留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MSC-exo一种新型细胞递送工具转运靶向基因调控胰腺癌增殖效应分析

朱磊 李瑞雪 鲍长磊 黄晨宸 梁书鑫 赵振林 朱洪

徐丽秀, 美力班·吐尔逊, 克热曼·牙库甫. miR-181a在卵巢癌细胞中对顺铂的耐药作用[J]. 昆明医科大学学报, 2022, 43(1): 20-25. doi: 10.12259/j.issn.2095-610X.S20220131
引用本文: 朱磊, 李瑞雪, 鲍长磊, 黄晨宸, 梁书鑫, 赵振林, 朱洪. MSC-exo一种新型细胞递送工具转运靶向基因调控胰腺癌增殖效应分析[J]. 昆明医科大学学报, 2024, 45(2): 39-48. doi: 10.12259/j.issn.2095-610X.S20240206
Lixiu XU, TUERXUN Meiliban, YAKUFU Kereman. Studies on Cisplatin Resistance of miR-181a in Ovarian Cancer Cells[J]. Journal of Kunming Medical University, 2022, 43(1): 20-25. doi: 10.12259/j.issn.2095-610X.S20220131
Citation: Lei ZHU, Ruixue LI, Changlei BAO, Chenchen HUANG, Shuxin LIANG, Zhenlin ZHAO, Hong ZHU. Effect of MSC-exo,a New Cell Delivery Tool,on Gene Delivery and Proliferation of Pancreatic Cancer[J]. Journal of Kunming Medical University, 2024, 45(2): 39-48. doi: 10.12259/j.issn.2095-610X.S20240206

MSC-exo一种新型细胞递送工具转运靶向基因调控胰腺癌增殖效应分析

doi: 10.12259/j.issn.2095-610X.S20240206
基金项目: 深圳市科技创新基础研究基金资助项目(JCYJ20190807103605679)
详细信息
    作者简介:

    朱磊(1984~),男,云南昆明人,医学硕士,主治医师,主要从事MSC在胰腺癌中的机制研究工作

    通讯作者:

    朱洪,E-mail:zhuhong@kmmu.edu.cn

  • 中图分类号: R4

Effect of MSC-exo,a New Cell Delivery Tool,on Gene Delivery and Proliferation of Pancreatic Cancer

  • 摘要:   目的  观察1种新型细胞递送工具(MSC-exo)转运靶向基因调控胰腺癌增殖效应。  方法  透射电子显微镜(transmission electron microscope,TEM)和纳米颗粒跟踪分析技术(nanoparticle tracking analysis,NTA)鉴定人间充质干细胞外泌体(human mesenchymal stem cell exosomes,MSC-exo)并转运miR-450a-5p进入CFPAC-1,探讨miR-450a-5p靶向BZW2抑制胰腺癌细胞增殖效应。基因技术处理Pc-BZW2,CCK-8、EdU、细胞划痕、Transwell验证MSC-exo与MSC-exo-miR-450a-5p对细胞的抑制作用。  结果  与胰腺正常组织相比miR-450a-5p在胰腺癌组织中低表达(P<0.05),CFPAC-1细胞MSC-exo-miR-450a-5p外泌体标记蛋白CD63、TSG101表达高于MSC-exo(P<0.05)。CCK-8、EdU、细胞划痕、Transwell实验显示MSC-exo-miR-450a-5p较MSC-exo可显著抑制CFPAC-1细胞增殖、侵袭和迁移(P<0.05)。通过双荧光素酶实验证实,miR-450a-5p靶向BZW2,并且RT-qPCR和免疫印迹检测miR-450a-5p和 BZW2表达成负性相关(P<0.05)。过表达BZW2,CCK-8、EdU、细胞划痕、Transwell实验均证实,pc-BZW2逆转MSC-exo-miR-450a-5p对CFPAC-1的抑癌功能,免疫印迹检测PCNA、Ki-67、MMP2、MMP9,结果与上述实验一致(P<0.05)。  结论  hMSC-exo是1种新的递送系统,靶向BZW2转运miR-450a-5p抑制胰腺癌细胞的生物学恶性,为胰腺癌靶向治疗研究提供了重要线索。
  • 卵巢癌是一种常见的恶性肿瘤,影响当代妇女生命安全[1]。据报道,2018年全球新增病例295 414例,受害者超过18万人,预计2020年全球OC的新发病例为308 069例,死亡约193.811例[2]。除手术外,以铂类药物为主的化学治疗是目前卵巢癌主要治疗手段,但肿瘤耐对上皮性卵巢癌的化疗带来了极大的挑战,其调控机制十分复杂[3-4]

