A Meta-analysis of the Risk of Secondary Infection of Tocilizumab in the Treatment of COVID-19
-
摘要:
目的 通过Meta分析评估托珠单抗(tocilizumab,TCZ)治疗新型冠状病毒感染(corona virus disease 2019,COVID-19)导致的继发感染风险,为托珠单抗在COVID-19患者中应用的安全性提供循证依据。 方法 在The Cochrane Library、PubMed、Web of Science、中国知网、中国生物医学文献数据库以及万方数据库中检索了2019年12月19日至2022年12月30日期间使用托珠单抗治疗COVID-19患者的相关研究,筛选并提取文献中发生继发感染的数据,利用RevMan 5.4.1进行Meta分析。 结果 共筛选了 1691 篇参考文献,纳入18项研究,涉及3933 名患者。托珠单抗+标准治疗组继发感染发生率为19.14%(331/1729 ),标准治疗组继发感染发生率为12.11%(267/2204 )。Meta分析结果显示,托珠单抗+标准治疗组继发感染发生率高于标准治疗组[RR = 1.35,95%CI (1.05,1.74),P = 0.02]。亚组分析显示,使用不同剂量的托珠单抗发生继发感染的风险不同。托珠单抗给药剂量为400~800 mg/d的亚组继发感染发生率明显高于标准治疗组,差异具有统计学意义[RR = 1.48,95%CI (1.19,1.84),P =0.0004 ];≤400 mg/d继发感染发生率也显著高于标准治疗组,差异具有统计学意义[RR = 1.87,95%CI (1.28,2.72),P = 0.001];托珠单抗给药剂量为6~8 mg/kg亚组与标准治疗组比较差异无统计学意义。结论 与标准治疗相比,托珠单抗可能增加COVID-19患者发生继发感染的风险,临床给药前应仔细评估使用托珠单抗治疗的利益和风险。但是,目前仍需要更多大样本、高质量的研究来进一步评估。 Abstract:Objective Meta-analysis was conducted to assess the risk of secondary infection caused by tocilizumab (TCZ) in the treatment of Corona Virus Disease 2019 (COVID-19), in order to provide an evidence-based basis for the safety of tocilizumab in patients with COVID-19. Methods Cochrane Library, PubMed, Web of Science, CNKI, SinoMed and Wanfang databases were searched in computer to collect randomized controlled trial and cohort study of treating COVID-19 with tocilizumab from December 19, 2019 to December 30, 2022. A meta-analysis of the results of each study was performed using RevMan 5.4.1 software. Results A total of 1691 references were screened and eighteen studies involving3933 patients were included. The incidence of secondary infection in the tocilizumab with the standard treatment group and standard treatment group was 19.14% (331/1729 ) and 12.11% (267/2204 ), respectively. Meta-analysis showed that the tocilizumab + standard treatment group had a higher incidence of secondary infection than the standard treatment group [RR = 1.35, 95%CI (1.05, 1.74), P = 0.02]. The results of the subgroup analysis showed that the risk of secondary infection with different doses of tocilizumab was different. The incidence of secondary infection was significantly higher in the subgroup with doses of 400~800 mg/d tocilizumab than in the standard care group [RR = 1.48, 95%CI (1.19, 1.84), P =0.0004 ]. The incidence of secondary infection in subgroups with doses of ≤400 mg/d tocilizumab was also significantly higher than that in the standard treatment group [RR = 1.87, 95%CI (1.28, 2.72), P = 0.001]. However, there was no statistical significance between the subgroup 6~8 mg/kg tocilizumab and the standard treatment group.Conclusions Tocilizumab may increase the risk of secondary infection in patients with COVID-19 compared with standard treatment, and the benefits and risks of tocilizumab should be carefully evaluated before clinical administration. Moreover, large and high-quality studies are needed for further evaluation. -
