-TGCTCACTGTCTAAAATTGG-3' 5'-AGAAGAAGTCTGCTGTTGAC-3'
    BZW2 5'-CTAACAGGCCAGCGGTTCAAA-3' 5'-GGACAAGTGTATCCCTGAAGACT-3'
    B-actin 5'-ACACAGTGCTGTCTGGTGGT-3' 5'-TGATCTTCATGGTGCTGGGAG-3'
    下载: 导出CSV
  • [1] Stoffel E M, Brand R E, Goggins M. Pancreatic cancer: Changing epidemiology and new approaches to risk assessment, early detection, and prevention[J]. Gastroenterology,2023,164(5):752-765. doi: 10.1053/j.gastro.2023.02.012
    [2] Yu J, Yang X, Wu H, et al. Clinical significance of color ultrasound, MRI, miR-21, and CA199 in the diagnosis of pancreatic cancer[J]. J Oncol,2021,2021:2380958.
    [3] Ji J, Cao C, Xu H: Minimally invasive intervention of obstructive jaundice in pancreatic cancer[J]. Integrative Pancreatic Intervention Therapy, 2021.
    [4] Hu ZI, O'Reilly EM. Therapeutic developments in pancreatic cancer[J]. Nat Rev Gastroenterol Hepatol,2024,21(1):7-24. doi: 10.1038/s41575-023-00840-w.Epub2023Oct5
    [5] Mihaljevic A L,Michalski C W,Friess H,et al. Molecular mechanism of pancreatic cancer—understanding proliferation, invasion, and metastasis[J]. Langenbeck's Archives of Surgery,2010,395(4):295-308.
    [6] Fu Y, Liu X, Chen Q, et al. Downregulated miR-98-5p promotes PDAC proliferation and metastasis by reversely regulating MAP4K4[J]. Journal of Experimental & Clinical Cancer Research,2018,37(1):130.
    [7] Jiang M, Jike Y, Liu K, et al. Exosome-mediated miR-144-3p promotes ferroptosis to inhibit osteosarcoma proliferation, migration, and invasion through regulating ZEB1[J]. Mol Cancer,2023,22(1):113. doi: 10.1186/s12943-023-01804-z
    [8] Nakata K, Ohuchida K, Mizumoto K, et al. MicroRNA-10b is overexpressed in pancreatic cancer, promotes its invasiveness, and correlates with a poor prognosis[J]. Surgery,2011,150(5):916-922. doi: 10.1016/j.surg.2011.06.017
    [9] Vogt M, Munding J, Gr ü ner M, et al. Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas[J]. Virchows Archiv,2011,458(3):313-322. doi: 10.1007/s00428-010-1030-5
    [10] Hamada S, Satoh K, Fujibuchi W, et al. MiR-126 Acts as a tumor suppressor in pancreatic cancer cells via the regulation of ADAM9[J]. Molecular Cancer Research,2012,10(1):3-10. doi: 10.1158/1541-7786.MCR-11-0272
    [11] Zhang Y, Yu M, Dai M, et al. miR-450a-5p within rat adipose tissue exosome-like vesicles promotes adipogenic differentiation by targeting WISP2[J]. Journal of Cell Science,2017,130(6):1158-1168.
    [12] Chen H,Yao X,Di X,et al. MiR-450a-5p inhibits autophagy and enhances radiosensitivity by targeting dual-specificity phosphatase 10 in esophageal squamous cell carcinoma[J]. Cancer Lett,2020,28:483:114-126. doi: 10.1016/j.canlet.2020.01.037
    [13] Zhang Z W, Chen J J, Xia S H, et al. Long intergenic non-protein coding RNA 319 aggravates lung adenocarcinoma carcinogenesis by modulating miR-450b-5p/EZH2[J]. Gene,2018,15:650:60-67.