    microRNA(miRNAs )存在于多种生物体中,在细胞生存和肿瘤发生等过程中发挥重要的调控作用[5-6]。随着对miRNAs研究,miRNAs参与卵巢癌的化疗中肿瘤耐性的作用及调控机制研究也日渐深入[7]。miR-181a在肝癌、结肠癌、恶性脑胶质瘤、霍奇金淋巴瘤等肿瘤发生中发挥重要的调控作用[8-10],但其与卵巢上皮性癌(卵巢癌)化疗耐药及其机制的研究未见报道。PPKCD被证实是一种促凋亡蛋白激酶,与细胞周期进展有关且参与多种细胞进程,特别是在化疗耐受方面受到广泛关注[11]。本研究通过功能获得性和缺失性研究,联合MicroRNA靶基因预测数据库分析,探讨miR-181a影响PRKCD基因表达及卵巢癌A2780/DDP细胞及A2780细胞的增殖,为卵巢癌靶向治疗奠定一定的理论基础。

    卵巢癌耐药细胞A2780/DDP及敏感细胞A2780均获赠于新疆医科大学第一附属医院肿瘤中心。1640培养基购自以色列BI公司。脂质体2000购买于美国LifeTechnologies公司。BCA蛋白定量试剂盒购自美国Thermo公司。PRKCD抗体、β-actin均购自美国Abcam公司。miR-181a mimics和inhibitors及阴性对照购买于美国Dharmacon公司。TaqManMicroRNA试剂盒,反转录试剂盒购自美国Life公司。

    1.2.1   实时定量PCR(qRT-PCR)

    细胞达到适宜密度时,使用无菌细胞刮收集细胞沉淀,加入Trizol后对细胞进行总RNA的提取,随后按照相对应产品说明书,对RNA进行反转录以及目的基因的扩增。反应条件如下:94 ℃预变性2 min,94 ℃变性1 min,60 ℃退火30 s,70 ℃延伸15 s,执行35个循环,以U6作为内参照,根据2-△△CT计算RNA相对表达量,并进行数据分析。每一组实验重复3次。引物序列如下,

    miR-181a:上游5′ -TGCGGGTGCTCCGCTTCGGCAGC-3′ ,

    下游5′ -GAGTGCAGGGTCCGAGGT-3′ ;

    U6:上游5′ -CTCGCTTCGGCAGCACA-3′ ,

    下游 5′ -AACGCTTCACGAATTTGCGT-3′ 。

    1.2.2   细胞转染

    取1×105个/孔的A2780及A2780/DDP细胞接种于6孔板内,按照预实验结果对上述两种细胞进行转染。分组情况如下,将A2780细胞分为3 组,分别为miR-181a inhibitor组(转染miR-181a inhibitor),inhibitorNC组(阴性对照),空白组(常规培养基培养)。 将A2780/DDP细胞同样分为3组,分别为miR-181a mimics组(转染miR-181a mimics),mimicsNC组(阴性对照),空白组(常规培养基培养)。转染6 h后更换培养基,继续培养48 h,在荧光倒置显微镜下观察绿色荧光亮度,随后采用Real-time PCR检测转染效率。

    1.2.3   MTT

    96孔板中加入适当密度的细胞,待细胞过夜贴壁后,向每孔中分别加入浓度不同的顺铂,浓度如下0、10、20、30、40、50 μmol/L,同一种浓度下设3个复孔。 20 μL MTT溶液添加至孔中,37 ℃环境中放置4 h,随后加入150 μL 的DMSO。酶标仪中设置波长570 nm,测定每个孔中的吸光度数值(OD),取3组平均值。细胞存活率(%)=(OD实验孔/OD对照孔)×100%,绘制细胞的生存曲线。