Key words:
- Tocilizumab /
- COVID-19 /
- Secondary infection /
- Meta-analysis
-
疱疹性咽峡炎和手足口病是儿童急性传染性疾病[1],易形成聚集性疫情,且四季高发。柯萨奇病毒(coxsackie virus,CV)和肠道病毒(enterovirus,EV)感染是主要病因,可经食物、接触和呼吸道飞沫传播,目前临床上尚无针对该类病毒感染的特效药[2-3]。
菊科植物艾纳香[Blumea balsamifera(L.)DC.]在我国云南、贵州、广西、海南等地区广泛分布,被苗族、黎族、壮族等少数民族长期应用。金喉健喷雾剂(国药准字 Z20025361)是以艾纳香提取物为主要原料的制剂,常用于治疗口腔和呼吸道疾病或缓解口腔溃疡[4]、根尖周炎[5]、慢性咽炎[6]、手足口病[7]、小儿疱疹性咽峡炎[8]等疾病症状。本课题组前期研究发现,金喉健配方萃取物对H1N1流感病毒半数抑制浓度 (IC50) 为8.71 mg/L [9],其体外抗病毒活性与奥司他韦相当。根据临床试验的观察结果,金喉健喷雾剂可以有效地应对许多病症,例如急性和慢性的咽喉炎症、扁桃腺发炎和急性支气管炎,甚至包括儿童患有的疱疹性咽峡炎等[10-11]。此外,针对由柯萨奇病毒引发的手足口病,该药物被证实能够显著改善患者的口腔状况 [12]。因此本研究主要探索金喉健喷雾剂主药艾纳香提取物的抗病毒活性。
本研究通过柯萨奇病毒B组5型(CVB5)感染RD人横纹肌肉瘤细胞(human rhabdomyosarcoma Cells,RD)作为体外模型,评价艾纳香提取物的抗病毒活性及其量-效关系,进一步挖掘民族药艾纳香在抗病毒和控制病毒传播方面的应用潜能。
1. 材料与方法
1.1 试剂
DMEM培养基:美国Gibco公司;DMSO:天津津东天正精细化工试剂厂;氟西汀盐酸盐:美国默克公司;CellTiter-Glo试剂盒:普洛麦格(北京)生物技术有限公司。
1.2 仪器
本研究所用的主要仪器设备有:QP-160型CO2恒温培养箱,山东博科生物产业有限公司;XDS-1型倒置相差显微镜,深圳市星明光学仪器有限公司;L500型低速离心机,湖南湘仪实验仪器开发有限公司;1510型全波长酶标仪,赛默飞世尔科技(中国)有限公司。
1.3 病毒与细胞
柯萨奇病毒B5(coxsachievirus B5,CVB5)与人横纹肌肉瘤细胞(human rhabdomyosarcoma Cells,RD),来自中国医学科学院医学生物研究所。
1.4 实验方法
1.4.1 供试品制备
艾纳香提取物由贵州宏宇药业有限公司制备,提取工艺详见专利号:CN20211 0082036.9。首先以DMSO作为载体对艾纳香的提取物进行溶解形成母液,然后利用培养基将其进一步稀释至所需浓度(包括50 mg/L、25 mg/L、12.5 mg/L、6.25 mg/L、3.13 mg/L、1.56 mg/L、0.78 mg/L和0.39 mg/L),培养基中含1% DMSO。阳性药物使用相同的方法将氟西汀(Fluoxetine,Flu)配制成12.5 μM浓度的溶液。
1.4.2 病毒毒力测定
将RD细胞按3 × 104个分别加入96孔板的指定孔中进行培养,在37 ℃ ,5% CO2培养条件下待到细胞贴壁后吸弃上清液,将柯萨奇病毒原液按照10倍梯度稀释(即取病毒原液100 μL加入900 μL培养基中,混匀后作为10−1稀释液;再取10−1稀释液100 μL加入900 μL培养基中,混匀后作为10−2稀释液,以此类推,直至达到所需稀释倍数),然后将不同稀释倍数的病毒液加入细胞培养体系中,继续培养,设置空白对照,重复测试4次[12]。连续7 d在37 ℃ 、5% CO2环境下培养,第7天用显微镜观察其病理变化,并采用Reed-Muench法检测病毒半数细胞培养物感染量[13-14]。
1.4.3 细胞病变效应测定
按照每组3 × 104个RD细胞数量分配至各自的96孔板位置并开始培育,保持在37°C和5% CO2的环境下直至细胞贴壁后,移除所有上层液体。然后,将1.4.1中的艾纳香提取物的100 μL体积添加进各个孔内。艾纳香组培养基中含有不同浓度的艾纳香提取物,阳性药物组培养基中含有12.5 μmol/L的Flu,空白对照组为仅含1% DMSO的培养基。继续培养36~40 h后用酶标仪检测各孔吸光度值(CellTiter-Glo试剂盒),按试剂盒说明书计算细胞活力。通过对比各组加入100TCID50病毒液后细胞活力的变化情况,计算测试物对病毒的抑制率[15],并运用Probit回归法推算出艾纳香提取物对病毒的50%抑制浓度(half maximal inhibitory concentration,IC50)及其选择系数(selection Index,SI)[13-14]。
提取物对病毒抑制率 = 1 − ( 提取物对细胞作用检测值 − 提取物对病毒作用检测值) / ( 空白组检测值 − 病毒对照检测值)
SI = TC50 /IC50。
1.5 统计学分析
实验数据采用GraphPad Prism8.3.0软件进行统计学分析,所有数据均代表至少3个独立的实验,数据以均数加减标准差(mean ± SD)表示,多组间数据比较采用单因素方差(One-way ANOVA)分析,P < 0.05 为差异具有统计学意义。通过Probit回归分析计算提取物对病毒的半数抑制浓度(IC50)。
