Research Progress on the Anti-tumor Activity and Mechanism of Narciclasine
-
摘要: 水仙环素(narciclasine,NCS)是从石蒜科水仙属植物水仙的鳞茎中提取出的水鬼蕉碱型生物碱,被证实对多种肿瘤细胞具有显著的抑制活性。NCS的抗肿瘤作用机制多样,通过不同途径产生抗肿瘤作用,适应了当前研发多靶点抗肿瘤药物的趋向。本文结合NCS抑制乳腺癌细胞、结肠癌细胞、胃癌细胞、黑色素瘤细胞、多形性胶质母细胞瘤细胞、口腔癌细胞和原发性渗出性淋巴瘤细胞的作用及分子机制,对NCS近年来的抗肿瘤活性及作用机制研究进行综述,旨在为将来NCS类抗肿瘤药物的研发与设计提供思路和借鉴。Abstract: Narciclasine(NCS), a hymenocallis littoralis alkaloid extracted from the bulbs of the genus Narcissus in the Lycoriaceae family, has been proven to have significant anti-tumor activity against a variety of tumor cells. The antitumor mechanisms of NCS are diverse and NCS exhibits antitumor effects through different pathways, which adapts to the current trend of developing multi-target anti-tumor drugs. This review introduces the research progress of the anti-tumor activity and mechanism of NCS in recent years based on the inhibitory effect of NCS on gastric cancer cells, oral cancer cells, polymorphous glioblastoma cells, colon cancer cells, breast cancer cells, melanoma cells and primary exudative lymphoma cells, aiming to provide ideas and references for the research and development, and design of NCS type anti-tumor drugs in the future.
-
根据国际糖尿病联盟(international diabetes federation,IDF)发布的第八版全球糖尿病地图,目前全球有4.25亿糖尿病患者,预计到2045年,将会有近7亿糖尿病患者。根据最新的流行病学调查,中国2型糖尿病的患病率已达到12.8%,糖尿病前期的患病率为35.2%[1]。糖尿病已成为继肿瘤、心血管疾病之后严重影响中国的主要慢性非传染性疾病,给大众的健康和社会经济带来沉重的负担。2型糖尿病的发病原因尚不明了,寻找其发病的病理生理机制是防治2型糖尿病的重要课题。
生物节律系统可以调节代谢,睡眠,细胞增殖和体温等生物学功能。环境的变化和现代生活方式可能会改变人们的昼夜节律系统,从而增加患上某些慢性非传染性疾病的风险。生物节律系统由时钟基因Clock,Bmal1,Per1-3和Cry1-2的转录/转导反馈环组成。时钟基因的分子成分如何影响疾病的发展及其与时钟基因多态性遗传成分的风险关系尚不清楚。这项研究描述了CLOCK基因rs4580704位点多态性的改变对对睡眠质量的影响、对2型糖尿病发病和进展的影响,以及两者之间可能的联系。
1. 资料与方法
1.1 研究对象
所有受试者均来自云南昆明,汉族,彼此间无血缘关系。
1.1.1 纳入标准
研究组所有受试者均符合1999年WHO关于2型糖尿病的诊断标准[2],且IAA和GAD抗体均为阴性。无糖尿病、高血压家族史,且血糖、血压均正常者作为健康对照组。
1.1.2 排除标准
妊娠糖尿病,1型糖尿病和继发性糖尿病。
1.1.3 分组
昆明市延安医院2016年7月至2018年7月200例2型糖尿病患者作为病例组,同期非糖尿病者180例作为对照组。两组在性别构成比、年龄等一般资料无显著差异(P > 0.05),见 表1。
表 1 病例组和对照组基本组成( $\bar x \pm s $)Table 1. Basic composition of case group and control group ( $\bar x \pm s $)项目 病例组(n= 200) 对照组(n= 180) χ2/t P 性别(男/女) 111/89 85/95 0.2022 0.653 年龄(岁) 59.34 ± 13.80 57.76 ± 14.62 1.0829 0.2796 吸烟 [n(%)] 54(27) 58(32.2) 1.2429 0.265 1.1.4 伦理学措施
试验符合人体试验伦理学标准,所有受试者均签署知情同意书。本研究经昆明医科大学附属延安医院伦理委员会批准。
1.2 方法
1.2.1 生化指标及临床指标的测定
记录两组的性别、年龄、身高、体重、体质量指数(BMI)、总胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)、空腹血糖(FPG)、空腹胰岛素(FIns)、糖化血红蛋白(HbA1c),通过稳态模型计算出两组的胰岛素抵抗指数(HOMA-IR),其中HOMA-IR = FIns/22.5 × FPG。
1.2.2 睡眠质量评估
匹兹堡睡眠质量指数(pittsburgh sleep quality index ,PSQI)于1989年提出[3],因其简单易用,目前已成为国内外最常用的临床睡眠评估量表。国内的研究[4-5]亦提示该量表有较好的内部一致性及重测信度,适用于中国人的睡眠质量评估。因此本研究亦使用匹兹堡睡眠指数量表对所有受试者进行睡眠质量的评分。