    1.2.4   蛋白质提取及Western blot

    向状态良好的细胞中加入100 μL强效RIPA裂解液在冰上裂解30 min,期间每隔10 min吹打一次,共3次,保证细胞裂解充分。用无菌的细胞刮将裂解液和细胞的混合物转移至EP管中离心,在BCA蛋白定量试剂盒的指导下进行蛋白定量,用于后续Western blot实验。

    检测电泳设备无漏液后,每孔道添加30 µg蛋白,经过恒压湿转,将SDS-PAGE上的蛋白转移至PVDF膜上,封闭液封闭1 h,加入一抗4 ℃孵育过夜,抗体浓度分别为1∶500的PRKCD,1∶1000的β-actin。次日,使用HRP标记的二抗室温条件下孵育1 h,利用配制的ECL显影剂(A液∶B液 = 1∶1)于暗室下显影。

    1.2.5   统计学处理

    采用SPSS16.0统计学软件进行统计分析;计量资料以均数±标准差($\bar x \pm s $)表示,采用t检验或方差分析。以P < 0.05为差异具有统计学意义。

    Real-timePCR技术检测显示miR-181a在A2780/DDP细胞中mRNA表达量低于A2780细胞(P < 0.05)(图1)。随后选取A2780/DDP细胞进行miR-181a mimics转染,选取A2780细胞进行miR-181a inhibitor转染。

    图  1  miR-181a在两种卵巢癌细胞中qRT-PCR结果
    与A2780细胞比较,*P < 0.05。
    Figure  1.  The expression of miR-181a mRNA in A2780 and A2780/DDP cells

    利用qRT-PCR技术对转染miR-181ainhibitor和miR-181amimics的细胞进行检测,结果显示,与NC组相比,A2780细胞中miR-181a的表达明显被抑制(图2A);A2780/DDP细胞后miR-181a的表达明显增强(图2B)。以上结果表明miR-181ainhibitor和miR-181amimics转染有效干预了A2780细胞和A2780/DDP细胞中miR-181a的表达,可应用于接下来的实验。

    图  2  miR-181a在两种细胞中qRT-PCR结果
    A:A2780细胞中miR-181a的mRNA相对表达量;B:A2780/DDP细胞中miR-181a的mRNA相对表达量。与空白对照组细胞比较,*P < 0.05。
    Figure  2.  The transfection efficiency of miR-181a inhibitors and mimics

    MTT结果显示,抑制miR-181a后, A2780细胞的存活率随着DDP药物浓度(0、10、20、30、40、50 μmol/L)的增加明显提升(P < 0.05)(表1)。miR-181a 上调后,随着药物浓度的提高,A2780/DDP细胞存活率明显下降,差异具有统计学意义(P < 0.05)(表2)。

    表  1  A2780细胞在不同浓度顺铂作用下的MTT数值
    Table  1.  MTT results of A2780 cells treated with different concentrations of Cisplatin
    组别药物浓度(μmol/L)
    01020304050
    阴性对照组 96.48 ± 1.58 73.42 ± 1.82 52.36 ± 1.32 19.87 ± 2.63 11.28 ± 2.36 6.68 ± 1.72
    低表达组 97.23 ± 1.22 86.72 ± 1.76* 79.52 ± 1.68* 69.86 ± 1.92* 49.62 ± 1.56* 20.27 ± 1.82*
    t −3.007 −12.026 −130.674 −121.951 −83.009 −235.386
    P 0.10 0.01 < 0.001 < 0.001 < 0.001 < 0.001
      与阴性对照组比较,*P < 0.05。
    下载: 导出CSV 
    | 显示表格
    表  2  A2780/DDP细胞在不同浓度顺铂作用下的MTT数值
    Table  2.  MTT results of A2780/DDP cells treated with different concentrations of Cisplatin
    组别药物浓度(μmol/L)
    01020304050
    阴性对照组 97.42 ± 1.42 92.85 ± 1.72 85.64 ± 1.87 82.48 ± 2.24 76.95 ± 1.98 61.12 ± 2.32
    低表达组 97.16 ± 1.82 88.63 ± 1.87 84.72 ± 1.87 76.12 ± 1.87 59.72 ± 2.52 40.58 ± 2.78
    t 1.126 48.728 0.6025 29.773 55.265 77.34
    P 0.377 < 0.001 0.579 < 0.001 < 0.001 < 0.001
    下载: 导出CSV 
    | 显示表格