2. 结果
2.1 艾纳香提取物对细胞毒性的测定
0.39 mg/L、0.78 mg/L、1.56 mg/L、3.13 mg/L、6.25 mg/L、12.5 mg/L和25μg/L艾纳香提取物组细胞活力与空白组相似(P > 0.05),50 mg/L的艾纳香提取物可将细胞活力显著降低至73.39%(P < 0.05),提示50 mg/L的艾纳香提取物有一定的细胞毒性,见表1。
表 1 提取物对RD细胞活力的影响($\bar x \pm s $)Table 1. Impact of extract on the viability of RD cells ($\bar x \pm s $)分组 干预剂量 细胞活力(%) P 艾纳香组 50 mg/L 73.39 ± 0.26* 0.0195 25 mg/L 104.49 ± 0.46 P > 0.05 12.5 mg/L 108.28 ± 0.43 P > 0.05 6.25 mg/L 111.12 ± 0.40 P > 0.05 3.13 mg/L 121.40 ± 0.37* P < 0.05 1.56 mg/L 99.20 ± 0.04 P > 0.05 0.78 mg/L 115.27 ± 0.35 P > 0.05 0.39 mg/L 115.17 ± 0.45 P > 0.05 阳性药物组(Flu) 12.5 μM 101.68 ± 0.40 P > 0.05 空白对照组 仅含1%DMSO培养基 100 ± 0.43 与空白对照组比较,* P < 0.05;F(9,19) = 3.241,P = 0.0148 。2.2 病毒毒力与艾纳香提取物体外抗柯萨奇病毒作用的测定
病毒液的浓度是通过10倍梯度稀释后接种细胞,观察细胞病变效应(CPE),并根据 Reed-Muench 法计算其TCID50。抗病毒试验中使用的病毒液浓度为100 TCID50/mL,该病毒液的TCID50值为10−7.67。如表2中的数据显示,当加入病毒时的各组细胞活力与空白对照组进行比较,在艾纳香提取物浓度小于等于3.13 mg/L时,艾纳香组的细胞活力与空白对照组相当(P > 0.05)。证明艾纳香提取物在这些情况下在体外对病毒的破坏不具备对抗作用;当艾纳香提取物在超过6.25 mg/L条件下,细胞活力高于加入病毒的空白对照组(P < 0.05)。表明艾纳香提取物在此条件下对病毒的破坏具有一定的对抗作用。
表 2 提取物对病毒的抑制作用($\bar x \pm s $)Table 2. Inhibitory effect of extract on virus ($\bar x \pm s $)组别 干预剂量 细胞活力(%) 显著性(P) 显著性(P) 病毒抑制率(%) 艾纳香组 50 mg/L 54.12 ± 0.04**## < 0.0001 < 0.0001 78.69 ± 7.90 25 mg/L 86.43 ± 0.10** < 0.0001 0.4707 80.03 ± 9.74 12.5 mg/L 88.04 ± 0.01** < 0.0001 0.6942 77.63 ± 9.20 6.25 mg/L 39.12 ± 0.05**## < 0.0001 < 0.0001 20.41 ± 8.98 3.13 mg/L 8.44 ± 0.01## 0.9997 < 0.0001 0 1.56 mg/L 7.14 ± 0.01## 0.9970 < 0.0001 0 0.78 mg/L 7.98 ± 0.02## 0.9995 < 0.0001 0 0.39 mg/L 8.78 ± 0.01## 0.9998 < 0.0001 0 阳性药物组(Flu) 12.5 μmol/L 94.30 ± 0.07** < 0.0001 91.85 ± 5.81 空白对照组 仅含1%DMSO培养基 9.53 ± 0.02## -- 不加病毒 100 ± 0.43** -- 与加入病毒的空白对照组比较,F(9,20) = 132,*P < 0.05,**P < 0.01;与阳性药物组比较,F(8,18) = 1,#P < 0.05,##P < 0.01。 经25 mg/L和12.5 mg/L剂量的艾纳香提取物干预,细胞活力与阳性药物组相比,差异无统计学意义(P > 0.05),证明这两个浓度下的提取物对保护细胞免受病毒的破坏作用与Flu相当,细胞形态见图1。50 mg/L的提取物有一定保护细胞免受病毒破坏的作用,但效果不如Flu。
2.3 测试物对病毒的半数抑制浓度
根据图2呈现的数据,得出测试物对病毒的半数抑制浓度(IC50)为7.26 mg/L。根据2.1中结果可知提取物在50 mg/L还未达到半数细胞毒性浓度,因此提取物SI大于6.89。
3. 讨论
由柯萨奇病毒感染引起的手足口病和疱疹性咽峡炎是一种广泛存在的全球常见病,对学龄前儿童感染性较强[13-16]。近年我国此病发病率为26.37~64.97/10万,临床表现主要为发热、咽痛、手足出现皮疹或咽峡部位出现疱疹等症状[17-18]。但因此病病程短,且预后良好,往往不被人们所重视,易于延误或错误治疗导致肺炎、心肌炎神经源性肺水肿及循环衰竭等重症,近年报道该病死亡率为6.46~51.00/10万[2-3] 。目前对于手足口病暂无具体的临床管理和治疗方法,尽管肠道病毒71型疫苗已在中国获批用于治疗手足口病,但疫苗在现实情况下的有效性仍未被完全证明[19−21]。
鉴于含艾纳香的制剂能改善手足口病类似症状,本课题组选用不同浓度艾纳香提取物溶液,进行了艾纳香提取物体外抗柯萨奇病毒的研究:(1)本研究发现艾纳香提取物在浓度低于25 mg/L时对细胞无毒性,且在6.25~25 mg/L浓度范围内对柯萨奇病毒具有抑制作用。(2)艾纳香提取物浓度为25 mg/L和12.5 mg/L时对病毒的抑制作用与阳性药Flu效果相当(P > 0.05)。
研究证明艾纳香提取物在安全剂量范围内能有效的抑制柯萨奇病毒,预示着艾纳香中含有抗病毒的高活性、高安全性的先导化合物。艾纳香在抗病毒和控制病毒传播方面具有应用潜能,然而艾纳香在抗病毒方面良好活性背后的物质基础及作用机制研究却相对滞后,这方面还有待继续深入研究。
