留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ERK1/2信号通路基因3'UTR多态性与非小细胞肺癌的相关性

洪超 向旭东 李盈甫 曹杨 陈雪雅 李帅 邢安灏 林牧 马千里

洪超, 向旭东, 李盈甫, 曹杨, 陈雪雅, 李帅, 邢安灏, 林牧, 马千里. ERK1/2信号通路基因3'UTR多态性与非小细胞肺癌的相关性[J]. 昆明医科大学学报, 2024, 45(3): 7-17. doi: 10.12259/j.issn.2095-610X.S20240302
引用本文: 洪超, 向旭东, 李盈甫, 曹杨, 陈雪雅, 李帅, 邢安灏, 林牧, 马千里. ERK1/2信号通路基因3'UTR多态性与非小细胞肺癌的相关性[J]. 昆明医科大学学报, 2024, 45(3): 7-17. doi: 10.12259/j.issn.2095-610X.S20240302
Chao HONG, Xudong XIANG, Yingfu LI, Yang CAO, Xueya CHEN, Shuai LI, Anhao XING, Mu LIN, Qianli MA. Association of Polymorphisms in the 3' UTR of Genes in the ERK1/2 Signaling Pathway with Non-small Cell Lung Cancer[J]. Journal of Kunming Medical University, 2024, 45(3): 7-17. doi: 10.12259/j.issn.2095-610X.S20240302
Citation: Chao HONG, Xudong XIANG, Yingfu LI, Yang CAO, Xueya CHEN, Shuai LI, Anhao XING, Mu LIN, Qianli MA. Association of Polymorphisms in the 3' UTR of Genes in the ERK1/2 Signaling Pathway with Non-small Cell Lung Cancer[J]. Journal of Kunming Medical University, 2024, 45(3): 7-17. doi: 10.12259/j.issn.2095-610X.S20240302

ERK1/2信号通路基因3'UTR多态性与非小细胞肺癌的相关性

doi: 10.12259/j.issn.2095-610X.S20240302
基金项目: 云南省科技厅-昆明医科大学应用基础研究联合专项基金资助项目(202201AY070001-141);保山市科技计划项目-2023年医学研究联合专项基金资助项目(2023bskjylms016)
详细信息
    作者简介:

    洪超(1978~),男,云南楚雄人,理学硕士,副主任技师,主要从事生物制品质量控制工作。向旭东与洪超对本文有同等贡献

    通讯作者:

    林牧,E-mail:546699462@qq.com

    马千里,E-mail:maqianli78@126.com

  • 中图分类号: R737.33

Association of Polymorphisms in the 3' UTR of Genes in the ERK1/2 Signaling Pathway with Non-small Cell Lung Cancer

  • 摘要:   目的  探究4个ERK1/2信号通路的基因3'UTR区域的单核苷酸多态性(single nucleotide polymorphism,SNP)位点(MAPK1基因中的rs9340,NRAS基因中的rs14804,KRAS基因中的rs712和rs7973450)与非小细胞肺癌(non-small cell lung cancer,NSCLC)的相关性。  方法  纳入了478名NSCLC患者及480名健康对照者,利用TaqMan探针法对其进行基因分型检测,并分析上述4个SNP与NSCLC的相关性。  结果  rs9340位点的等位基因在对照组与非小细胞鳞状细胞癌组( squamous cell carcinoma,SCC)中分布频率的差异具有统计学意义(P = 0.009),该结果表明rs9340 位点的G等位基因可能是非小细胞肺鳞癌的保护性因素(OR = 0.67,95% CI: 0.50~0.91)。同时,在 < 50岁年龄组中,rs9340位点的等位基因在对照组和NSCLC组中的分布频率差异具有统计学意义(P = 5.07 × 10-4),该结果表明rs9340等位基因G可能是NSCLC的保护性因素(OR = 0.46,95% CI: 0.29~0.72)。  结论  MAPK1基因SNP位点rs9340可能与NSCLC的发生风险相关。
  • 图  1  rs9340调节MAPK1的表达