    利用TargetScan、miRDB与miRwalk数据库,对3个数据库进行交集得到517个基因,提示PRKCD可能为miR-181a的下游靶基因(图3),结合Western blot技术验证,结果表明A2780细胞转染miR-181a inhibitors后PRKCD蛋白表达明显增强;而miR-181a 表达上调后,A2780/DDP细胞中PRKCD蛋白表达显著减少(图4)。提示PRKCD蛋白可能作为miR-181a的下游靶基因受其调控。

    图  3  miR-181a靶基因预测韦恩图
    Figure  3.  Venn diagram of screening differentially expressed genes
    图  4  PRKCD蛋白在两种卵巢癌细胞中Western blot结果
    A:A2780细胞中PRKCD的Western blotting结果;B:A2780/DDP细胞中PRKCD的Western blotting结果。
    Figure  4.  Expression of PRKCD protein in A2780 and A2780/DDP cells

    卵巢癌是死率最高的妇科恶性肿瘤之一,5 a生存率仅为25%~30%,高死亡率的原因包括早期症状隐匿,约70%的患者确诊时已为中晚期,且缺乏行之有效的治疗手段[12]。现阶段,以手术结合术后化疗药物治疗卵巢癌已经成为主流手段。但随着治疗周期的持续,肿瘤细胞对其敏感性也会逐渐下降,部分患者短时间之内发生复发,5 a生存率仍很低,疗效仍不理想。

    近年来,随着RNA干扰技术的崛起,其作为一种重要工具和手段已经参与到基因诊断和靶点治疗。目前,研究发现卵巢癌化疗耐药与miRNAs表达谱特征密切相关,并且已证实多种miRNAs具有调控卵巢癌化疗敏感性的作用[13-15]。miRNAs的研究不但揭示了这种生物学过程中的潜在机制,也为深入研究肿瘤耐药性机制提供了可能。miRNAs是细胞增殖、死亡、对抗外界应激和脂肪代谢的关键调节因子[16],有研究表明,miR-181a在结肠癌[7]、淋巴瘤[8]、肝癌[9]、恶性脑胶质瘤[10]中能够起到负性调节细胞恶性生物学行为的能力。虽然研究已证实miR-181a在头颈部肿瘤[17]、小细胞肺癌[18]等肿瘤耐药机制中扮演着重要角色,然而其在调节卵巢癌细胞耐药机制方面的研究报道较少。

    本实验发现,miR-181a表达在卵巢癌A2780细胞中的表达高于卵巢癌A2780/DDP细胞(图1),故采用RNA干扰技术沉默A2780细胞中的miR-181a,相反,对A2780/DDP细胞中miR-181a过表达,通过qRT-PCR技术验证转染效率(图2)。将不同浓度顺铂添加至转染前后及空白组细胞中,结果提示下调miR-218的表达,细胞存活率显著提高,当耐药细胞株中miR-181a表达增高时,细胞存活率降低,表明miR-218在A2780细胞对顺铂的敏感性方面起到抑制作用。根据上述实验结果可以推测miR-181a能使卵巢癌细胞对顺铂的敏感性降低,从而影响卵巢癌细胞的化疗耐药。

    PRKCD (蛋白激酶C δ),是最早发现的不依赖钙激活的蛋白激酶C的同工酶[19],是生长因子信号传导通路上的重要组成部分,能调节各种细胞功能,包括细胞增殖,分化,死亡[20-21]。PRKCD的激活和细胞周期有关[22],且PRKCD的下调能够显著影响肿瘤的恶性进展[23]。PRKCD在细胞凋亡中的作用已被广泛研究,而促进细胞凋亡的机制尚不明确,研究报道凋亡信号通路相关的几种蛋白可作为PRKCD的底物,其中包括促凋亡蛋白Smac和Tap63[24],抗凋亡蛋白Mcl‐1。在化疗药物治疗肿瘤机制研究中,PKCD被认为是细胞凋亡的重要媒介[25]。采用TargetScan、miRDB与miRwalk等数据库分析,PRKCD基因可能是miR-181a的靶基因(图3),Ke等报道miR-181a通过抑制PRKCD的表达增加宫颈癌对放疗的耐药性[26],笔者的结果表明miR-181a与PRKCD蛋白表达之间可能存在负调控(图4),与预测结果及上述文献一致。