1.2.3 DNA提取
所有受试者采集静脉血3 mL,按照试剂盒说明书进行外周血有核细胞基因组DNA的提取,试剂盒购自昆明百泰克科技有限公司。
1.2.4 基因多态性检测
对所有受试者的基因组DNA进行飞行时间质谱检测法检测rs4580704多态性。
1.3 统计学处理
数据处理采用SPSS 18.0统计软件,计量资料满足正态分布,采用均数±标准差表示,用t检验或方差分析进行差异性检验,P < 0.05为差异有统计学意义。
2. 结果
2.1 rs4580704位点检测结果
200例病例组中检测出CC型88例,GC型98例,GG型14例;180例对照组中检测出CC型126例,GC型46例,GG型8例;检测结果聚类图见图1。 病例组CLOCK基因rs4580704位点的GC型、GG型比例高于对照组,差异具有显著统计学意义(P < 0.001);等位基因C和G之间有统计学差异( P < 0.001),见 表2和表3。
表 2 病例组和对照组基因频率和睡眠质量比较[n(%)]Table 2. Comparison of gene frequency and sleep quality between case group and control group [n(%)]组别 n PSQI CC GC GG 对照组 180 10.30 ± 3.30 126(70.0) 46(25.5) 8(4.5) 病例组 200 13.29 ± 5.34 88(44.0) 98(49.0) 14(7.0) χ2 6.471 26.1817 P < 0.001 < 0.001 表 3 病例组和对照组等位基因频率比较[n(%)]Table 3. Comparison of allele frequency between case group and control group [n(%)]组别 n C G 对照组 180 298(82.7) 62(17.2) 病例组 200 274 (68.5) 126(31.5) χ2 20.7464 P < 0.001 2.2 睡眠质量的比较
病例组的PSQI值(13.29±5.34)显著高于对照组(10.30±3.30),P < 0.05。
2.3 单因素分析
CLOCK基因rs4580704多态性与2型糖尿病单因素分析 CC、GA、GG型2型糖尿病患者PSQI得分、空腹胰岛素、糖化血红蛋白、胰岛素抵抗指数、甘油三酯、LDL-C及总胆固醇差异有统计学意义(P < 0.05),但与空腹血糖和体重指数无差异( P > 0.05),见 表4。
表 4 病例组rs4580704单因素分析( $ \bar x \pm s$)Table 4. Single factor analysis of rs4580704 in case group ( $\bar x \pm s $)因素 CC型(n= 88) GC型(n= 98) GG 型(n= 14) F P PSQI得分 10.35 ± 3.99 15.41 ± 5.22 16.794 ± 4.56 31.50 < 0.001 空腹胰岛素(uIU/mL) 10.61 ± 3.21 9.84 ± 2.99 8.42 ± 2.87 3.63 0.0028 空腹血糖(mmol/L) 8.46 ± 2.29 8.86 ± 3.46 8.46 ± 3.20 0.46 0.6322 胰岛素抵抗指数 3.89 ± 1.74 3.91 ± 2.05 5.57 ± 2.79 4.60 0.011* 甘油三酯TG(mmol/L) 2.32 ± 0.67 2.54 ± 1.09 3.07 ± 1.12 4.30 0.0149 *糖化血红蛋白HbA1c(%) 7.87 ± 2.14 8.25 ± 3.05 9.82 ± 3.21 3.20 0.0431 *低密度脂蛋白胆固醇LDL-C(mmol/L) 3.32 ± 1.64 3.51 ± 1.79 4.74 ± 2.49 3.82 0.0236 *总胆固醇TC(mmol/L) 4.66 ± 1.90 5.16 ± 2.82 6.51 ± 3.21 3.56 0.0302 *体重指数BMI(kg/m2) 24.67 ± 3.97 25.04 ± 4.53 23.35 ± 4.76 0.98 0.3772 *P < 0.05。 3. 讨论
生物昼夜节律系统可以调节一天24 h内各种生物学功能,如睡眠-觉醒、体温[6]、心率、血糖水平、促肾上腺皮质激素和皮质醇生成[7],以及氧化应激水平[8]等。在哺乳动物中,这个系统是由位于下丘脑视交叉上核的中央时钟组织(SCN)和一系列外周振荡器,如肝脏、肺、肾上腺、成纤维细胞和其他组织[7,9]组成。周围的振荡器每天通过神经或体液信号同步,而最重要的体液信号是由松果体在黑暗环境时分泌的褪黑激素,它的损害很可能与失眠,心血管疾病和恶性肿瘤的发生有关[10]。分子时钟可以被环境变化和现代生活方式改变,导致生理变化和疾病的风险:例如,在猴子怀孕期间,夜间暴露的光线会导致其下一代的体温调节昼夜节律的缺失[6]。在人类中,不同的报告显示了昼夜节律的变化系统增加了罹患恶性肿瘤[11-12]、先兆子痫[13]、糖尿病[8,14]和心境障碍[15]的风险。
一些代谢性疾病集中出现在某些人群中,例如糖代谢、脂代谢和血压升高等,这被称为代谢综合征[16]。在哺乳动物中,葡萄糖稳态也是由分子时钟调控的[17]。在类似于轮班工作的明-暗模式下的动物模型中,明-暗模式的时间长度和进食时间的变化导致血浆葡萄糖、胰岛素和甘油三酯的昼夜节律的改变[18]。由于昼夜节律被破坏可导致高胰岛素血症,最终血糖稳态被打破,血糖逐渐升高,甚至发生糖尿病[19]。除了在动物模型和基础研究中的证据,现实世界中,对448篇报道夜班工作和健康后果的文章进行的荟萃分析发现,夜班工作和2型糖尿病发病之间有很强的相关性,与白天工作相比风险增加1.42倍[20]。流行病学调查研究显示,我国有超过45%的成年人存在睡眠障碍[21]。目前国际广泛采用匹兹堡睡眠指数量表(PSQI)来反映受试者的睡眠质量,得分越高表示睡眠质量越差。
