留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于综合生物信息分析鉴定心房颤动相关炎症基因及其与免疫细胞浸润的关联

杨曼 赵兴安 葛芸娜 秦娟 王玺雅 陶四明

杨曼, 赵兴安, 葛芸娜, 秦娟, 王玺雅, 陶四明. 基于综合生物信息分析鉴定心房颤动相关炎症基因及其与免疫细胞浸润的关联[J]. 昆明医科大学学报, 2024, 45(3): 18-29. doi: 10.12259/j.issn.2095-610X.S20240303
引用本文: 杨曼, 赵兴安, 葛芸娜, 秦娟, 王玺雅, 陶四明. 基于综合生物信息分析鉴定心房颤动相关炎症基因及其与免疫细胞浸润的关联[J]. 昆明医科大学学报, 2024, 45(3): 18-29. doi: 10.12259/j.issn.2095-610X.S20240303
Man YANG, Xingan ZHAO, Yunna GE, Juan QIN, Xiya WANG, Siming TAO. Identification of Atrial Fibrillation-related Inflammatory Genes and Their Association with Immune Cell Infiltration Based on Comprehensive Bioinformatic Analysis[J]. Journal of Kunming Medical University, 2024, 45(3): 18-29. doi: 10.12259/j.issn.2095-610X.S20240303
Citation: Man YANG, Xingan ZHAO, Yunna GE, Juan QIN, Xiya WANG, Siming TAO. Identification of Atrial Fibrillation-related Inflammatory Genes and Their Association with Immune Cell Infiltration Based on Comprehensive Bioinformatic Analysis[J]. Journal of Kunming Medical University, 2024, 45(3): 18-29. doi: 10.12259/j.issn.2095-610X.S20240303

基于综合生物信息分析鉴定心房颤动相关炎症基因及其与免疫细胞浸润的关联

doi: 10.12259/j.issn.2095-610X.S20240303
基金项目: 云南省“高层次人才培养支持计划”入选名医专项基金资助项目(YNWR-MY-2020-024)
详细信息
    作者简介:

    杨曼(1986~),女,白族,云南大理人,医学硕士,主治医师,主要从事心血管疾病研究工作

    通讯作者:

    陶四明,E-mail:taosm6450@126.com

  • 中图分类号: Q811.4,R541.7+5

Identification of Atrial Fibrillation-related Inflammatory Genes and Their Association with Immune Cell Infiltration Based on Comprehensive Bioinformatic Analysis

  • 摘要:   目的  鉴定心房颤动 ( atrial fibrillation,AF)患者的炎症相关基因,并探讨这些基因与浸润免疫细胞在AF的发生发展过程中可能的作用和机制。  方法  通过一系列的生物信息学分析结合机器学习算法识别AF的生物标志物,使用受试者操作特性曲线(receiver operating characteristic,ROC)验证关键基因的预测及诊断价值,采用Spearman 相关分析明确关键基因与浸润免疫细胞的相关性。  结果  筛选出593个差异基因[|log2 (fold change,FC)|>1,P<0.05],7种免疫细胞亚型(P<0.05),获得190个免疫相关差异基因,识别出 3 个生物标志物(IGF1、PTGS2和PPARG),相关性分析结果显示3个标志物与浸润免疫细胞显著相关(P<0.05)。  结论  IGF1、PTGS2和PPARG是AF的炎症相关基因,推测其与免疫细胞浸润过程和途径密切相关。
  • 图  1  生物信息学分析的流程图

    DEGs:差异表达基因;WGCNA:加权基因共表达网络分析; GO:基因本体论;KEGG:京都基因和基因组百科全书;PPI:蛋白质-蛋白质相互作用;ROC:受试者操作特性曲线。

    Figure  1.  Flow diagram of the bioinformatics analysis

    图  2  AF和SR样本组间的DEGs鉴定

    A:去除批次效应后AF和SR组间的PCA图;B:前50个DEGs的热图;C:DEGs的火山图。

    Figure  2.  Identification of DEGs between AF and SR samples

    图  3  免疫细胞浸润的分布和相关性

    A:22种免疫细胞亚型的分布相对百分比;B:SR和AF组间22种免疫细胞亚型的浸润分数;C:22种免疫细胞亚型组成的相关矩阵。

    Figure  3.  Distribution and correlation of immune cell infiltration

    图  4  WGCNA分析

    A:无尺度分布网络的软阈值选择(β=10);B:WGCNA网络模块分类(mergeCutHeight=0.25);C:4种模块与7种免疫细胞亚型之间关联的热图;D:黑色模块与M2巨噬细胞之间的相关性散点图。

