留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁死亡在心肌病中的研究进展

李威 蒋立虹 马丽晶 陈锐 杨童硕

李威, 蒋立虹, 马丽晶, 陈锐, 杨童硕. 铁死亡在心肌病中的研究进展[J]. 昆明医科大学学报, 2024, 45(3): 180-185. doi: 10.12259/j.issn.2095-610X.S20240327
引用本文: 李威, 蒋立虹, 马丽晶, 陈锐, 杨童硕. 铁死亡在心肌病中的研究进展[J]. 昆明医科大学学报, 2024, 45(3): 180-185. doi: 10.12259/j.issn.2095-610X.S20240327
Wei LI, Lihong JIANG, Lijing MA, Rui CHEN, Tongshuo YANG. Research Progress of Iron Death in Cardiomyopathy[J]. Journal of Kunming Medical University, 2024, 45(3): 180-185. doi: 10.12259/j.issn.2095-610X.S20240327
Citation: Wei LI, Lihong JIANG, Lijing MA, Rui CHEN, Tongshuo YANG. Research Progress of Iron Death in Cardiomyopathy[J]. Journal of Kunming Medical University, 2024, 45(3): 180-185. doi: 10.12259/j.issn.2095-610X.S20240327

铁死亡在心肌病中的研究进展

doi: 10.12259/j.issn.2095-610X.S20240327
基金项目: 国家自然科学基金资助项目(81960068);云南省科技厅科技计划项目(202101AY070001-265)
详细信息
    作者简介:

    李威(1997~),男,安徽合肥人,在读硕士研究生,主要从事心血管疾病研究工作

    通讯作者:

    蒋立虹,E-mail:jianglihong@kmmu.edu.cn

  • 中图分类号: R542.2

Research Progress of Iron Death in Cardiomyopathy

  • 摘要: 心肌病是一组具有多种特定表型的异质性心肌疾病,严重者会引起心血管性死亡或进行性心力衰竭。由于这类疾病的严重性和复杂性,寻找新的调节机制来防治心肌病显得尤为紧迫。铁死亡是一种不同于其他形式的铁依赖性的细胞程序性死亡形式,其特征是铁依赖性脂质过氧化物的积累。研究表明,铁死亡可通过不同的信号通路参与心肌病的发生和进展。因此通过靶向调控铁死亡是防治心肌病的一种新策略。就铁死亡的发生机制及其在心肌病中的重要作用进行综述,以期寻找铁死亡与心肌病之间的潜在联系,为今后各种心肌病的治疗提供更多思路。
  • [1] Boyle A J,Shih H,Hwang J,et al. Cardiomyopathy of aging in the mammalian heart is characterized by myocardial hypertrophy,fibrosis and a predisposition towards cardiomyocyte apoptosis and autophagy[J]. Experimental Gerontology,2011,46(7):549-559. doi: 10.1016/j.exger.2011.02.010
    [2] Elliott P,Andersson B,Arbustini E,et al. Classification of the cardiomyopathies: A position statement from the european society of cardiology working group on myocardial and pericardial diseases[J]. European Heart Journal,2007,29(2):270-276. doi: 10.1093/eurheartj/ehm342
    [3] Djulbegovic M B,Uversky V N. Ferroptosis – An iron- and disorder-dependent programmed cell death[J]. International Journal of Biological Macromolecules,2019,135:1052-1069. doi: 10.1016/j.ijbiomac.2019.05.221
    [4] Kapralov A A,Yang Q,Dar H H,et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death.[J]. Nature Chemical Biology,2020,16(3):278-290. doi: 10.1038/s41589-019-0462-8
    [5] Jiang X,Stockwell B R,Conrad M. Ferroptosis: Mechanisms,biology,and role in disease[J]. Nature Reviews. Molecular Cell Biology,2021,22(4):266-282. doi: 10.1038/s41580-020-00324-8
    [6] Bannai S,Kitamura E. Transport interaction of L-cystine and L-glutamate in human diploid fibroblasts in culture.[J]. Biological Chemistry,1980,255(6):2372-2376. doi: 10.1016/S0021-9258(19)85901-X
    [7] Yang W S,Stockwell B R. Synthetic lethal screening identifies compounds activating iron-dependent,nonapoptotic cell death in oncogenic-RAS-harboring cancer cells[J]. Chemistry & Biology,2008,15(3):234-245.
    [8] Dixon S J,Lemberg K M,Lamprecht M R,et al. Ferroptosis: an iron-dependent form of non-apoptotic cell death[J]. Cell,2012,149(5):1060-1072. doi: 10.1016/j.cell.2012.03.042
    [9] Anderson G J,Vulpe C D. Mammalian iron transport[J]. Cellular and Molecular Life Sciences,2009,66(20):3241-3261. doi: 10.1007/s00018-009-0051-1
    [10] Torti S V,Torti F M. Iron and cancer: 2020 vision[J]. Cancer Research,2020,80(24):5435-5448. doi: 10.1158/0008-5472.CAN-20-2017
    [11] Dixon S J,Stockwell B R. The role of iron and reactive oxygen species in cell death[J]. Nature Chemical Biology,2014,10(1):9-17. doi: 10.1038/nchembio.1416
    [12] Gao M,Monian P,Pan Q,et al. Ferroptosis is an autophagic cell death process[J]. Cell Research,2016,26(9):1021-1032. doi: 10.1038/cr.2016.95
    [13] Bridges R J,Natale N R,Patel S A. System xc-cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS[J]. British Journal of Pharmacology,2012,165(1):20-34. doi: 10.1111/j.1476-5381.2011.01480.x
    [14] Shah R,Margison K,Pratt D A. The potency of diarylamine radical-trapping antioxidants as inhibitors of ferroptosis underscores the role of autoxidation in the mechanism of cell death[J]. ACS Chemical Biology,2017,12(10):2538-2545. doi: 10.1021/acschembio.7b00730
    [15] Had-Aissouni L. Maintenance of antioxidant defenses of brain cells: plasma membrane glutamate transporters and beyond[J]. Amino Acids,2012,42(1):159-161. doi: 10.1007/s00726-011-0860-z