生物节律系统相关基因的多态性可能会增加糖尿病的发病风险。对346名希腊孕妇的时钟基因进行基因分型,并分析他们的糖尿病风险,发现Bmal1基因rs7950226和rs11022775的多态性与妊娠糖尿病有关[22]。一项针对英国和巴基斯坦受试者的研究表明,Cry1和Cry2多态性rs2292912和rs12315175与糖尿病的发病有关[23]。另一项对来自424个英国家庭的
1304 个人进行基因分型的研究,其中每个家庭至少包含一名2型糖尿病患者,研究结果提示Bmal1多态性rs7950226和rs11022775与糖尿病的发病之间显著相关[24]。CLOCK基因定位于4q12,其编码的蛋白质在昼夜节律的调节中起着核心作用,它与BMAL1形成异二聚体,该异二聚体与Period (PER1,PER2,PER3)和Cryptochrome (CRY1,CRY2)基因上游的E-box增强子元件结合并激活这些基因的转录。PER和CRY蛋白通过与CLOCK/BMAL1复合物在反馈回路中相互作用并抑制其自身转录。CLOCK基因rs4580704多态性可导致内含子C > G,不影响蛋白产物的氨基酸;但本研究发现,该位点多态性与2型糖尿病发病的关系密切,可能是通过影响睡眠质量而导致胰岛素抵抗增加,进而导致糖尿病的发生;同时,在病例组里,含有G等位基因的患者,糖化血红蛋白水平也高于含有C等位基因的患者,含G等位基因患者的甘油三酯、总胆固醇和低密度脂蛋白胆固醇均明显高于含C等位基因的患者。这说明,G等位基因可能既是2型糖尿病发病的危险因素,同时也是病情恶化的危险因素;而C等位基因则可能是保护性因素。同时,研究发现在病例组里该位点多态性与空腹血糖的关联较小( P = 0.63),提示该多态性可能主要影响餐后血糖为主。
总之,本研究将CLOCK基因变异和睡眠质量、胰岛素抵抗、病情进展联系起来,发现中国汉族人群糖尿病的发生发展均与rs4580704位点多态性相关,其中肥胖症较少见,并且在正常体重下rs4580704的CLOCK基因变异与糖尿病发生发展之间的关联性得到了增强。预期对这种结果背后的分子机制进行进一步基础研究及前瞻性临床研究,包括对广泛的基因-环境和基因-基因相互作用的强有力的分析,将会对2型糖尿病发生发展的病理生理做出进一步解释。
-
图 1 水仙环素的化学结构[4]
Figure 1. Chemical structure of NCS
-
[1] 毕凯健. 水仙环素衍生物的设计、合成及抗肿瘤活性研究[D]. 上海: 第二军医大学, 2016. [2] Antoszczak M. A medicinal chemistry perspective on sali-nomycin as a potent anticancer and anti-CSCs agent[J]. Eur J Med Chem,2019,164:366-377. doi: 10.1016/j.ejmech.2018.12.057 [3] Dagogo-Jack I,Shaw A T. Tumour heterogeneity and re-sistance to cancer therapies[J]. Nat Rev Clin Oncol,2018,15(2):81-94. doi: 10.1038/nrclinonc.2017.166 [4] Ingrassia L,Lefranc F,Dewelle J,et al. Structure-activity relationship analysis of novel derivatives of narciclasine (an Amaryllidaceae isocarbostyril derivative) as potential anticancer agents[J]. J Med Chem,2009,52(4):1100-1114. doi: 10.1021/jm8013585 [5] Ceriotti G. Narciclasine: An antimitotic substance from Narcissus bulbs[J]. Nature,1967,21(5076):595-596. [6] Fürst R. Narciclasine - an amaryllidaceae alkaloid with potent antitumor and anti-inflammatory properties[J]. Planta Med,2016,82(16):1389-1394. doi: 10.1055/s-0042-115034 [7] Rárová L,Ncube B,Van Staden J,et al. Identification of Narciclasine as an in vitro anti-inflammatory component of Cyrtanthus contractus by correlation-based metabolomics[J]. Nat Prod,2019,82(5):1372-1376. doi: 10.1021/acs.jnatprod.8b00973 [8] Bräutigam J,Bischoff I,Schürmann C,et al. Narciclasine inhibits angiogenic processes by activation of rho kinase and by downregulation of the VEGF receptor 2[J]. Mol Cell Cardiol,2019,135:97-108. doi: 10.1016/j.yjmcc.2019.08.001 [9] De Castro Barbosa E,Alves T M A,Kohlhoff M,et al. Searching for plant-derived antivirals against dengue virus and Zika virus[J]. Virol J,2022,19(1):31. [10] Dumont P,Ingrassia L,Rouzeau S,et al. The