    Figure  1.  rs9340 regulates the expression of MAPK1

    表  1  所选SNP位点信息

    Table  1.   The information of selected SNPs in the current study

    SNPs基因功能位置等位基因中国南方汉族人群MAF
    rs9340MAPK13'UTR突变Chr 22:21761064G > A0.21
    rs14804NRAS3'UTR突变Chr 1:114707222G > A0.04
    rs712KRAS3'UTR突变Chr 12:25209618A > C0.48
    rs7973450KRAS3'UTR突变Chr 12:25208208A > G0.09
      SNP,单核苷酸多态性;MAF,次要等位基因频率;Chr,染色体。
    下载: 导出CSV

    表  2  受试者临床信息[$ x \pm s $/n(%)]

    Table  2.   The clinical characteristics of the subjects enrolled in the current study [$ x \pm s $/n(%)]

    项目肺癌组对照组t/χ2P
    样本数 478 480
    年龄(岁) 55.94 ± 10.79 55.16 ± 11.35 1.09 0.275
    性别
     男 305(63.8) 277(57.7) 3.74 0.053
     女 173(36.2) 203(42.3)
    病理类型
     腺癌 327(68.4) 8.00 < 0.001*
     鳞状细胞癌 151(31.6)
    临床分期
     Ⅰ期 126(26.3) 26.45 < 0.001*
     Ⅱ期 74(15.5)
     Ⅲ期 151(31.6)
     Ⅳ期 127(26.6)
    下载: 导出CSV

    表  3  在健康对照组和NSCLC组中4个SNP位点等位基因及基因型频率分布结果[n(%)]

    Table  3.   Allele and genotype frequencies of four SNPs between the control group and NSCLC group [n(%)]

    SNPs等位基因/基因型对照组
    肺癌组
    对照组HWE肺癌组 vs 对照组
    χ2POR (95%CIχ2P
    rs9340 G 773(80.5) 728(76.2) 0.77(0.62~0.96) 5.39 0.020
    A 187(19.5) 228(23.8)
    G/G 308(64.2) 273(57.1) 0.87 0.350 5.63 0.060
    G/A 157(32.7) 182(38.1)
    A/A 15(3.1) 23(4.8)
    rs14804 G 936(97.5) 935(97.8) 1.14(0.63~2.06) 0.19 0.661
    A 24(2.5) 21(2.2)
    G/G 456(95.0) 458(95.8) 0.32 0.574 1.58 0.454
    G/A 24(5.0) 19(4.0)
    A/A 0 1(0.2)
    rs712 A 197(20.5) 202(21.1) 1.04(0.83~1.29) 1.04 0.743
    C 763(79.5) 754(78.9)
    A/A 21(4.4) 29(6.1) 0.05 0.826 1.68 0.431
    A/C 155(32.3) 144(30.1)
    C/C 304(63.3) 305(63.8)
    rs7973450 A 873(90.9) 876(91.6) 1.09(0.79~1.50) 1.09 0.590
    G 87(9.1) 80(8.4)
    A/A 399(83.1) 401(83.9) 1.30 0.254 1.01 0.604
    A/G 75(15.6) 74(15.5)
    G/G 6(1.3) 3(0.6)
      HWE,哈迪温伯格平衡。*P < 0.012(经Bonferroni校正,n = 4)。
    下载: 导出CSV

    表  4  在健康对照组和不同病理类型肺癌组中4个SNP位点等位基因及基因型频率分布结果[n(%)]

    Table  4.   Allele and genotype frequencies of four SNPs between different pathological types of NSCLC [n(%)]