    [14] Zhao Y J, Zhang J, Wang Y C, et al. MiR-450a-5p inhibits gastric cancer cell proliferation, migration, and invasion and promotes apoptosis via targeting CREB1 and inhibiting AKT/GSK-3β signaling pathway[J]. Front Oncol,2021,29:11:633366. doi: 10.3389/fonc.2021.633366
    [15] Ribeiro M F, Zhu H, Millard R W, et al. Exosomes function in pro-and anti-angiogenesis[J]. Current Angiogenesis,2013,2(1):54. doi: 10.2174/22115528113020020001
    [16] Yeo R, Lai R C, Zhang B, et al. Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery[J]. Adv Drug Deliv Rev,2013,65(3):336-341. doi: 10.1016/j.addr.2012.07.001
    [17] Gao L, Qiu F, Cao H, et al. Therapeutic delivery of microRNA-125a-5p oligonucleotides improves recovery from myocardial ischemia/reperfusion injury in mice and swine[J]. Theranostics,2023,13(2):685-703. doi: 10.7150/thno.73568
    [18] Ageta H, Tsuchida K. Post-translational modification and protein sorting to small extracellular vesicles including exosomes by ubiquitin and UBLs[J]. Cellular and Molecular Life Sciences, 2019, 76(24): 4829-4848.
    [19] Gao W, Fei L, Liu L, et al. Endothelial colony-forming cell-derived exosomes restore blood-brain barrier continuity in mice subjected to traumatic brain injury[J]. Experimental Neurology,2018,307:99-108. doi: 10.1016/j.expneurol.2018.06.001
    [20] Silverman J M, Clos J, Horakova E, et al. Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells[J]. The Journal of Immunology,2010,185(9):5011-5022. doi: 10.4049/jimmunol.1000541
    [21] Paskeh M D A, Entezari M, Mirzaei S, et al. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling[J]. J Hematol Oncol,2022,15(1):83. doi: 10.1186/s13045-022-01305-4
    [22] Huang J, Yu M, Yin W, et al. Development of a novel RNAi therapy: Engineered miR-31 exosomes promoted the healing of diabetic wounds[J]. Bioactive Materials,2021,6(9):2841-2853. doi: 10.1016/j.bioactmat.2021.02.007
    [23] Kamerkar S, LeBleu V S, Sugimoto H, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer[J]. Nature,2017,546(7659):498-503. doi: 10.1038/nature22341
    [24] Choi H D, Chang M J. Eye, hepatobiliary, and renal disorders of erlotinib in patients with non-small-cell lung cancer: A meta-analysis[J]. PLoS One,2020,15(7):e0234818. doi: 10.1371/journal.pone.0234818
    [25] Chen J, Chen S, Zhuo L, et al. Regulation of cancer stem cell properties, angiogenesis, and vasculogenic mimicry by miR-450a-5p/SOX2 axis in colorectal cancer[J]. Cell Death Disease, 2020, 11: 173.
    [26] Sharma N S, Gupta V K, Dauer P, et al. O-GlcNAc modification of Sox2 regulates self-renewal in pancreatic cancer by promoting its stability[J]. Theranostics, 2019, 9(12): 3410-3424.
    [27] Loughran G, Firth A E, Atkins J F, et al. Translational autoregulation of BZW1 and BZW2 expression by modulating the stringency of start codon selection[J]. PLoS ONE,2018,13(2):e0192648. doi: 10.1371/journal.pone.0192648
    [28] Antony P, Petro J B, Carlesso G, et al. B cell receptor directs the activation of NFAT and NF-kappaB via distinct molecular mechanisms[J]. Experimental Cell Research,2003,291(1):11-24. doi: 10.1016/S0014-4827(03)00338-0
    [29] Yu H, Lin L, Zhang Z, et al. Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study[J]. Signal Transduct Target Ther,2020,5(1):209. doi: 10.1038/s41392-020-00312-6
    [30] Liu X, Hogg G D, Zuo C, et al. Context-dependent activation of STING-interferon signaling by CD11b agonists enhances anti-tumor immunity[J]. Cancer Cell,2023,41(6):1073-1090.e12. doi: 10.1016/j.ccell.2023.04.018
    [31] Sun R Q, Qing Z L I, Yan H B, et al. Bzw2 Promotes Proliferation and Lactation of Mammary Epithelial Cell in Dairy Goat[J]. 农业科学学报:英文版,2012,11(11):8.