Amaryllidaceae isocarbostyril narciclasine induces apoptosis by activation of the death receptor and/or mitochondrial pathways in cancer cells but not in normal fibroblasts[J]. Neoplasia,2007,9(9):766-776. doi: 10.1593/neo.07535 [11] Min B S,Cao J J,Nakamura N,et al. Cytotoxic alkaloids and a Fla Villi from the bulbs of Crinum asiaticum var japonicum[J]. Chem Plmrm Bull,2001,49(9):1217-1219. doi: 10.1248/cpb.49.1217 [12] Van Goietsenoven G,Mathieu V,Lefranc F,et al. Narciclasine as well as other Amaryllidaceae isocarbostyrils are promising GTP-ase targeting agents against brain cancers[J]. Med Res Rev,2013,33(2):439-455. [13] Qiu Y,Fang B,Thuy N T T,et al. Narciclasine suppresses esophageal cancer cell proliferation and migration by inhibiting the FAK signaling pathway[J]. Eur J Pharmacol,2022,921:174669. [14] 马楠楠,陈宁,季宇彬,等. 水鬼蕉生物碱抗肿瘤研究进展[J]. 黑龙江医药,2013,26(2):205-208. doi: 10.3969/j.issn.1006-2882.2013.02.017 [15] Kornienko A,Evidente A. Chemistry,biology,and medicinal potential of NCS and its congeners[J]. Chem Rev,2008,108(6):1982-2014. doi: 10.1021/cr078198u [16] Cao C,Huang W,Zhang N,et al. NCS induces autophagy-dependent apoptosis in triple-negative breast cancer cells by regulating the AMPK-ULK1 axis[J]. Cell Prolif,2018,51(6):12518. doi: 10.1111/cpr.12518 [17] Beebe J D,Li J Y,Zhang J T. Two decades of research in discovery of anticancer drugs targeting STAT3,how close are we?[J]. Pharmacol Ther,2018,191:74-91. doi: 10.1016/j.pharmthera.2018.06.006 [18] Mohan C D,Rangappa S,Preetham H D,et al. Targeting STAT3 signaling pathway in cancer by agents derived from Mother Nature[J]. Cancer Biol,2022,80:157-182. doi: 10.1016/j.semcancer.2020.03.016 [19] Lv C,Huang Y,Huang R,et al. Narciclasine targets STAT3 via distinct mechanisms in tamoxifen-resistant breast cancer cells[J]. Mol Ther Oncolytics,2022,24:340-354. doi: 10.1016/j.omto.2021.12.025 [20] Wang M,Liang L,Wang R,et al. Narciclasine,a novel topoisomerase I inhibitor,exhibited potent anti-cancer activity against cancer cells[J]. Nat Prod Bioprospect,2023,13(1):27. doi: 10.1007/s13659-023-00392-1 [21] Liu L F,Wang J C. Supercoiling of the DNA template during transcription[J]. Proc Natl AcadSci USA,1987,84(20):7024-7027. doi: 10.1073/pnas.84.20.7024 [22] Lichota A,Gwozdzinski K. Anticancer Activity of Natural Compounds from Plant and Marine Environment[J]. Int J Mol Sci,2018,19(11):3533. doi: 10.3390/ijms19113533 [23] Pommiier Y,Pourquier P,Urasaki Y,et al. Topoisomerase 1 inhibitors: selectivity andcellular resistance[J]. Drug Resist Updat,1999,2(5):307-318. doi: 10.1054/drup.1999.0102 [24] Said A H,Raufman J P,Xie G. The role of matrix