    SNPs等位基因/基因型对照组AC组SCC组AC组 vs 对照组SCC组 vs 对照组SCC组 vs AC组
    OR(95%CIχ2POR(95%CIχ2POR(95%CIχ2P
    rs9340 G 773(80.5) 506(77.4) 222(73.5) 0.83(0.65~1.05) 2.35 0.125 0.67(0.50~0.91) 6.77 0.009* 0.81(0.59~1.11) 1.70 0.193
    A 187(19.5) 148(22.6) 80(26.5)
    G/G 308(64.2) 192(58.7) 81(53.7) 2.53 0.282 7.26 0.027 2.13 0.345
    G/A 157(32.7) 122(37.3) 60(39.7)
    A/A 15(3.1) 13(4.0) 10(6.6)
    rs14804 G 936(97.5) 640(97.9) 295(97.7) 1.17(0.60~2.28) 0.22 0.640 1.08(0.46~2.53) 0.03 0.858 0.92(0.37~2.31) 0.03 0.862
    A 24(2.5) 14(2.1) 7(2.3)
    G/G 456(95.0) 313(95.7) 145(96.0) 0.22 0.636 3.90 0.142 2.41 0.300
    G/A 24(5.0) 14(4.3) 5(3.3)
    A/A 0 0 1(0.7)
    rs712 A 197(20.5) 140(21.4) 62(20.5) 1.05(0.83~1.35) 0.18 0.667 1.00(0.73~1.38) 1.10 × 10−5 0.997 0.95(0.68~1.33) 0.09 0.758
    C 763(79.5) 514(78.6) 240(79.5)
    A/A 21(4.4) 20(6.1) 9(6.0) 1.34 0.512 1.01 0.602 0.12 0.943
    A/C 155(32.3) 100(30.6) 44(29.1)
    C/C 304(63.3) 207(63.3) 98(64.9)
    rs7973450 A 873(90.9) 597(91.3) 279(92.4) 1.04(0.74~1.48) 0.06 0.810 1.21(0.75~1.95) 0.60 0.437 1.16(0.70~1.92) 0.32 0.568
    G 87(9.1) 57(8.7) 23(7.6)
    A/A 399(83.1) 273(83.5) 128(84.8) 0.20 0.907 1.94 0.380 1.41 0.493
    A/G 75(15.6) 51(15.6) 23(15.2)
    G/G 6(1.3) 3(0.9) 0
      AC,肺腺癌;SCC,肺鳞状细胞癌。*P < 0.012(经Bonferroni校正,n = 4)
    下载: 导出CSV

    表  5  健康对照组和不同分期肺癌组中4个SNP位点等位基因及基因型频率分布结果[n(%)]

    Table  5.   Allele and genotype frequencies of four SNPs between different stages of NSCLC [n(%)]

    SNPs等位基因/基因型对照组
    I+II期组
    III+IV期组
    I+II期组 vs 对照组III+IV期组 vs 对照组III+IV期组 vs I+II期组
    OR(95%CIχ2POR(95%CIχ2POR(95%CIχ2P
    rs9340 G 773(80.5) 303(75.7) 425(76.4) 0.76(0.57~1.00) 3.89 0.049 0.78(0.61~1.01) 3.54 0.060 1.04(0.77~1.40) 0.06 0.805
    A 187(19.5) 97(24.3) 131(23.6)
    G/G 308(64.2) 114(57.0) 159(57.2) 4.20 0.122 3.78 0.151 0.37 0.831
    G/A 157(32.7) 75(37.5) 107(38.5)
    A/A 15(3.1) 11(5.5) 12(4.3)
    rs14804 G 936(97.5) 394(98.5) 541(97.3) 1.68(0.68~4.15) 1.31 0.253 0.92(0.48~1.78) 0.05 0.815 0.55(0.21~1.43) 1.55 0.213
    A 24(2.5) 6(1.5) 15(2.7)
    G/G 456(95.0) 194(97.0) 264(95.0) 1.34 0.247 1.76 0.414 1.59 0.451
    G/A 24(5.0) 6(3.0) 13(4.6)
    A/A 0 0 1(0.4)
    rs712 A 197(20.5) 79(19.8) 123(22.1) 0.95(0.71~1.28) 0.10 0.747 1.10(0.85~1.42) 0.54 0.462 1.15(0.84~1.59) 0.79 0.375
    C 763(79.5) 321(80.2) 433(77.9)
    A/A 21(4.4) 9(4.5) 20(7.2) 0.21 0.901 2.92 0.232 1.48 0.476
    A/C 155(32.3) 61(30.5) 83(29.9)
    C/C 304(63.3) 130(65.0) 175(62.9)
    rs7973450 A 873(90.9) 370(92.5) 506(91.0) 1.23(0.80~1.89) 0.88 0.349 1.01(0.70~1.45) 2.08 × 10−3 0.964 0.82(0.51~1.32) 0.68 0.411
    G 87(9.1) 30(7.5) 50(9.0)
    A/A 399(83.1) 173(86.5) 228(82.0) 1.53 0.465 4.10 0.129 7.14 0.028
    A/G 75(15.6) 24(12.0) 50(18.0)
    G/G 6(1.3) 3(1.5) 0
      *P < 0.012(经Bonferroni校正,n = 4)。
    下载: 导出CSV