-
表 1 纳入文献的基本特征(n)
Table 1. Basic characteristics of the included studies (n)
第一作者 年份 国家 COVID-19
患者特点年龄(岁)
(TCZ/SOC)总例数 托珠
单抗组对照组 剂量 继发感染 随访
时间(/d)托珠
单抗组对照
组Broman[5] 2022 芬兰 全身炎症住院患者 58/59 86 57 29 8 mg/kg 1 1 28 Campochiaro[6] 2020 意大利 重症患者 65/60 65 32 33 400 mg/d 4 4 28 Canziani[7] 2020 意大利 重症患者 63/64 128 64 64 8 mg/kg 20 25 30 Eimer[8] 2020 瑞典 重症患者 56/56 87 29 58 8 mg/kg 9 20 30 Galván-Román[9] 2021 西班牙 重症患者 61/64 146 58 88 8 mg/kg 3 7 12 Gordon[10] 2021 多中心 危重患者 62/61 755 353 402 8 mg/kg 1 0 69 Guaraldi[11] 2020 意大利 重症患者 67/69 544 179 365 8 mg/kg 24 14 / Hermine[12] 2022 法国 中重、危重度患者 43/57 97 51 46 8 mg/kg 27 13 95 Hill[13] 2020 美国 重症患者 / 88 43 45 400 mg/d 4 2 28 Kimmig[14] 2020 美国 危重患者 / 111 54 57 400 mg/d 29 16 / Pettit [15] 2020 美国 / 66/65 148 74 74 400 mg/d 17 6 58 Rodríguez-Baño[16] 2021 西班牙 高炎症状态患者 66/69 427 88 339 400~800 mg/d 11 36 21 Rojas-Marte[17] 2020 美国 重症患者 58.8/62 193 96 97 / 16 26 / Ruiz-Antorán[18] 2021 西班牙 重症患者 65/71.3 506 268 238 400~800 mg/d 124 72 28 Salvarani[19] 2021 意大利 重症患者 61.5/60 126 60 66 8 mg/kg 1 4 30 Sandhu[20] 2022 / 重症患者 68.2/63.9 115 66 49 8 mg/kg 30 12 / Soin[21] 2021 印度 中、重度患者 55/53 179 91 88 6 mg/kg 6 5 30 Tsai[22] 2020 美国 重症患者 62/61 132 66 66 400 mg/d 4 4 / 注: TCZ:托珠单抗; SOC:标准治疗。 -
[1] Ragab D,Eldin H S,Taeimah M,et al. The COVID-19 cytokine storm;what we know so far[J]. Front Immunol,2020,11:1446. doi: 10.3389/fimmu.2020.01446 [2] Liu B,Lim,Zhou Z,et al. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)?[J]. J Autoimmun,2020,111:102452. doi: 10.1016/j.jaut.2020.102452 [3] Tang Y,Liu J,Zhang D,et al. Cytokine storm in COVID-19: The current evidence and treatment strategies[J]. Front Immunol,2020,11:1708. doi: 10.3389/fimmu.2020.01708 [4] Yang X,Yu Y,Xu J,et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan,China: A single-centered,retrospective,observational study[J]. Lancet Respir Med,2020,8(5):475-481. doi: 10.1016/S2213-2600(20)30079-5 [5] Broman N,Feuth T,Vuorinen T,et al. Early administration of tocilizumab in hospitalized COVID-19 patients with elevated inflammatory markers;COVIDSTORM-a prospective,randomized,single-centre,open-label study[J]. Clin Microbiol Infect,2022,28(6):844-851. doi: 10.1016/j.cmi.2022.02.027 [6] Campochiaro C,Della-Torre E,Cavalli G,et al. Efficacy and safety of tocilizumab in severe COVID-19 patients: A single-centre retrospective cohort study[J]. Eur J Intern Med,2020,76:43-49. doi: 10.1016/j.ejim.2020.05.021 [7] Canziani L M,Trovati S,Brunetta E,et al. Interleukin-6 receptor blocking with intravenous tocilizumab in COVID-19 severe acute respiratory