    以上结果提示miR-181a在抑制卵巢癌细胞对顺铂的耐药性方面存在一定作用,且可能通过调控PRKCD表达来实现。但对于miR-181a在卵巢癌顺铂化疗耐药性及免疫治疗中的具体作用机制,以及其在卵巢癌预后方面的作用尚需进一步的研究。

  • 图  1  胰腺癌组织和细胞中miR-450a-5p呈低表达($\bar x \pm s$, n=6)

    A:miR-126-5p在胰腺癌组织中的表达水平低于正常胰腺组织;与Normal组比较,*P<0.05;B:CFPAC-1和PANC-1细胞系的miR-450a-5p表达低于HPC-Y5细胞,与HPC-Y5组比较,***P<0.001。

    Figure  1.  The expression of miR-450a-5p was low in pancreatic cancer tissues and cells. ($\bar x \pm s$,n=6)

    图  2  CFPAC-1细胞摄取MSC-exo-miR-450a-5p

    A:使用生物透射电子显微镜(TEM)观察样品中外泌体的形态和大小;B:外泌体和MSC-exo的平均粒径和主峰;C:标记蛋白(CD63和TSG101)的表达水平在MSC-exo-miR-450a-5p组中较高;D:miR-450a-5p在MSC-exo-miR-450a-5p组中的表达高于MSC-exo组;E:CFPAC-1细胞摄取MSC-exo和MSC-exo-miR-450a-5p。与MSC-exo组比较,***P<0.001。

    Figure  2.  CFPAC-1 cells uptake MSC-exo-miR-450a-5p

    图  3  MSC-exo-miR-450a-5p抑制CFPAC-1细胞生物学行为

    A:MSC-exo-miR-450a-5p显著抑制胰腺癌细胞增殖;B:EdU测定MSC-exo-miR-450a-5P对细胞的增殖影响;C:用蛋白质印迹法检测增殖相关蛋白的水平;D~E:MSC-exo-miR-450a-5p抑制侵袭和迁移;F:MMP2和MMP9的蛋白水平被MSC-exo-miR-450a-5p抑制,与MSC-exo组比较,***P<0.001。

    Figure  3.  MSC-exo-miR-450a-5p inhibits the biological behavior of CFPAC-1 cells

    图  4  miR-450a-5p靶向BZW2

    A:PITA、miRanda和miRmap数据库中miR-450a-5p靶点的交叉点;B:miR-450a-5p和BZW2的组合;C:双荧光素酶报告基因测定,与NC mimic组比较,***P<0.001。

    Figure  4.  MiR-450a-5p targets BZW2

    图  5  BZW2在CFPAC-1细胞中呈高表达

    A:根据“StarBase”数据库,BZW2在胰腺癌组织中的表达水平高于正常组织,与Normal组比较,*P<0.05。B:BZW2在胰腺癌细胞中表达较高,与HPC-Y5组比较,***P<0.001。C:RT-qPCR检测用miR-450a-5p模拟物转染的胰腺癌细胞中BZW2的基因表达;D:免疫印迹分析检测用miR-450a-5p模拟物转染的胰腺癌细胞中BZW2的蛋白表达;E:miR-450a-5p与BZW2的相关性分析,与NC mimic组比较,***P<0.001。

    Figure  5.  BZW2 is highly expressed in CFPAC-1 cells

    图  6  Pc-BZW2逆转MSC-exo-miR-450a-5p的增殖抑制功能

    A:基于CCK-8测定,MSC-exo-miR-450a-5p抑制CFPAC-1增殖,而Pc-BZW2逆转了增殖效应;B:分组处理细胞,EdU实验检测,BZW2逆转MSC-exo-miR-450a-5p对胰腺癌的增殖效应;C:miR-450a-5p抑制PCNA和Ki-67的表达,而Pc-BZW2部分逆转了这种作用;D:分组处理,MSC-exo-miR-450a-5p抑制侵袭过程;E:分组处理, MSC-exo-miR-450a-5p抑制迁移过程;F:MMP2和MMP9的蛋白水平被MSC-exo-miR-450a-5p抑制,但Pc-BZW2可逆转,与MSC-exo组比较,***P<0.001,与MSC-exo-miR-450a-5p+pc-NC组比较,###P<0.001。