    表  6  不同年龄组中4个SNP位点等位基因及基因型频率分布结果[n(%)] (1)

    Table  6.   Allele and genotype frequencies of four SNPs between different age groups [n(%)] (1)

    SNPs等位基因/
    基因型
    < 50岁组50~65岁组 > 65岁组 < 50岁
    对照组vs肺癌组
    50~65岁
    对照组vs肺癌组
    > 65岁
    对照组vs肺癌组
    对照组肺癌组对照组肺癌组对照组肺癌组OR(95%CIχ2POR(95%CIχ2POR(95%CIχ2P
    rs9340 G 220(85.9) 196
    (73.7)
    387
    (79.3)
    380
    (75.4)
    166(76.9) 152(81.7) 0.46(0.29~0.72) 12.10 5.07 × 10−4* 0.80(0.59~1.08) 2.16 0.142   1.35
    (0.83~2.19)
    1.43 0.231
    A 36(14.1) 70
    (26.3)
    101
    (20.7)
    124
    (24.6)
    50
    (23.1)
    34
    (18.3)
    G/G 92(71.9) 70
    (52.6)
    151
    (61.9)
    144
    (57.2)
    65
    (60.2)
    59
    (63.4)
    14.24 8.15 × 10−4 2.98 0.225 6.26 0.044
    G/A 36(28.1) 56
    (42.1)
    85
    (34.8)
    92
    (36.5)
    36
    (33.3)
    34
    (36.6)
    A/A 0 7
    (5.3)
    8
    (3.3)
    16
    (6.3)
    7
    (6.5)
    0
    rs14804 G 248(96.9) 260
    (97.7)
    475
    (97.3)
    490
    (97.2)
    213
    (98.6)
    185
    (99.5)
      1.40
    (0.48~4.09)
    0.38 0.539   0.96
    (0.45~2.06)
    0.01 0.912   2.61
    (0.27~25.27)
    0.74 0.391
    A 8(3.1) 6
    (2.3)
    13
    (2.7)
    14
    (2.8)
    3
    (1.4)
    1
    (0.5)
    G/G 120(93.8) 127
    (95.5)
    231
    (94.7)
    239
    (94.8)
    105
    (97.2)
    92
    (98.9)
    0.39 0.533 1.04 0.592 0.74 0.389
    G/A 8(6.2) 6
    (4.5)
    13
    (5.3)
    12
    (4.8)
    3
    (2.8)
    1
    (1.1)
    A/A 0 0 0 1
    (0.4)
    0
    (0.0)
    0
    下载: 导出CSV

    表  6  不同年龄组中4个SNP位点等位基因及基因型频率分布结果[n(%)] (2)

    Table  6.   Allele and genotype frequencies of four SNPs between different age groups [n(%)] (2)