  • [1] 曾庆彬, 徐蓉, 董文志, 陈志坚, 廖伟然, 龙奎.  锌指转录因子Sall4在胰腺癌中的表达及对细胞侵袭和迁移的影响, 昆明医科大学学报.
    [2] 冯润林, 邓宗柒, 吴梦瑶, 王云娜, 王瑜, 刘桂兰.  GJB4基因在胰腺癌中的表达及其与患者临床病理特征的关系, 昆明医科大学学报.
    [3] 刘思佳, 杨亚英, 彭超, 李亚敏.  增强CT及MRI检查在胰腺癌术前TNM分期中的应用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230628
    [4] 曹诗杰, 安红伟.  MSC来源外泌体治疗缺血性脑卒中机制及进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230913
    [5] 张梁, 王保全, 雷喜锋, 王旭, 柯阳, 张玮.  M2巨噬细胞来源的外泌体miR-1246调控胃癌细胞的生长和侵袭, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230724
    [6] 顾君, 何泽喜, 栾婷, 王海峰, 王剑松, 丁明霞.  外泌体长链非编码RNA在膀胱癌中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220110
    [7] 张天红, 杨红菊.  外泌体miRNA在肝细胞癌中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220221
    [8] 蔡啸, 扆雪涛, 姚菁青, 戴昕妤, 汤忠泉, 欧婷, 赵晓敏, 李云涛.  人骨髓间充质干细胞分泌的外泌体调控恶性胶质瘤相关巨噬细胞的极化, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210101
    [9] 李京辉, 朱明, 曲海, 李秋宇, 吴玉娟, 杨贺英, 王郁竹, 李妍平.  miR-490-3p调控SW1990胰腺癌细胞上皮间充质转化, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210305
    [10] 马丽娅, 饶南荃, 杨禾丰.  间充质干细胞外泌体在口腔组织再生中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210527
    [11] 李飞飞, 郝金钢.  IVIM-DWI定量参数对胰腺癌的诊断价值, 昆明医科大学学报.
    [12] 魏韩笑, 张爱君, 李强, 金培生.  血管内皮祖细胞外泌体调控骨髓间充质干细胞基因表达谱芯片, 昆明医科大学学报.
    [13] 殷顺会, 詹烨明, 贾凤梅, 冉丽权, 张明珠.  高通量测序筛查特发性牙龈纤维瘤和正常牙龈外泌体miRNAs差异表达, 昆明医科大学学报.
    [14] 贾凤梅, 殷顺会, 冉丽权, 田明彤, 张明珠.  特发性牙龈纤维瘤来源外泌体对正常牙龈细胞周期的影响, 昆明医科大学学报.
    [15] 於晓东, 龙江.  12外泌体对体外血脑屏障模型功能的影响, 昆明医科大学学报.
    [16] 沈红, 汪秀云, 许辉琼, 刘霞.  274例胰腺癌临床病理特征及影响患者预后的危险因素, 昆明医科大学学报.
    [17] 杨科, 单祖建, 周琼华, 王峻峰.  可溶性细胞因子受体及基质金属蛋白酶与胰腺癌的关系, 昆明医科大学学报.
    [18] 雷学芬.  立体定向放射治疗中晚期胰腺癌临床疗效观察, 昆明医科大学学报.
    [19] 干扰CXCR4基因抑制胰腺癌经典Wnt通路活化的体外实验研究, 昆明医科大学学报.
    [20] 杨锋.  两种培养方法在猪自体骨髓间充质干细胞培养的比较研究, 昆明医科大学学报.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  985
  • HTML全文浏览量:  644
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-01
  • 网络出版日期:  2024-02-26
  • 刊出日期:  2024-02-25

目录

    /

    返回文章
    返回