    Figure  4.  WGCNA analysis

    图  5  DEIRGs的GO和KEGG功能富集分析

    A:GO分析气泡图;B:KEGG分析气泡图。

    Figure  5.  GO and KEGG functional enrichment analysis of the DEIRGs

    图  6  PPI网络筛选候选基因

    A:DEGs与IRGs交集的韦恩图;B:PPI网络图;C:10个候选基因相关性及排名。

    Figure  6.  PPI network screening for candidate genes

    图  7  机器学习算法识别 AF 生物标志物

    A:LASSO;B:RF;C:SVM-RFE;D:3种预测模型ROC曲线比较。

    Figure  7.  Machine learning algorithm identifies AF biomarkers

    图  8  生物标志物的诊断及预测效能

    A:3个关键基因在AF和SR组间的差异表达箱线图;B:诊断模型的列线图;C~E:ROC曲线验证3个关键基因在外部数据集中的诊断有效性。***P<0.001。

    Figure  8.  Diagnostic and predictive efficacy of the biomarkers

    图  9  3个关键基因与22种免疫细胞亚型的相关性分析

    A:IGF1;B:PTGS2;C:PPARG。右边的数值代表P值,标红说明P<0.05;底部的数值代表相关系数,正值说明基因与该免疫细胞之间是正调控的关系,负值说明是负调控。