    SNPs等位基因/
    基因型
    < 50岁组50~65岁组 > 65岁组 < 50岁
    对照组vs肺癌组
    50~65岁
    对照组vs肺癌组
    > 65岁
    对照组vs肺癌组
    对照组肺癌组对照组肺癌组对照组肺癌组OR(95%CIχ2POR(95%CIχ2POR(95%CIχ2P
    rs712 A 53(20.7) 50
    (18.8)
    95
    (19.5)
    111
    (22.0)
    49
    (22.7)
    41
    (22.0)
     0.89
    (0.58~1.36)
    0.30 0.584  1.17
    (0.86~1.59)
    0.98 0.321  0.96
    (0.60~1.54)
    0.02 0.878
    C 203(79.3) 216
    (81.2)
    393
    (80.5)
    393
    (78.0)
    167
    (77.3)
    145
    (78.0)
    A/A 8(6.3) 4
    (3.0)
    6
    (2.5)
    19
    (7.5)
    7
    (6.5)
    6
    (6.4)
    1.65 0.439 7.35 0.025 0.04 0.982
    A/C 37(28.9) 42
    (31.6)
    83
    (34.0)
    73
    (29.0)
    35
    (32.4)
    29
    (31.2)
    C/C 83(64.8) 87
    (65.4)
    155
    (63.5)
    160
    (63.5)
    66
    (61.1)
    58
    (62.4)
    rs7973450 A 233(91.0) 246
    (92.5)
    441
    (90.4)
    459
    (91.1)
    199
    (92.1)
    171
    (91.9)
     1.21
    (0.65~2.27)
    0.37 0.543  1.09
    (0.71~1.67)
    0.15 0.703  0.97
    (0.47~2.01)
    5.14 × 10−3 0.943
    G 23(9.0) 20
    (7.5)
    47
    (9.6)
    45
    (8.9)
    17
    (7.9)
    15
    (8.1)
    A/A 108(84.4) 114
    (85.7)
    198
    (81.2)
    209
    (82.9)
    93
    (86.1)
    78
    (83.9)
    1.10 0.578 0.69 0.709 2.35 0.309
    A/G 17(13.3) 18
    (13.5)
    45
    (18.4)
    41
    (16.3)
    13
    (12.0)
    15
    (16.1)
    G/G 3(2.3) 1
    (0.8)
    1
    (0.4)
    2
    (0.8)
    2
    (1.9)
    0
      *P < 0.012(经Bonferroni校正,n = 4)。
    下载: 导出CSV
  • [1] Sung H,Ferlay J,Siegel R L,et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2021,71(3):209-249. doi: 10.3322/caac.21660
    [2] Zheng R,Zhang S,Zeng H,et al. Cancer incidence and mortality in China,2016[J]. Journal of the National Cancer Center,2022,2(1):1-9. doi: 10.1016/j.jncc.2022.02.002
    [3] Nooreldeen R,Bach H. Current and future development in lung cancer diagnosis[J]. Int J Mol Sci,2021,22(16):8661. doi: 10.3390/ijms22168661
    [4] Cao W,Chen H D,Yu Y W,et al. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl),2021,134(7):783-791. doi: 10.1097/CM9.0000000000001474
    [5] Saller J J,Boyle T A. Molecular pathology of lung cancer[J]. Cold Spring Harb Perspect Med,2022,12(3):a037812. doi: 10.1101/cshperspect.a037812
    [6] Duma N,Santana-Davila R,Molina JR. Non-small cell lung cancer: Epidemiology,screening,diagnosis,and treatment[J]. Mayo Clin Proc,2019,94(8):1623-1640. doi: 10.1016/j.mayocp.2019.01.013
    [7] Zhang J,Chen S F,Zhen Y,et al. Multicenter analysis of lung cancer patients younger than 45 years in Shanghai[J]. Cancer,2010,116(15):3656-3662. doi: 10.1002/cncr.25100
    [8] Heist R S,Sequist L V,Engelman J A. Genetic changes in squamous cell lung cancer: a review[J]. J Thorac Oncol,2012,7(5):924-933. doi: 10.1097/JTO.0b013e31824cc334
    [9] Kim Y,Hammerman P S,Kim J,et al. Integrative and comparative genomic analysis of lung squamous cell carcinomas in East Asian patients[J]. J Clin Oncol,2014,32(2):121-128. doi: 10.1200/JCO.2013.50.8556
