留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卵巢癌脂质代谢相关基因预后模型的构建及免疫浸润分析

王兴粉 邓玥 杨丽华

王兴粉, 邓玥, 杨丽华. 卵巢癌脂质代谢相关基因预后模型的构建及免疫浸润分析[J]. 昆明医科大学学报, 2024, 45(4): 17-25. doi: 10.12259/j.issn.2095-610X.S20240403
引用本文: 王兴粉, 邓玥, 杨丽华. 卵巢癌脂质代谢相关基因预后模型的构建及免疫浸润分析[J]. 昆明医科大学学报, 2024, 45(4): 17-25. doi: 10.12259/j.issn.2095-610X.S20240403
Xingfen WANG, Yue DENG, Lihua YANG. Construction of Lipid Metabolism-Related Gene Prognostic Model and Immunoinfiltration Analysis of Ovarian Cancer[J]. Journal of Kunming Medical University, 2024, 45(4): 17-25. doi: 10.12259/j.issn.2095-610X.S20240403
Citation: Xingfen WANG, Yue DENG, Lihua YANG. Construction of Lipid Metabolism-Related Gene Prognostic Model and Immunoinfiltration Analysis of Ovarian Cancer[J]. Journal of Kunming Medical University, 2024, 45(4): 17-25. doi: 10.12259/j.issn.2095-610X.S20240403

卵巢癌脂质代谢相关基因预后模型的构建及免疫浸润分析

doi: 10.12259/j.issn.2095-610X.S20240403
基金项目: 国家自然科学基金资助项目(82360579);云南省“万人计划”名医专项基金资助项目(YNWR-MY-2019-037);昆明医科大学卵巢癌临床及基础研究科技创新团队(CXDT202008);昆明医科大学第二附属医院对外合作基金资助项目(2022dwhz06);云南省科技厅-昆明医科大学应用基础研究联合专项基金资助项目(202401AY070001-053)
详细信息
    作者简介:

    王兴粉(1997~),女,云南曲靖人,在读硕士研究生,主要从事妇科肿瘤研究工作

    通讯作者:

    杨丽华,E-mail:lihuazhang33@sina.com

  • 中图分类号: R737.31

Construction of Lipid Metabolism-Related Gene Prognostic Model and Immunoinfiltration Analysis of Ovarian Cancer

  • 摘要:   目的  构建卵巢癌(ovarian carcer,OC)脂质代谢相关预后模型,探讨脂质代谢相关生物标志物及免疫细胞浸润程度在OC预后预测中的作用。  方法  下载TCGA数据库中OC样本转录组数据和临床数据,MSigDB数据库获取脂质代谢相关基因(LMRGs),caret包将样本按1∶1随机分为训练集与验证集,单因素Cox分析得到与OC预后显著相关的LMRGs,LASSO-Cox分析筛选模型基因以构建预后模型,Kaplan-Meier曲线及受试者工作特征(ROC)曲线评估预后模型效能,并进行TCGA内部验证。最后构建列线图并采用CIBERSORT算法进行免疫浸润分析。  结果  构建了1个8基因的OC预后模型,生存分析显示高风险组与低风险组预后差异有统计学意义(P < 0.05)。AUC提示该模型具有中等程度预测效能;多因素Cox分析显示LMrisk是OC患者的独立预后因素(P < 0.001);免疫浸润分析显示LMrisk与OC免疫相关。  结论  OC患者预后模型可作为1种新的独立预后评估手段,LMrisk可作为稳健的预后生物标志物,可能具有进一步临床应用的价值。
  • 图  1  OC中差异表达的LMRGs的鉴定

    A:正常卵巢组织和OC中DEGs火山图;B:OC DEGs与LMRGs的韦恩图;C:LMRGs在正常卵巢组织和OC中的表达热图。

    Figure  1.  Identification of differentially expressed LMRGs in ovarian cancer

    图  2  差异表达的LMRGs生物学功能分析

    A~B:LMRGs GO分析气泡图和圈图;C~D:LMRGs KEGG富集分析气泡图和圈图。

    Figure  2.  Biological function analysis of differentially expressed LMRGs

    图  3  在训练集中构建OC预后模型并评价

    A~B:采用LASSO-Cox分析9个预后相关的LMRGs;C:森林图显示8个LMRGs表达水平与OS的关系;D:训练集中高、低风险组OS的Kaplan-Meier分析;E:模型预测训练集的时间依赖性ROC曲线;F:OC患者生存状态、模型基因表达水平与LMrisk的关系。