    [16] Yang W S,SriRamaratnam R,Welsch M E,et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell,2014,156(1-2):317-331.
    [17] Yang W S,Stockwell B R. Ferroptosis: death by lipid peroxidation[J]. Trends in Cell Biology,2016,26(3):165-176. doi: 10.1016/j.tcb.2015.10.014
    [18] Shimada K,Skouta R,Kaplan A,et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis[J]. Nature Chemical Biology,2016,12(7):497-503. doi: 10.1038/nchembio.2079
    [19] Hassannia B,Vandenabeele P,Vanden Berghe T. Targeting ferroptosis to iron out cancer[J]. Cancer Cell,2019,35(6):830-849. doi: 10.1016/j.ccell.2019.04.002
    [20] Yang W S,Kim K J,Gaschler M M,et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(34):E4966-E4975.
    [21] Kagan V E,Mao G,Qu F,et al. Oxidized arachidonic/adrenic phosphatidylethanolamines navigate cells to ferroptosis[J]. Nature Chemical Biology,2017,13(1):81-90. doi: 10.1038/nchembio.2238
    [22] Dixon S J,Winter G E,Musavi L S,et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death[J]. ACS Chemical Biology,2015,10(7):1604-1609. doi: 10.1021/acschembio.5b00245
    [23] Golej D L,Askari B,Kramer F,et al. Long-chain acyl-CoA synthetase 4 modulates prostaglandin E2 release from human arterial smooth muscle cells[J]. Journal of Lipid Research,2011,52(4):782-793. doi: 10.1194/jlr.M013292
    [24] Tadokoro T, Ikeda M, Ide T, et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity[J]. JCI Insight, 2020, 5(9): e132747.
    [25] Bersuker K,Hendricks J,Li Z,et al. The CoQ oxidoreductase FSP1 acts in parallel to GPX4 to inhibit ferroptosis[J]. Nature,2019,575(7784):688-692. doi: 10.1038/s41586-019-1705-2
    [26] Dai E,Zhang W,Cong D,et al. AIFM2 blocks ferroptosis independent of ubiquinol metabolism[J]. Biochemical and Biophysical Research Communications,2020,523(4):966-971. doi: 10.1016/j.bbrc.2020.01.066
    [27] McGowan J V,Chung R,Maulik A,et al. Anthracycline chemotherapy and cardiotoxicity[J]. Cardiovascular Drugs and Therapy,2017,31(1):63-75. doi: 10.1007/s10557-016-6711-0
    [28] Wang G,Hamid T,Keith R J,et al. Cardioprotective and anti-apoptotic effects of heme oxygenase-1in the failing heart[J]. Circulation,2010,121(17):1912-1925. doi: 10.1161/CIRCULATIONAHA.109.905471
    [29] Liu Y,Zeng L,Yang Y,et al. Acyl-CoA thioesterase 1 prevents cardiomyocytes from doxorubicin-induced ferroptosis via shaping the lipid composition[J]. Cell Death & Disease,2020,11(9):756.
    [30] Rhee J W,Yi H,Thomas D,et al. Modeling secondary iron overload cardiomyopathy with human induced pluripotent stem cell-derived cardiomyocytes[J]. Cell Reports,2020,32(2):107886. doi: 10.1016/j.celrep.2020.107886
    [31] DeHart D N,Fang D,Heslop K,et al. Opening of voltage dependent anion channels promotes reactive oxygen species generation,mitochondrial dysfunction and cell death in cancer cells[J]. Biochemical Pharmacology,2018,148(1):155-162. doi: 10.1016/j.bcp.2017.12.022
    [32] Wang C,Yuan W,Hu A,et al. Dexmedetomidine alleviated sepsis-induced myocardial ferroptosis and septic heart injury[J]. Molecular Medicine Reports,2020,22(1):175-184. doi: 10.3892/mmr.2020.11114
    [33] A Thandavarayan R,V Giridharan V,Watanabe K,et al. Diabetic cardiomyopathy and oxidative stress: Role of antioxidants[J]. Cardiovascular & Hematological Agents in Medicinal Chemistry,2011,9(4):225-230.