distress syndrome: A retrospective case-control survival analysis of 128 patients[J]. J Autoimmun,2020,114:102511. doi: 10.1016/j.jaut.2020.102511 [8] Eimer J,Vesterbacka J,Svensson A K,et al. Tocilizumab shortens time on mechanical ventilation and length of hospital stay in patients with severe COVID-19: A retrospective cohort study[J]. J Intern Med,2021,289(3):434-436. doi: 10.1111/joim.13162 [9] Galv á n-Rom á n J M,Rodr í guez-Garc í a S C,Roy-Vallejo E,et al. IL-6 serum levels predict severity and response to tocilizumab in COVID-19: An observational study[J]. J Allergy Clin Immunol,2021,147(1):72-80.e8. doi: 10.1016/j.jaci.2020.09.018 [10] Gordon A C,Angus D C,Derde L P G,et al. Interleukin-6 receptor antagonists in critically ill patients with COVID-19[J]. N Engl J Med,2021,385(12):1147-1149. doi: 10.1056/NEJMc2108482 [11] Guaraldi G,Meschiari M,Cozzi-Lepri A,et al. Tocilizumab in patients with severe COVID-19: A retrospective cohort study[J]. Lancet Rheumatol,2020,2(8):e474-e484. doi: 10.1016/S2665-9913(20)30173-9 [12] Hermine O,Mariette X,Porcher R,et al. Effect of interleukin-6 receptor antagonists in critically ill adult patients with COVID-19 pneumonia: Two randomised controlled trials of the CORIMUNO-19 Collaborative Group[J]. Eur Respir J,2022,60(2):2102523. doi: 10.1183/13993003.02523-2021 [13] Hill J A,Menon M P,Dhanireddy S,et al. Tocilizumab in hospitalized patients with COVID-19: Clinical outcomes,inflammatory marker kinetics,and safety[J]. J Med Virol,2021,93(4):2270-2280. doi: 10.1002/jmv.26674 [14] Kimmig L M,Wu D,Gold M,et al. IL-6 inhibition in critically ill COVID-19 patients is associated with increased secondary infections[J]. Front Med(Lausanne),2020,7:583897. [15] Pettit N N,Nguyen C T,Mutlu G M,et al. Late onset infectious complications and safety of tocilizumab in the management of COVID-19[J]. J Med Virol,2021,93(3):1459-1464. doi: 10.1002/jmv.26429 [16] Rodríguez-Baño J,Pachón J,Carratalà J,et al. Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: A multicentre cohort study (SAM-COVID-19)[J]. Clin Microbiol Infect,2021,27(2):244-252. doi: 10.1016/j.cmi.2020.08.010 [17] Rojas-Marte G,Khalid M,Mukhtar O,et al. Outcomes in patients with severe COVID-19 disease treated with tocilizumab: A case-controlled study[J]. QJM,2020,113(8):546-550. doi: 10.1093/qjmed/hcaa206 [18] Ruiz-Antor á n B,Sancho-L ó pez A,Torres F,et al. Combination of tocilizumab and steroids to improve mortality in patients with severe COVID-19 infection: A Spanish,multicenter,cohort study[J]. Infect Dis Ther,2021,10(1):347-362. doi: 10.1007/s40121-020-00373-8 [19] Salvarani