    Figure  3.  The prognosis model of ovarian cancer was constructed and evaluated in the training set

    图  4  OC患者列线图预后模型的构建及评估

    A:LMrisk及临床病理特征独立预后分析;B:列线图预测OC患者的1、3及5 a OS预测模型;C:训练集OC患者1、3及5 a OS校准曲线;D:训练集OC患者1、3及5 a OS的DCA。

    Figure  4.  Construction and evaluation of nomogram prognostic model for patients with ovarian cancer

    图  5  OC预后模型的内部验证

    A:验证集高、低风险组OS的Kaplan-Meier分析;B:预后模型预测验证集的时间依赖性ROC曲线;C:验证集中OC患者生存状态、模型基因表达水平与LMrisk的关系。

    Figure  5.  Internal validation of prognostic models for ovarian cancer

    图  6  免疫细胞浸润分析

    A:肿瘤微环境差异分析小提琴图;B:免疫细胞与8个模型基因、LMrisk的相关性分析热图;C:巨噬细胞M0、巨噬细胞M1、被激活的肥大细胞、被激活的CD4记忆T细胞、CD8 T细胞和滤泡辅助性T细胞与LMrisk相关性分析散点图。

    Figure  6.  Analysis of immune cell infiltration

  • [1] Chaudhry S,Thomas S N,Simmons Jr G E. Targeting lipid metabolism in the treatment of ovarian cancer[J]. Oncotarget,2022,13(3):768-783.
    [2] 中国抗癌协会妇科肿瘤专业委员会. 卵巢恶性肿瘤诊断与治疗指南(2021年版)[J]. 中国癌症杂志,2021,31(6):490-500.
    [3] 张秀,王静. 卵巢癌中的脂质代谢[J]. 肿瘤药学,2022,12(4):441-446. doi: 10.3969/j.issn.2095-1264.2022.04.05
    [4] Hanahan D,Weinberg R A. Hallmarks of cancer: The next generation[J]. Cell,2011,144(5):646-674. doi: 10.1016/j.cell.2011.02.013
    [5] Röhrig F,Schulze A. The multifaceted roles of fatty acid synthesis in cancer[J]. Nature Reviews Cancer,2016,16(11):732-749. doi: 10.1038/nrc.2016.89
    [6] Shang S,Liu J,Hua F. Protein acylation: Mechanisms,biological functions and therapeutic targets[J]. Signal Transduction and Targeted Therapy,2022,7(1):396. doi: 10.1038/s41392-022-01245-y
    [7] Koundouros N,Poulogiannis G. Reprogramming of fatty acid metabolism in cancer[J]. British Journal of Cancer,2020,122(1):4-22. doi: 10.1038/s41416-019-0650-z
    [8] Strickaert A,Saiselet M,Dom G,et al. Cancer heterogeneity is not compatible with one unique cancer cell metabolic map[J]. Oncogene,2017,36(19):2637-2642. doi: 10.1038/onc.2016.411
    [9] Kequan X,Peng X,Pan L,et al. A six lipid metabolism related gene signature for predicting the prognosis of hepatocellular carcinoma[J]. Scientific Reports,2022,12(1):20781. doi: 10.1038/s41598-022-25356-2
    [10] Zhu M,Zeng Q,Fan T,et al. Clinical significance and immunometabolism landscapes of a novel recurrence-associated lipid metabolism signature in early-stage lung adenocarcinoma: A comprehensive analysis[J]. Frontiers in Immunology,2022,13(1):909105.
    [11] Shen L,Huang H,Li J,et al. Exploration of prognosis and immunometabolism landscapes in ER+ breast cancer based on a novel lipid metabolism-related signature[J]. Frontiers in Immunology,2023,14(1):1199465.