    [10] Niu Z,Jin R,Zhang Y,et al. Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials[J]. Signal Transduct Target Ther,2022,7(1):353. doi: 10.1038/s41392-022-01200-x
    [11] Shi Q,Ruan J,Yang Y C,et al. rs66651343 and rs12909095 confer lung cancer risk by regulating CCNDBP1 expression[J]. PLoS One,2023,18(4):e0284347. doi: 10.1371/journal.pone.0284347
    [12] Anjum J,Mitra S,Das R,et al. A renewed concept on the MAPK signaling pathway in cancers: polyphenols as a choice of therapeutics[J]. Pharmacol Res,2022,184(2022):106398.
    [13] Qi M, Elion E A. MAP kinase pathways [J]. J Cell Sci, 2005, 118(Pt 16): 3569-3572.
    [14] Morrison D K. MAP kinase pathways[J]. Cold Spring Harb Perspect Biol,2012,4(11):a011254.
    [15] Keshet Y, Seger R. The MAP kinase signaling cascades: A system of hundreds of components regulates a diverse array of physiological functions[M]. //Seger R. MAP kinase signaling protocols. Second Edition. Totowa, NJ: Humana Press, 2010: 3-38.
    [16] Sinkala M,Nkhoma P,Mulder N,et al. Integrated molecular characterisation of the MAPK pathways in human cancers reveals pharmacologically vulnerable mutations and gene dependencies[J]. Commun Biol,2021,4(1):9. doi: 10.1038/s42003-020-01552-6
    [17] Brennecke J,Stark A,Russell RB,et al. Principles of microRNA-target recognition[J]. PLoS Biol,2005,3(3):e85. doi: 10.1371/journal.pbio.0030085
    [18] Liu C J,Fu X,Xia M,et al. miRNASNP-v3: a comprehensive database for SNPs and disease-related variations in miRNAs and miRNA targets[J]. Nucleic Acids Research,2021,49(D1):D1276-D1281. doi: 10.1093/nar/gkaa783
    [19] Wu W,Wu L,Zhu M,et al. miRNA mediated noise making of 3'UTR mutations in cancer[J]. Genes (Basel),2018,9(11):545. doi: 10.3390/genes9110545
    [20] 中华医学会,中华医学会肿瘤学分会,中华医学会杂志社. 中华医学会肺癌临床诊疗指南(2018版)[J]. 中华肿瘤杂志,2018,40(12):30.
    [21] 赫捷,李霓,陈万青,等. 中国肺癌筛查与早诊早治指南(2021,北京)[J]. 中国肿瘤,2021,30(02):81-111.
    [22] 黄鼎智, 李琳, 李旭, 等.老年晚期肺癌内科治疗中国专家共识(2022版)[J].中国肺癌杂志, 2022, 25(06): 363-384.
    [23] Yang J,Yan Z,Wang Y,et al. Association study of relationships of polymorphisms in the miR-21,miR-26b,miR-221/222 and miR-126 genes with cervical intraepithelial neoplasia and cervical cancer[J]. BMC Cancer,2021,21(1):997. doi: 10.1186/s12885-021-08743-2
    [24] Shi Y Y,He L. SHEsis,a powerful software platform for analyses of linkage disequilibrium,haplotype construction,and genetic association at polymorphism loci[J]. Cell Res,2005,15(2):97-98. doi: 10.1038/sj.cr.7290272
    [25] Lee J,Son M J,Son C Y,et al. Genetic Variation and Autism: A Field Synopsis and Systematic Meta-Analysis[J]. Brain Sci,2020,10(10):692. doi: 10.3390/brainsci10100692
    [26] Lake D,Corrêa S A,Müller J. Negative feedback regulation of the ERK1/2 MAPK pathway[J]. Cell Mol Life Sci,2016,73(23):4397-413. doi: 10.1007/s00018-016-2297-8
    [27] Balmanno K,Cook S J. Tumour cell survival signalling by the ERK1/2 pathway[J]. Cell Death & Differentiation,2009,16(3):368-377.