C,Dolci G,Massari M,et al. Effect of tocilizumab vs standard care on clinical worsening in patients hospitalized with COVID-19 pneumonia: A randomized clinical trial[J]. JAMA Intern Med,2021,181(1):24-31. doi: 10.1001/jamainternmed.2020.6615 [20] Sandhu G,Piraino S T,Piticaru J. Secondary infection risk in patients with severe COVID-19 pneumonia treated with tocilizumab[J]. Am J Ther,2022,29(3):e275-e278. doi: 10.1097/MJT.0000000000001487 [21] Soin A S,Kumar K,Choudhary N S,et al. Tocilizumab plus standard care versus standard care in patients in India with moderate to severe COVID-19-associated cytokine release syndrome (COVINTOC): An open-label,multicentre,randomised,controlled,phase 3 trial[J]. Lancet Respir Med,2021,9(5):511-521. doi: 10.1016/S2213-2600(21)00081-3 [22] Tsai A,Diawara O,Nahass R G,et al. Impact of tocilizumab administration on mortality in severe COVID-19[J]. Sci Rep,2020,10(1):19131. doi: 10.1038/s41598-020-76187-y [23] Abidi E,El Nekidy W S,Alefishat E,et al. Tocilizumab and COVID-19: Timing of administration and efficacy[J]. Front Pharmacol,2022,13:825749. doi: 10.3389/fphar.2022.825749 [24] Kopf M,Baumann H,Freer G,et al. Impaired immune and acute-phase responses in interleukin-6-deficient mice[J]. Nature,1994,368(6469):339-342. doi: 10.1038/368339a0 [25] Cai S,Sun W,Li M,et al. A complex COVID-19 case with rheumatoid arthritis treated with tocilizumab[J]. Clin Rheumatol,2020,39(9):2797-2802. doi: 10.1007/s10067-020-05234-w [26] Lef è vre C,Plocque A,Tran M,et al. Should we interfere with the interleukin-6 receptor during COVID-19: What do we know?[J]. Rev Mal Respir,2023,40(1):24-37. doi: 10.1016/j.rmr.2022.11.085 [27] Narazaki M,Kishimoto T. The two-faced cytokine IL-6 in host defense and diseases[J]. Int J Mol Sci,2018,19(11):3528. doi: 10.3390/ijms19113528 [28] Lang V R,Englbrecht M,Rech J,et al. Risk of infections in rheumatoid arthritis patients treated with tocilizumab[J]. Rheumatology (Oxford),2012,51(5):852-857. doi: 10.1093/rheumatology/ker223 [29] Pawar A,Desai R J,Solomon D H,et al. Risk of serious infections in tocilizumab versus other biologic drugs in patients with rheumatoid arthritis: A multidatabase cohort study[J]. Ann Rheum Dis,2019,78(4):456-464. doi: 10.1136/annrheumdis-2018-214367 [30] Davis J S,Ferreira D,Paige E,et al. Infectious complications of biological and small molecule targeted immunomodulatory therapies[J]. Clin Microbiol Rev,2020,33(3):e00035-19. [31] Douedi S,Chaudhri M,Miskoff J. Anti-interleukin-6 monoclonal antibody for cytokine storm in COVID-19[J]. Ann Thorac Med,2020,15(3):171-173. doi: 10.4103/atm.ATM_286_20 -