    Figure  9.  Correlation analysis of three key genes with 22 immune cell subtypes

  • [1] Zhu Y,Shi J,Zheng B,et al. Genetic findings in patients with primary fibrotic atrial cardiomyopathy[J]. European Journal of Medical Genetics,2022,65(3):104429. doi: 10.1016/j.ejmg.2022.104429
    [2] Litviňuková M,Talavera-López C,Maatz H,et al. Cells of the adult human heart[J]. Nature,2020,588(7838):466-472. doi: 10.1038/s41586-020-2797-4
    [3] Zaidi Y, Aguilar E G, Troncoso M, et al. Immune regulation of cardiac fibrosis post myocardial infarction. [Z]. 2021: 77, 109837.
    [4] Tian Y,Liu S,Zhang Y,et al. Immune infiltration and immunophenotyping in atrial fibrillation[J]. Aging (Albany NY),2023,15(1):213-229. doi: 10.18632/aging.204470
    [5] Wynn T A,Vannella K M. Macrophages in tissue repair,regeneration,and fibrosis[J]. Immunity,2016,44(3):450-462. doi: 10.1016/j.immuni.2016.02.015
    [6] Newman A M,Liu C L,Green M R,et al. Robust enumeration of cell subsets from tissue expression profiles[J]. Nat Methods,2015,12(5):453-457. doi: 10.1038/nmeth.3337
    [7] Langfelder P,Horvath S. WGCNA: An R package for weighted correlation network analysis[J]. BMC Bioinformatics,2008,9(1):559. doi: 10.1186/1471-2105-9-559
    [8] Liu Y, Shi Q, Ma Y, et al. The role of immune cells in atrial fibrillation[J]. J Mol Cell Cardiol, 2018: 123, 198-208.
    [9] Zhang Y L,Teng F,Han X,et al. Selective blocking of CXCR2 prevents and reverses atrial fibrillation in spontaneously hypertensive rats[J]. J Cell Mol Med,2020,24(19):11272-11282. doi: 10.1111/jcmm.15694
    [10] Hulsmans M,Schloss M J,Lee I H,et al. Recruited macrophages elicit atrial fibrillation[J]. Science,2023,381(6654):231-239. doi: 10.1126/science.abq3061
    [11] Grune J,Yamazoe M,Nahrendorf M. Electroimmunology and cardiac arrhythmia[J]. Nature reviews cardiology,2021,18(8):547-564. doi: 10.1038/s41569-021-00520-9
    [12] Sun Z,Zhou D,Xie X,et al. Cross-talk between macrophages and atrial myocytes in atrial fibrillation[J]. Basic Res Cardiol,2016,111(6):63. doi: 10.1007/s00395-016-0584-z
    [13] Bosco M C. Macrophage polarization: reaching across the aisle?[J]. J Allergy Clin Immunol,2019,143(4):1348-1350. doi: 10.1016/j.jaci.2018.12.995
    [14] Wen S,Yan W,Wang L. mRNA expression disturbance of complement system related genes in acute arterial thrombotic and paroxysmal atrial fibrillation patients[J]. Ann Palliat Med,2020,9(3):835-846. doi: 10.21037/apm.2020.04.18
    [15] Liu L,Zheng Q,Lee J,et al. PD-1/PD-L1 expression on CD(4+) T cells and myeloid DCs correlates with the immune pathogenesis of atrial fibrillation[J]. J Cell Mol Med,2015,19(6):1223-1233. doi: 10.1111/jcmm.12467
    [16] Cheng W L,Kao Y H,Chen Y C,et al. Macrophage migration inhibitory factor increases atrial arrhythmogenesis through CD74 signaling[J]. Transl Res,2020,216:43-56. doi: 10.1016/j.trsl.2019.10.002
    [17] Chen Y,Fu L,Pu S,et al. Systemic lupus erythematosus increases risk of incident atrial fibrillation: A systematic review and meta-analysis[J]. Int J Rheum Dis,2022,25(10):1097-1106. doi: 10.1111/1756-185X.14403
    [18] Kunamalla A,Ng J,Parini V,et al. Constitutive expression of a dominant-negative TGF-β type II receptor in the posterior left atrium leads to beneficial remodeling of atrial fibrillation substrate[J]. Circ Res,2016,119(1):69-82. doi: 10.1161/CIRCRESAHA.115.307878
    [19] Liang Y,Zhou Y,Wang J,et al. Downregulation of fibromodulin attenuates inflammatory signaling and atrial fibrosis in spontaneously hypertensive rats with atrial fibrillation via inhibiting TLR4/NLRP3 signaling pathway[J]. Immun Inflamm Dis,2023,11(10):e1003. doi: 10.1002/iid3.1003
    [20] Gao L,Kan C,Chen X,et al. Mechanism of action of Zhi Gan Cao decoction for atrial fibrillation and myocardial fibrosis in a mouse model of atrial fibrillation: A network pharmacology-based study[J]. Comput Math Methods Med,2022,2022:4525873.
    [21] Raman K,Aeschbacher S,Bossard M,et al. Whole blood gene expression differentiates between atrial fibrillation and sinus rhythm after cardioversion[J]. PLoS One,2016,11(6):e157550.
    [22] Troncoso R,Ibarra C,Vicencio J M,et al. New insights into IGF-1 signaling in the heart[J]. Trends Endocrinol Metab,2014,25(3):128-137. doi: 10.1016/j.tem.2013.12.002