    [12] Jin H,Xia B,Wang J,et al. A novel lipid metabolism and endoplasmic reticulum stress-related risk model for predicting immune infiltration and prognosis in colorectal cancer[J]. International Journal of Molecular Sciences,2023,24(18):13854. doi: 10.3390/ijms241813854
    [13] Zhang J,Wang H,Tian Y,et al. Discovery of a novel lipid metabolism-related gene signature to predict outcomes and the tumor immune microenvironment in gastric cancer by integrated analysis of single-cell and bulk RNA sequencing[J]. Lipids in Health and Disease,2023,22(1):212. doi: 10.1186/s12944-023-01977-y
    [14] Liu C,Xiao Z,Wu S,et al. Multi-cohort validation study of a four-gene signature for risk stratification and treatment response prediction in hepatocellular carcinoma[J]. Computers in Biology and Medicine,2023,167(11):107694.
    [15] Zheng M,Mullikin H,Hester A,et al. Development and validation of a novel 11-gene prognostic model for serous ovarian carcinomas based on lipid metabolism expression profile[J]. International Journal of Molecular Sciences,2020,21(23):9169. doi: 10.3390/ijms21239169
    [16] Wang X,Xie W,Zhao D,et al. Molecular subtypes of ovarian cancer based on lipid metabolism and glycolysis reveals potential therapeutic targets[J]. Frontiers in Bioscience-Landmark,2023,28(10):253. doi: 10.31083/j.fbl2810253
    [17] 杨小航. 卵巢大细胞神经内分泌癌病例分析报告[D]. 济南: 山东大学, 2021.
    [18] Kimura N,Miura W,Noshiro T,et al. Plasma chromogranin A in pheochromocytoma,primary hyperparathyroidism and pituitary adenoma in comparison with catecholamine,parathyroid hormone and pituitary hormones[J]. Endocrine Journal,1997,44(2):319-327. doi: 10.1507/endocrj.44.319
    [19] Wu J T,Erickson A J,Tsao K C,et al. Elevated serum chromogranin A is detectable in patients with carcinomas at advanced disease stages[J]. Annals of Clinical & Laboratory Science,2000,30(2):175-178.
    [20] Slott C,Langer S W,Møller S,et al. Outlook for 615 small intestinal neuroendocrine tumor patients: Recurrence risk after surgery and disease-specific survival in advanced disease[J]. Cancers,2024,16(1):204. doi: 10.3390/cancers16010204
    [21] Zhang Y,Kong X,Xin S,et al. Discovery of lipid metabolism-related genes for predicting tumor immune microenvironment status and prognosis in prostate cancer[J]. Journal of Oncology,2022,15(1):8227806.
    [22] Zhu Y,Zhang R,Zhang Y,et al. NUDT21 promotes tumor growth and metastasis through modulating SGPP2 in human gastric cancer[J]. Frontiers in Oncology,2021,11(1):670353.
    [23] Wang S,Liu W,Ly D,et al. Tumor-infiltrating B cells: Their role and application in anti-tumor immunity in lung cancer[J]. Cellular & Molecular Immunology,2019,16(1):6-18.
    [24] Lei X,Lei Y,Li J K,et al. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy[J]. Cancer Letters,2020,470(4):126-133.