    [34] Zang H,Wu W,Qi L,et al. Autophagy inhibition enables nrf2 to exaggerate the progression of diabetic cardiomyopathy in mice[J]. Diabetes,2020,69(12):2720-2734. doi: 10.2337/db19-1176
    [35] Schultheis J, Beckmann D, Mulac D, et al. Nrf2 activation protects mouse beta cells from glucolipotoxicity by restoring mitochondrial function and physiological redox balance[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019: 7518510.
    [36] Bao L,Jin Y,Han J,et al. Berberine regulates GPX4 to inhibit ferroptosis of islet β cells[J]. Planta Medica,2023,89(3):254-261. doi: 10.1055/a-1939-7417
    [37] Mei S,Xia Z,Qiu Z,et al. Shenmai injection attenuates myocardial ischemia/reperfusion injury by targeting Nrf2/GPX4 signalling-mediated ferroptosis[J]. Chinese Journal of Integrative Medicine,2022,28(11):983-991. doi: 10.1007/s11655-022-3620-x
    [38] Li K. Iron pathophysiology in friedreich's ataxia[J]. Advances in Experimental Medicine and Biology,2019,1173(1):125-143.
    [39] Zhang S,Napierala M,Napierala J S. Therapeutic prospects for Friedreich’s ataxia[J]. Trends in Pharmacological Sciences,2019,40(4):229-233. doi: 10.1016/j.tips.2019.02.001
    [40] Emond M,Lepage G,Vanasse M,et al. Increased levels of plasma malondialdehyde in Friedreich ataxia[J]. Neurology,2000,55(11):1752-1753. doi: 10.1212/WNL.55.11.1752
    [41] Kahn-Kirby A H,Amagata A,Maeder C I,et al. Targeting ferroptosis: A novel therapeutic strategy for the treatment of mitochondrial disease-related epilepsy[J]. PLoS ONE,2019,14(3):e0214250. doi: 10.1371/journal.pone.0214250
  • [1] 谢欣媛, 牛晓辰, 孙建辉, 张雅涵, 陈鹏飞.  胃腺癌患者铁死亡相关LncRNA预后模型的构建, 昆明医科大学学报.
    [2] 谭莹, 秦海燕, 孙翔, 苏彦伊, 王英宝.  丙泊酚调节MPP+诱导的SH-SY5Y细胞线粒体氧化应激和凋亡, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240305
    [3] 李芬, 赵婕, 张海溪, 张琳, 辜学忠.  噬血细胞综合征患者的铁代谢指标、细胞因子和肝功能的相关性, 昆明医科大学学报.
    [4] 热则耶·麦麦提祖农, 李秀娟, 刘玲, 李卉.  铁死亡抑制因子KIF20A对食管癌细胞生物学行为及铁死亡的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240207
    [5] 陆凤华, 杜兆霖, 章容.  红光照射联合下肢肌力训练对糖尿病周围神经病变患者下肢运动功能、TCSS评分及SOD水平的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230129
    [6] 王东, 高必波, 孙会英, 冷登辉, 冉小平, 林文.  miR-216b-5p通过靶向NCOA3促进胶质母细胞瘤细胞铁死亡, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230805
    [7] 白文娅, 杨渊, 霍思颖, 杨鑫, 邵建林.  胆绿素治疗作用的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220601
    [8] 董丽, 孙士波, 孙曙光.  灯盏花乙素抗氧化应激机制在防治心脑血管疾病中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220423
    [9] 薛国强, 卫欣欣, 姚娜, 赵文化.  二甲双胍通过调控PARP-1活性对2型糖尿病肾脏的保护作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210632
    [10] 郭安利, 付昌碧, 杨晓晴, 张士梅, 石正娟.  急性脑梗死患者肺部感染对氧化应激与炎性应激的影响, 昆明医科大学学报.
    [11] 曾庆菊, 李慧, 王晋文.  褪黑素对糖尿病大鼠氧化应激及足细胞凋亡的影响及作用机制, 昆明医科大学学报.
    [12] 戴青里, 孙贵虎, 闫斌, 郭涛, 戴青原.  过氧化氢诱导HUVECs氧化应激模型的构建, 昆明医科大学学报.
    [13] 曾柏瑞.  甲基苯丙胺与HIV-Tat蛋白协同改变大鼠血脑屏障通透性的氧化应激作用机制, 昆明医科大学学报.
    [14] 边海霞.  单纯疱疹病毒性角膜炎抗氧化治疗的临床观察, 昆明医科大学学报.
    [15] 丁艳杰.  类风湿合并颈动脉硬化患者血清氧化应激状态与MMPs相关性分析, 昆明医科大学学报.
    [16] 刘松.  1 800 MHz电磁波对大鼠心肌氧化应激的影响, 昆明医科大学学报.
    [17] 张媛.  1 800 MHz电磁辐射对大鼠皮肤组织氧化应激的影响, 昆明医科大学学报.
    [18] 李若楠.  三七总皂苷调控c-Jun氨基末端激酶改善大鼠肝组织胰岛素抵抗的作用, 昆明医科大学学报.
    [19] 闫庆峰.  木犀草素对冷保存大鼠心脏心功能及氧化应激反应的影响, 昆明医科大学学报.
    [20] 桂莉.  2型糖尿病大鼠骨骼肌氧化应激与胰岛素抵抗的关系, 昆明医科大学学报.
  • 加载中
计量
  • 文章访问数:  1088
  • HTML全文浏览量:  557
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-04
  • 网络出版日期:  2024-03-06
  • 刊出日期:  2024-03-30

目录

    /

    返回文章
    返回