metalloproteinases in colorectal cancer[J]. Cancers,2014,6:366-375. doi: 10.3390/cancers6010366 [25] Pezeshkian Z,Nobili S,Peyravian N,et al. Insights into the Role of Matrix Metalloproteinases in Precancerous Conditions and in Colorectal Cancer[J]. Cancers,2021,13(24):6226. doi: 10.3390/cancers13246226 [26] Ara ú jo R F,Jr,Lira G A,et al. Prognostic and diagnostic implications of MMP-2,MMP-9,and VEGF-α expressions in colorectal cancer[J]. Pathol Res Pract,2015,211(1):71-77. doi: 10.1016/j.prp.2014.09.007 [27] Wang K,Zheng J,Yu J,et al. Knockdown of MMP-1 inhibits the progression of colorectal cancer by suppressing the PI3K/Akt/c-myc signaling pathway and EMT[J]. Oncol Rep,2020,43(4):1103-1112. [28] Mathieu V,Laguera B,Masi M,et al. Amaryllidaceae alkaloids decrease the proliferation,invasion,and secretion of clinically relevant cytokines by cultured human colon cancer cells[J]. Biomolecules,2022,12(9):1267. doi: 10.3390/biom12091267 [29] Bie Y, Ge W, Yang Z, et al. The crucial role of CXCL8 and its receptors in colorectal liver metastasis[J]. Dis Markers, 2019, 2019: 8023460. [30] Wang Y,Wang K,Han GC,et al. Neutrophil infiltration favors colitis-associated tumorigenesis by activating the interleukin-1 (IL-1)/IL-6 axis[J]. Mucosal Immunol,2014,7(5):1106-1115. doi: 10.1038/mi.2013.126 [31] Lin Y,He Z,Ye J,et al. Progress in Understanding the IL-6/STAT3 Pathway in Colorectal Cancer[J]. Onco Targets Ther,2020,13:13023-13032. doi: 10.2147/OTT.S278013 [32] Yuan Y,He X,Li X,et al. NCS induces autophagy-mediated apoptosis in gastric cancer cells through the Akt/mTOR signaling pathway[J]. BMC Pharmacol Toxicol,2021,22(1):70. doi: 10.1186/s40360-021-00537-3 [33] White E,Mehnert J M,Chan C S. Autophagy,metabolism,and Cancer[J]. Clin Cancer Res,2015,21:5037-5046. doi: 10.1158/1078-0432.CCR-15-0490 [34] Deng S,Shanmugam M K,Kumar A P,et al. Targeting autophagy using natural compounds for cancer prevention and therapy[J]. Cancer,2019,125(8):1228-1246. doi: 10.1002/cncr.31978 [35] Marino G, Niso-Santano M, Baehrecke E H, et al Self-consumption: the interplay of autophagy and apoptosis[J]. Nat Rev Mol Cell Biol, 2014, 15(2): 81–94. [36] Moosavi M A,Haghi A,Rahmati M,et al. Phytochemicals as potent modulators of autophagy for cancer therapy[J]. Cancer Lett,2018,424:46-69. doi: 10.1016/j.canlet.2018.02.030 [37] Liu R,Li J,Zhang T,et al. Itraconazole suppresses the growth of glioblastoma through induction of autophagy: involvement of abnormal cholesterol trafficking[J]. Autophagy,2014,10(7):1241-1255. doi: 10.4161/auto.28912 [38] Elgendy M,Sheridan C,Brumatti G,et al. Oncogenic ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival[J]. Mol Cell,2011,42(1):23-35. doi: 10.1016/j.molcel.2011.02.009 [39] He C,Klionsky D J. Regulation mechanisms and signaling pathways of autophagy[J]. Annu Rev Genet,2009,43:67-93. doi: 10.1146/annurev-genet-102808-114910 [40] Jung C H,Ro S H,Cao J,et al. mTOR regulation of autophagy[J]. FEBS Lett,2010,584(7):1287-1295. doi: 10.1016/j.febslet.2010.01.017 [41] Van Goietsenoven G,Hutton J,Becker J P,et al. Targeting of eEF1A with Amaryllidaceae isocarbostyrils as a strategy to combat melanomas[J]. FASEB J,2010,24(11):4575-4584. doi: 10.1096/fj.10-162263 [42] Lefranc F,Sauvage S,Van Goietsenoven G,et al. NCS,a plant growth modulator,activates Rho and stress fibers in glioblastoma cells[J]. Mol Cancer Ther,2009,8(7):1739-1750. doi: 10.1158/1535-7163.MCT-08-0932 [43] Scott R W,Olson M. LIM kinases: function,regulation and association with human disease[J]. J Mol Med,2007,85(6):555-568. doi: 10.1007/s00109-007-0165-6 [44] Arber S,Barbayannis F A,Hanser H,et al. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase[J]. Nature,1998,393(6687):805-809. doi: 10.1038/31729 [45] Le Mercier M,Mathieu V,Haibe-Kains B,et al. Knocking down galectin-1 in human Hs683 glioblastoma cells impairs both angiogenesis through ORP150 depletion and endoplasmic reticulum stress responses[J]. J Neuropathol Exp Neurol,2008,67(5):456-469. doi: 10.1097/NEN.0b013e318170f892 [46] Raftopoulou M,Hall A. Cell migration: Rho GTPases lead the way[J]. Dev Biol,2004,265(1):23-32. doi: 10.1016/j.ydbio.2003.06.003 [47] Tabu K,Ohba Y,Suzuki T,et al. Oligodendrocyte lineage transcription factor 2 inhibits the motility of a human glial tumor cell line by activating RhoA[J]. Mol Cancer Res,2007,5(10):1099-1109. doi: 10.1158/1541-7786.MCR-07-0096 [48] Shieu M K,Ho H Y,Lin C C,et al. NCS suppresses oral cancer metastasis by modulating cathepsin B and extracellular signal-related kinase pathways[J]. Biomed Pharmacother,2023,158:114159. doi: 10.1016/j.biopha.2022.114159 [49] Q Peng,Deng Z,Pan H,et al. Mitogen-activated protein kinase signaling pathway in oral cancer[J]. Oncol Lett,2018,15(2):1379-1388. [50] Gopalakrishnan R,Matta H,Choi S,et al. NCS,an isocarbostyril alkaloid,has preferential activity against primary effusion lymphoma[J]. Sci Rep,2020,10(1):5712. doi: 10.1038/s41598-020-62690-9 [51] Meyer N,Penn L Z. Refecting on 25 years with MYC[J]. Nat Rev Cance,2008,8(12):976-990. doi: 10.1038/nrc2231 [52] Tolani B,Gopalakrishnan R,Punj V,et al. Targeting Myc in KSHV-associated primary effusion lymphoma with BET bromodomain inhibitors[J]. Oncogene,2014,33(22):2928-2937. doi: 10.1038/onc.2013.242 -