    Figure  6.  Pc-BZW2 reverses the proliferation inhibition function of MSC exo miR-450a-5p

    表  1  引物序列

    Table  1.   Primer sequence

    基因上游下游
    miR-450a-5p 5'-TTTTGCGATGTGTTCC-3' 5'-GTGCAGGGTCCGAGGT-3'
    U6 5'-TGCTCACTGTCTAAAATTGG-3' 5'-AGAAGAAGTCTGCTGTTGAC-3'
    BZW2 5'-CTAACAGGCCAGCGGTTCAAA-3' 5'-GGACAAGTGTATCCCTGAAGACT-3'
    B-actin 5'-ACACAGTGCTGTCTGGTGGT-3' 5'-TGATCTTCATGGTGCTGGGAG-3'
    下载: 导出CSV
  • [1] Stoffel E M, Brand R E, Goggins M. Pancreatic cancer: Changing epidemiology and new approaches to risk assessment, early detection, and prevention[J]. Gastroenterology,2023,164(5):752-765. doi: 10.1053/j.gastro.2023.02.012
    [2] Yu J, Yang X, Wu H, et al. Clinical significance of color ultrasound, MRI, miR-21, and CA199 in the diagnosis of pancreatic cancer[J]. J Oncol,2021,2021:2380958.
    [3] Ji J, Cao C, Xu H: Minimally invasive intervention of obstructive jaundice in pancreatic cancer[J]. Integrative Pancreatic Intervention Therapy, 2021.
    [4] Hu ZI, O'Reilly EM. Therapeutic developments in pancreatic cancer[J]. Nat Rev Gastroenterol Hepatol,2024,21(1):7-24. doi: 10.1038/s41575-023-00840-w.Epub2023Oct5
    [5] Mihaljevic A L,Michalski C W,Friess H,et al. Molecular mechanism of pancreatic cancer—understanding proliferation, invasion, and metastasis[J]. Langenbeck's Archives of Surgery,2010,395(4):295-308.
    [6] Fu Y, Liu X, Chen Q, et al. Downregulated miR-98-5p promotes PDAC proliferation and metastasis by reversely regulating MAP4K4[J]. Journal of Experimental & Clinical Cancer Research,2018,37(1):130.
    [7] Jiang M, Jike Y, Liu K, et al. Exosome-mediated miR-144-3p promotes ferroptosis to inhibit osteosarcoma proliferation, migration, and invasion through regulating ZEB1[J]. Mol Cancer,2023,22(1):113. doi: 10.1186/s12943-023-01804-z
    [8] Nakata K, Ohuchida K, Mizumoto K, et al. MicroRNA-10b is overexpressed in pancreatic cancer, promotes its invasiveness, and correlates with a poor prognosis[J]. Surgery,2011,150(5):916-922. doi: 10.1016/j.surg.2011.06.017
    [9] Vogt M, Munding J, Gr ü ner M, et al. Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas[J]. Virchows Archiv,2011,458(3):313-322. doi: 10.1007/s00428-010-1030-5
    [10] Hamada S, Satoh K, Fujibuchi W, et al. MiR-126 Acts as a tumor suppressor in pancreatic cancer cells via the regulation of ADAM9[J]. Molecular Cancer Research,2012,10(1):3-10. doi: 10.1158/1541-7786.MCR-11-0272
    [11] Zhang Y, Yu M, Dai M, et al. miR-450a-5p within rat adipose tissue exosome-like vesicles promotes adipogenic differentiation by targeting WISP2[J]. Journal of Cell Science,2017,130(6):1158-1168.
    [12] Chen H,Yao X,Di X,et al. MiR-450a-5p inhibits autophagy and enhances radiosensitivity by targeting dual-specificity phosphatase 10 in esophageal squamous cell carcinoma[J]. Cancer Lett,2020,28:483:114-126. doi: 10.1016/j.canlet.2020.01.037