    [28] Yan Z,Ohuchida K,Fei S,et al. Inhibition of ERK1/2 in cancer-associated pancreatic stellate cells suppresses cancer-stromal interaction and metastasis[J]. BioMed Central,2019,38(1):221.
    [29] Marampon F,Ciccarelli C,Zani B M. Biological rationale for targeting MEK/ERK pathways in anti-cancer therapy and to potentiate tumour responses to radiation[J]. Int J Mol Sci,2019,20(10):2530. doi: 10.3390/ijms20102530
    [30] Zhou B,Lin W,Long Y,et al. Notch signaling pathway: architecture,disease,and therapeutics[J]. Signal Transduct Target Ther,2022,7(1):95. doi: 10.1038/s41392-022-00934-y
    [31] Pino M S,Chung D C. The chromosomal instability pathway in colon cancer[J]. Gastroenterology,2010,138(6):2059-2072. doi: 10.1053/j.gastro.2009.12.065
    [32] Müller M F,Ibrahim A E,Arends M J. Molecular pathological classification of colorectal cancer[J]. Virchows Arch,2016,469(2):125-134. doi: 10.1007/s00428-016-1956-3
    [33] Ding L,Getz G,Wheeler D A,et al. Somatic mutations affect key pathways in lung adenocarcinoma[J]. Nature,2008,455(7216):1069-1075. doi: 10.1038/nature07423
    [34] Hill M,Tran N. miRNA interplay: mechanisms and consequences in cancer[J]. Dis Model Mech,2021,14(4):dmm047662. doi: 10.1242/dmm.047662
    [35] Zhu Z,Zhang F,Hu H,et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets[J]. Nat Genet,2016,48(5):481-487. doi: 10.1038/ng.3538
    [36] Fabian M R,Sonenberg N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC[J]. Nat Struct Mol Biol,2012,19(6):586-593. doi: 10.1038/nsmb.2296
    [37] Chan J J,Tabatabaeian H,Tay Y. 3'UTR heterogeneity and cancer progression[J]. Trends Cell Biol,2023,33(7):568-582. doi: 10.1016/j.tcb.2022.10.001
    [38] Sturgill T W,Ray L B,Erikson E,et al. Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II[J]. Nature,1988,334(6184):715-718. doi: 10.1038/334715a0
    [39] AACR Project GENIE Consortium. AACR project GENIE: powering precision medicine through an international consortium[J]. Cancer Discov,2017,7(8):818-831. doi: 10.1158/2159-8290.CD-17-0151
    [40] Rubio K,Romero-Olmedo A J,Sarvari P,et al. Non-canonical integrin signaling activates EGFR and RAS-MAPK-ERK signaling in small cell lung cancer[J]. Theranostics,2023,13(8):2384-2407. doi: 10.7150/thno.79493
    [41] Wang Y,Guo Z,Tian Y,et al. MAPK1 promotes the metastasis and invasion of gastric cancer as a bidirectional transcription factor[J]. BMC Cancer,2023,23(1):959. doi: 10.1186/s12885-023-11480-3
    [42] Zhu L,Yang S,Wang J. miR-217 inhibits the migration and invasion of HeLa cells through modulating MAPK1[J]. Int J Mol Med,2019,44(5):1824-1832.
    [43] Gagliardi M,Pitner M K,Park J,et al. Differential functions of ERK1 and ERK2 in lung metastasis processes in triple-negative breast cancer[J]. Sci Rep,2020,10(1):8537. doi: 10.1038/s41598-020-65250-3
    [44] Guo N,Zhang N,Yan L,et al. Correlation between genetic polymorphisms within the MAPK1/HIF-1/HO-1 signaling pathway and risk or prognosis of perimenopausal coronary artery disease[J]. Clin Cardiol,2017,40(8):597-604. doi: 10.1002/clc.22708