    [23] Fujita M,Takada Y K,Takada Y. Insulin-like growth factor (IGF) signaling requires αvβ3-IGF1-IGF type 1 receptor (IGF1R) ternary complex formation in anchorage independence,and the complex formation does not require IGF1R and Src activation[J]. J Biol Chem,2013,288(5):3059-3069. doi: 10.1074/jbc.M112.412536
    [24] Zhao Z,Li R,Wang X,et al. Attenuation of atrial remodeling by aliskiren via affecting oxidative stress,inflammation and PI3K/Akt signaling pathway[J]. Cardiovasc Drugs Ther,2021,35(3):587-598. doi: 10.1007/s10557-020-07002-z
    [25] Cheng W,Zhu Y,Wang H. The MAPK pathway is involved in the regulation of rapid pacing-induced ionic channel remodeling in rat atrial myocytes[J]. Mol Med Rep,2016,13(3):2677-2682. doi: 10.3892/mmr.2016.4862
    [26] Dalli J,Chiang N,Serhan C N. Elucidation of novel 13-series resolvins that increase with atorvastatin and clear infections[J]. Nat Med,2015,21(9):1071-1075. doi: 10.1038/nm.3911
    [27] Kim S F,Huri D A,Snyder S H. Inducible nitric oxide synthase binds,S-nitrosylates,and activates cyclooxygenase-2[J]. Science,2005,310(5756):1966-1970. doi: 10.1126/science.1119407
    [28] Wang Z,Zeng Z,Hu Y,et al. Network pharmacology and pharmacological mechanism of CV-3 in atrial fibrillation[J]. Evid Based Complement Alternat Med,2022,2022:5496299.
    [29] Barroso I,Gurnell M,Crowley V E,et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance,diabetes mellitus and hypertension[J]. Nature,1999,402(6764):880-883. doi: 10.1038/47254
    [30] Park S H,Choi H J,Yang H,et al. Endoplasmic reticulum stress-activated C/EBP homologous protein enhances nuclear factor-kappaB signals via repression of peroxisome proliferator-activated receptor gamma[J]. J Biol Chem,2010,285(46):35330-35339. doi: 10.1074/jbc.M110.136259
    [31] Chen Y L, Chuang J H, Wang H T, et al. Altered expression of circadian clock genes in patients with atrial fibrillation is associated with atrial high-rate episodes and left atrial remodeling[J]. Diagnostics (Basel), 2021, 11(1): 90.
    [32] Wang N,Yang G,Jia Z,et al. Vascular PPARgamma controls circadian variation in blood pressure and heart rate through Bmal1[J]. Cell Metab,2008,8(6):482-491. doi: 10.1016/j.cmet.2008.10.009
  • [1] 王继, 宾松涛, 谭力.  电子支气管镜下乙酰半胱氨酸对儿童重症肺炎的疗效, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240615
    [2] 李力, 张瑞仙.  环状RNA在系统性红斑狼疮中的潜在应用研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240622
    [3] 刘宛书, 邓芙蓉, 杨萍, 田欣, 周光丽, 赵玲敏, 张学庭, 张可意.  2型糖尿病患者发生心房颤动相关影响因素的研究, 昆明医科大学学报.
    [4] 陈春丽, 崔道林.  基于生物信息学分析MX1、IFI44STAT1在狼疮性肾炎中的作用, 昆明医科大学学报.
    [5] 马子林, 马文妮, 马懿, 范咏诗, 金艳, 黄英.  基于Kano模型的心房颤动射频消融术患者健康教育需求调查分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240225
    [6] 张艳, 赵浩杰, 段明志, 段静燕, 杨雪艳.  柴胡皂苷A对噪音诱发耳鸣小鼠抑郁的干预作用及机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231105
    [7] 熊煜欣, 杨莹.  糖尿病肾小管病研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230920
    [8] 朱晓栋, 刘演龙, 周旭, 戴海龙, 尹小龙.  cMyBP-C在急性心肌梗死临床诊断中的价值, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230328
    [9] 赵亚玲, 武坤, 王凯, 黄蓉, 何根娅, 纳玉辉, 何苗, 丁臻博, 张彩营.  妊娠期糖尿病宫内高血糖环境对子代外周炎症反应的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231110
    [10] 李思琪, 邰文琳.  趋化因子CXCL10作为肝硬化生物标志物的意义, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220711
    [11] 朱中山, 杨洲, 江承川, 李小兵, 任斗, 黄橙, 张维薇, 李湘军, 赵顺利.  肺腺癌患者PLA2G1B表达情况与预后的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220912
    [12] 安丽媛, 李兵, 苏纲.  不同剂量的乌司他丁对老年患者术后认知功能及高迁移族蛋白B1的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210720
    [13] 李俊杰, 蒋海燕, 白文娅, 霍思颖, 孙志生, 邵建林.  沉默RND3表达对氧糖缺失/复氧复糖损伤海马神经细胞炎症反应和细胞凋亡的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211012
    [14] 李昊, 王静, 杨萍.  心房颤动与心房代谢重构的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210335
    [15] 王光, 杨童欣, 姜永明, 方克伟, 刘建和, 李炯明.  抗菌肽LL-37诱导大鼠膀胱壁肥大细胞的炎症反应, 昆明医科大学学报.
    [16] 魏巍, 杨蓓, 韩明华, 陶四明, 杨志刚.  房颤患者抗凝治疗华法林剂量—INR值的相关性, 昆明医科大学学报.
    [17] 刘桠名, 徐冕, 颜悦新, 周凤高, 许成, 赵琨, 蒋国云, 武彧, 刘荣.  基于代谢组学的脓毒症大鼠生物标志物研究, 昆明医科大学学报.
    [18] 李飞.  西乐葆对骨折延迟愈合患者血液流变学和炎症因子水平的影响, 昆明医科大学学报.
    [19] 阵发性心房颤动射频消融治疗60例临床分析, 昆明医科大学学报.
    [20] 郝应禄.  阵发性心房颤动射频消融治疗60例临床分析, 昆明医科大学学报.
  • 加载中
图(9)
计量
  • 文章访问数:  1001
  • HTML全文浏览量:  533
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-12
  • 网络出版日期:  2024-03-07
  • 刊出日期:  2024-03-30

目录

    /

    返回文章
    返回