    [13] Zhang Z W, Chen J J, Xia S H, et al. Long intergenic non-protein coding RNA 319 aggravates lung adenocarcinoma carcinogenesis by modulating miR-450b-5p/EZH2[J]. Gene,2018,15:650:60-67.
    [14] Zhao Y J, Zhang J, Wang Y C, et al. MiR-450a-5p inhibits gastric cancer cell proliferation, migration, and invasion and promotes apoptosis via targeting CREB1 and inhibiting AKT/GSK-3β signaling pathway[J]. Front Oncol,2021,29:11:633366. doi: 10.3389/fonc.2021.633366
    [15] Ribeiro M F, Zhu H, Millard R W, et al. Exosomes function in pro-and anti-angiogenesis[J]. Current Angiogenesis,2013,2(1):54. doi: 10.2174/22115528113020020001
    [16] Yeo R, Lai R C, Zhang B, et al. Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery[J]. Adv Drug Deliv Rev,2013,65(3):336-341. doi: 10.1016/j.addr.2012.07.001
    [17] Gao L, Qiu F, Cao H, et al. Therapeutic delivery of microRNA-125a-5p oligonucleotides improves recovery from myocardial ischemia/reperfusion injury in mice and swine[J]. Theranostics,2023,13(2):685-703. doi: 10.7150/thno.73568
    [18] Ageta H, Tsuchida K. Post-translational modification and protein sorting to small extracellular vesicles including exosomes by ubiquitin and UBLs[J]. Cellular and Molecular Life Sciences, 2019, 76(24): 4829-4848.
    [19] Gao W, Fei L, Liu L, et al. Endothelial colony-forming cell-derived exosomes restore blood-brain barrier continuity in mice subjected to traumatic brain injury[J]. Experimental Neurology,2018,307:99-108. doi: 10.1016/j.expneurol.2018.06.001
    [20] Silverman J M, Clos J, Horakova E, et al. Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells[J]. The Journal of Immunology,2010,185(9):5011-5022. doi: 10.4049/jimmunol.1000541
    [21] Paskeh M D A, Entezari M, Mirzaei S, et al. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling[J]. J Hematol Oncol,2022,15(1):83. doi: 10.1186/s13045-022-01305-4
    [22] Huang J, Yu M, Yin W, et al. Development of a novel RNAi therapy: Engineered miR-31 exosomes promoted the healing of diabetic wounds[J]. Bioactive Materials,2021,6(9):2841-2853. doi: 10.1016/j.bioactmat.2021.02.007
    [23] Kamerkar S, LeBleu V S, Sugimoto H, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer[J]. Nature,2017,546(7659):498-503. doi: 10.1038/nature22341
    [24] Choi H D, Chang M J. Eye, hepatobiliary, and renal disorders of erlotinib in patients with non-small-cell lung cancer: A meta-analysis[J]. PLoS One,2020,15(7):e0234818. doi: 10.1371/journal.pone.0234818
    [25] Chen J, Chen S, Zhuo L, et al. Regulation of cancer stem cell properties, angiogenesis, and vasculogenic mimicry by miR-450a-5p/SOX2 axis in colorectal cancer[J]. Cell Death Disease, 2020, 11: 173.
    [26] Sharma N S, Gupta V K, Dauer P, et al. O-GlcNAc modification of Sox2 regulates self-renewal in pancreatic cancer by promoting its stability[J]. Theranostics, 2019, 9(12): 3410-3424.