    [45] Insodaite R,Smalinskiene A,Liutkevicius V,et al. Associations of polymorphisms localized in the 3'UTR regions of the KRAS,NRAS,MAPK1 genes with laryngeal squamous cell carcinoma[J]. Genes (Basel),2021,12(11):1679. doi: 10.3390/genes12111679
    [46] Hirsch F R,Scagliotti G V,Mulshine J L,et al. Lung cancer: current therapies and new targeted treatments[J]. Lancet,2017,389(10066):299-311. doi: 10.1016/S0140-6736(16)30958-8
    [47] Kulasingam V,Diamandis E P. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies[J]. Nat Clin Pract Oncol,2008,5(10):588-599. doi: 10.1038/ncponc1187
    [48] Chen W,Zheng R,Baade P D,et al. Cancer statistics in China,2015[J]. CA Cancer J Clin,2016,66(2):115-132. doi: 10.3322/caac.21338
  • [1] 陈雪雅, 许金美, 李智, 梁燕, 姚宇峰, 何凤权, 严志凌.  HOXD-AS2、MIR3142HG基因多态性与宫颈上皮内瘤变的相关性, 昆明医科大学学报.
    [2] 郭妮, 张承, 洪超, 刘伟鹏, 姚宇峰, 严志凌.  KRAS基因3′UTR多态性与云南汉族人群宫颈癌及宫颈上皮内瘤变的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240203
    [3] 张彩妮, 李娅.  卡瑞利珠联合化疗治疗非小细胞肺癌的有效性及安全性Meta分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240610
    [4] 牛志鑫, 汤丽华, 史磊, 洪超, 姚宇峰, 严志凌.  MAPK1NRAS基因多态性与云南汉族人群宫颈上皮内瘤变的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240502
    [5] 李抒瑾, 杨艳飞, 苏敏, 凌昱, 饶艳琼, 崔继华.  儿童注意缺陷多动障碍共病情绪问题的单核苷酸多态性研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230420
    [6] 张云芳, 庄杉杉, 余艳, 李铮, 吴晓明, 聂晓改.  PEAR1基因多态性与缺血性脑卒中的相关性研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231120
    [7] 梁燕, 王磊, 雷鸣, 陈本超, 孙萍, 李帅, 刘莉, 王倩蓉, 廖曼霖, 马千里.  KRAS基因多态性与云南汉族人群非小细胞肺癌的相关性分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230210
    [8] 程甜甜, 尹文卅, 王佳, 卢玉梅, 陈炫羽, 聂胜洁, 刘林林.  TMTC1基因多态性与精神分裂症的关联性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231014
    [9] 伍蓉霜, 彭江丽, 陈永刚, 陈洁, 马国伟, 李先蕊, 李谢, 余春红.  SLC2A9基因单核苷酸多态性与吡嗪酰胺致高尿酸血症易感性关系, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230409
    [10] 梅聪, 翁晓春, 彭葆坤, 颜穗珺, 李春, 周琼, 唐哲.  CLOCK基因rs4580704多态性位点与2型糖尿病和睡眠质量的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210332
    [11] 杨佳, 李娅娴, 王莹莹, 肖琳, 李传印, 谭芳, 马千里, 刘舒媛.  云南汉族人群mircoRNA-149、mircoRNA-219、mircoRNA-let-7基因多态性与非小细胞肺癌发生和发展的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211037
    [12] 阮小荟, 向茜, 王玉明, 周治含, 张弦, 郭燕, 杨晓瑞.  维生素D受体基因Bg1I、Cdx-2位点多态性与桥本氏甲状腺炎的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210824
    [13] 李东云, 冮顺奎, 李捷, 张明星, 李雷.  ABCG2、SLC2A9、SLC17A3和 PRKG2基因单核苷酸位点多态性与哈尼族人群痛风的关系, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210320
    [14] 王娟, 苏国苗, 潘国庆, 边莉, 杨哲, 曾定涛.  云南地区非小细胞肺癌EGFR、ALK和ROS1基因突变联合检测, 昆明医科大学学报.
    [15] 向茜, 李万碧, 张弦, 刘华, 王玉明, 杨才, 白云霞.  维生素D受体基因ApaⅠ、BsmⅠ位点单核苷酸多态性与2型糖尿病肾病的相关性, 昆明医科大学学报.
    [16] 向茜.  维生素D受体基因FokI位点单核苷酸多态性与糖尿病肾病的相关性, 昆明医科大学学报.
    [17] 洪超.  CDH13 基因变异与非小细胞肺癌的相关性, 昆明医科大学学报.
    [18] 刘丽丽.  染色体9p21单核苷酸多态性与冠心病/心肌梗死相关性的研究进展, 昆明医科大学学报.
    [19] 李蓝江.  GPIHBP1基因rs142861814位点多态性与高甘油三酯血症的相关性, 昆明医科大学学报.
    [20] 王艳.  ENPP1基因K121Q多态性与2型糖尿病的相关性研究, 昆明医科大学学报.
  • 加载中
图(1) / 表(7)
计量
  • 文章访问数:  891
  • HTML全文浏览量:  525
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-14
  • 网络出版日期:  2024-03-12
  • 刊出日期:  2024-03-30

目录

    /

    返回文章
    返回