    [25] Lichterman J N,Reddy S M. Mast cells: A new frontier for cancer immunotherapy[J]. Cells,2021,10(6):1270. doi: 10.3390/cells10061270
    [26] Sulsenti R,Jachetti E. Frenemies in the microenvironment: Harnessing mast cells for cancer immunotherapy[J]. Pharmaceutics,2023,15(6):1692. doi: 10.3390/pharmaceutics15061692
    [27] 骆洋,张青,张曙,等. 肥大细胞在实体瘤中的作用及机制[J]. 中国临床研究,2024,37(1):6-11.
    [28] Zhang X,Ji L,Li M O. Control of tumor-associated macrophage responses by nutrient acquisition and metabolism[J]. Immunity,2023,56(1):14-31. doi: 10.1016/j.immuni.2022.12.003
  • [1] 谢欣媛, 牛晓辰, 孙建辉, 张雅涵, 陈鹏飞.  胃腺癌患者铁死亡相关LncRNA预后模型的构建, 昆明医科大学学报.
    [2] 张莺, 罗相如, 王星, 赵盼, 廉坤, 李元琴, 邵明琨.  基底膜蛋白表达对子宫内膜癌及其免疫浸润的关系分析, 昆明医科大学学报.
    [3] 安义均, 余立丹, 赵美素, 马冬梅, 杨春花, 孔瑶.  膀胱癌溶酶体相关基因的预后模型构建与分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240510
    [4] 赵丽珠, 董莹, 邓玥, 杨丽华.  基于单细胞测序技术分析上皮细胞相关基因与卵巢癌患者预后的关系, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240402
    [5] 海燕, 美力班·吐尔逊, 阿仙姑·哈斯木.  Pin1通过调控脂质代谢关键酶影响宫颈癌细胞的增殖及凋亡, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230107
    [6] 蒋亚萍, 杨宏英, 汪昊涵, 宁显灵, 杨谢兰.  不同肠道手术方式对肠道受侵上皮性卵巢癌患者预后的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230109
    [7] 王群, 孙雨欣, 王海峰.  脂滴表面蛋白perilipin家族在癌症中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230812
    [8] 廉阳秧, 岳红萍, 端娅, 胡红文, 罗芳.  miRNA-15a/16调控Bmi-1蛋白在卵巢癌顺铂化疗耐药中的作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231204
    [9] 邓玥, 邹丹, TounaAbdelkerim Barh, 杨丽华.  基于Oncomine 数据库研究PDE4D基因在卵巢癌中的表达及血根碱的调控作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220303
    [10] 杨霄彦, 郝春光, 张志坚.  孕激素通过HOXA9对人卵巢癌细胞增殖和迁移的机制研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221022
    [11] 徐丽秀, 美力班·吐尔逊, 克热曼·牙库甫.  miR-181a在卵巢癌细胞中对顺铂的耐药作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220131
    [12] 郝立君, 徐丽秀, 李金秋, 马俊旗, 阿仙姑·哈斯木.  肽基脯氨酰同分异构酶(Pin1)对子宫颈癌细胞脂质代谢的作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210111
    [13] 杨璐, 施文军, 赵玲, 杜士刚, 陈珮琪, 柯亭羽.  2型糖尿病患者内脏脂肪面积与肥胖及糖脂代谢指标的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210932
    [14] 田波彦, 杨勤玲, 张胶琼, 韩娜, 刘少华.  辅助性肝动脉化疗栓塞治疗肝细胞癌微血管浸润的疗效, 昆明医科大学学报.
    [15] 胡万芹, 赵洪波, 梁宏, 赵庆华, 杨丽华.  顺铂耐药卵巢癌的差异表达基因和信号通路富集分析, 昆明医科大学学报.
    [16] 胡玉崇, 陆景坤, 崔梦瑶.  PTEN及Caspase-3可能参与卵巢癌铂类耐药的机制, 昆明医科大学学报.
    [17] 王春龙, 韩丹, 文亮.  间皮素与肿瘤诊治的相关研究进展, 昆明医科大学学报.
    [18] 舒芊.  绝经过渡期妇女卵巢体积及动脉血流量改变对性激素和脂代谢的影响, 昆明医科大学学报.
    [19] 戚宗泽.  兔骨髓间充质干细胞的分离、体外培养、鉴定及成脂诱导, 昆明医科大学学报.
    [20] 杨丽华.  抗整合素αⅤβ3单抗抑制上皮性卵巢癌血管及肿瘤生成的实验研究, 昆明医科大学学报.
  • 加载中
图(6)
计量
  • 文章访问数:  761
  • HTML全文浏览量:  1250
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-03
  • 网络出版日期:  2024-04-07
  • 刊出日期:  2024-04-29

目录

    /

    返回文章
    返回