    [27] Loughran G, Firth A E, Atkins J F, et al. Translational autoregulation of BZW1 and BZW2 expression by modulating the stringency of start codon selection[J]. PLoS ONE,2018,13(2):e0192648. doi: 10.1371/journal.pone.0192648
    [28] Antony P, Petro J B, Carlesso G, et al. B cell receptor directs the activation of NFAT and NF-kappaB via distinct molecular mechanisms[J]. Experimental Cell Research,2003,291(1):11-24. doi: 10.1016/S0014-4827(03)00338-0
    [29] Yu H, Lin L, Zhang Z, et al. Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study[J]. Signal Transduct Target Ther,2020,5(1):209. doi: 10.1038/s41392-020-00312-6
    [30] Liu X, Hogg G D, Zuo C, et al. Context-dependent activation of STING-interferon signaling by CD11b agonists enhances anti-tumor immunity[J]. Cancer Cell,2023,41(6):1073-1090.e12. doi: 10.1016/j.ccell.2023.04.018
    [31] Sun R Q, Qing Z L I, Yan H B, et al. Bzw2 Promotes Proliferation and Lactation of Mammary Epithelial Cell in Dairy Goat[J]. 农业科学学报:英文版,2012,11(11):8.
  • [1] 沈仕俊, 尹亚梅, 宋莉, 向春明, 李恒.  营养干预对局部晚期胰腺癌患者生活质量和生存预后的影响, 昆明医科大学学报.
    [2] 冯润林, 邓宗柒, 吴梦瑶, 王云娜, 王瑜, 刘桂兰, 陶燕萍.  GJB4基因在胰腺癌中的表达及其与患者临床病理特征的关系, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250110
    [3] 曾庆彬, 徐蓉, 董文志, 陈志坚, 廖伟然, 龙奎.  锌指转录因子Sall4在胰腺癌中的表达及对细胞侵袭和迁移的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241206
    [4] 刘思佳, 杨亚英, 彭超, 李亚敏.  增强CT及MRI检查在胰腺癌术前TNM分期中的应用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230628
    [5] 曹诗杰, 安红伟.  MSC来源外泌体治疗缺血性脑卒中机制及进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230913
    [6] 张梁, 王保全, 雷喜锋, 王旭, 柯阳, 张玮.  M2巨噬细胞来源的外泌体miR-1246调控胃癌细胞的生长和侵袭, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230724
    [7] 顾君, 何泽喜, 栾婷, 王海峰, 王剑松, 丁明霞.  外泌体长链非编码RNA在膀胱癌中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220110
    [8] 张天红, 杨红菊.  外泌体miRNA在肝细胞癌中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220221
    [9] 蔡啸, 扆雪涛, 姚菁青, 戴昕妤, 汤忠泉, 欧婷, 赵晓敏, 李云涛.  人骨髓间充质干细胞分泌的外泌体调控恶性胶质瘤相关巨噬细胞的极化, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210101
    [10] 李京辉, 朱明, 曲海, 李秋宇, 吴玉娟, 杨贺英, 王郁竹, 李妍平.  miR-490-3p调控SW1990胰腺癌细胞上皮间充质转化, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210305
    [11] 马丽娅, 饶南荃, 杨禾丰.  间充质干细胞外泌体在口腔组织再生中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210527
    [12] 李飞飞, 郝金钢.  IVIM-DWI定量参数对胰腺癌的诊断价值, 昆明医科大学学报.
    [13] 魏韩笑, 张爱君, 李强, 金培生.  血管内皮祖细胞外泌体调控骨髓间充质干细胞基因表达谱芯片, 昆明医科大学学报.
    [14] 贾凤梅, 殷顺会, 冉丽权, 田明彤, 张明珠.  特发性牙龈纤维瘤来源外泌体对正常牙龈细胞周期的影响, 昆明医科大学学报.
    [15] 於晓东, 龙江.  12外泌体对体外血脑屏障模型功能的影响, 昆明医科大学学报.
    [16] 沈红, 汪秀云, 许辉琼, 刘霞.  274例胰腺癌临床病理特征及影响患者预后的危险因素, 昆明医科大学学报.
    [17] 杨科, 单祖建, 周琼华, 王峻峰.  可溶性细胞因子受体及基质金属蛋白酶与胰腺癌的关系, 昆明医科大学学报.
    [18] 雷学芬.  立体定向放射治疗中晚期胰腺癌临床疗效观察, 昆明医科大学学报.
    [19] 干扰CXCR4基因抑制胰腺癌经典Wnt通路活化的体外实验研究, 昆明医科大学学报.
    [20] 杨锋.  两种培养方法在猪自体骨髓间充质干细胞培养的比较研究, 昆明医科大学学报.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1156
  • HTML全文浏览量:  763
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-01
  • 网络出版日期:  2024-02-26
  • 刊出日期:  2024-02-25

目录

/

返回文章
返回