留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过表达三结构域蛋白48调控p-ERK1/2抑制胶质瘤生长的作用机制

姜右川 余妍 赵国 李世存 丁鹏

龙佑玲, 潘登, 熊田珍, 潘月, 苏勇, 熊霖, 吴彦, 栗莹. 心电向量图诊断高血压病左心室异常的临床应用[J]. 昆明医科大学学报, 2021, 42(4): 113-116. doi: 10.12259/j.issn.2095-610X.S20210421
引用本文: 姜右川, 余妍, 赵国, 李世存, 丁鹏. 过表达三结构域蛋白48调控p-ERK1/2抑制胶质瘤生长的作用机制[J]. 昆明医科大学学报, 2024, 45(5): 29-36. doi: 10.12259/j.issn.2095-610X.S20240505
You-ling LONG, Deng PAN, Tian-zhen XIONG, Yue PAN, Yong SU, Lin XIONG, Yan WU, Ying LI. Clinical Application of Vectorcardiogram in Diagnosis of Left Ventricular Abnormalities in Hypertension[J]. Journal of Kunming Medical University, 2021, 42(4): 113-116. doi: 10.12259/j.issn.2095-610X.S20210421
Citation: Youchuan JIANG, Yan YU, Guo ZHAO, Shicun LI, Peng DING. Researches on the Mechanism of Overexpression of Tripartite Motif Protein 48 Regulating p-ERK1/2 to Inhibit Glioma Growth[J]. Journal of Kunming Medical University, 2024, 45(5): 29-36. doi: 10.12259/j.issn.2095-610X.S20240505

过表达三结构域蛋白48调控p-ERK1/2抑制胶质瘤生长的作用机制

doi: 10.12259/j.issn.2095-610X.S20240505
基金项目: 云南省科技厅-昆明医科大学应用基础研究联合专项重点基金资助项目(202001AY070001-160);云南省卫生高层次人才专项基金资助项目(L-2019020)
详细信息
    作者简介:

    姜右川(1996~),男,山东临沂人,在读硕士研究生,主要从事胶质瘤研究工作

    余妍与姜右川对本文有同等贡献

    通讯作者:

    丁鹏,E-mail:pengdwfmc@163.com

  • 中图分类号: R739.41

Researches on the Mechanism of Overexpression of Tripartite Motif Protein 48 Regulating p-ERK1/2 to Inhibit Glioma Growth

  • 摘要:   目的  探究过表达三结构域蛋白48(tripartite motif protein,TRIM)对胶质瘤生长的影响及其相关机制。  方法  将12只裸鼠随机均分为2组,分别接种过表达TRIM48的U87胶质瘤稳转株(oeTRIM48组)及其对照细胞株(Vector组)。接种后每3 d测定肿瘤体积,4周后取出肿瘤组织并记录瘤重。肿瘤组织做HE染色,并通过免疫荧光法检测Ki-67的表达,使用Western blot和免疫组化分别检测裸鼠肿瘤和人胶质瘤组织芯片中的TRIM48、ERK1/2和p-ERK1/2水平。  结果  oeTRIM48组裸鼠肿瘤体积、重量比Vector组裸鼠明显降低(P < 0.0001);HE染色结果显示oeTRIM48组细胞核减小、核分裂象减少;Ki-67阳性区域显著降低(P < 0.0001),而且oeTRIM48组p-ERK1/2蛋白水平比Vector组显著降低(P < 0.01)。组织芯片免疫组化显示,TRIM48和p-ERK1/2在癌旁组织分别呈高表达和低表达,在肿瘤组织则相反。  结论  过表达TRIM48能够抑制胶质瘤生长、增殖,其作用机制可能与ERK1/2信号通路有关。
  • 左心室异常为高血压病靶器官损伤的重要并发症。对高血压病左心室重构机制及逆转的研究发现,早期诊断高血压病左心室异常并及早干预可改善预后[1-3]。UCG为观察心脏结构性改变的主要检查手段之一,ECG是了解心脏电活动变化的重要检查方法,目前均为高血压病左心室异常的重要检查手段。VCG作为了解心脏电活动变化的检查方法,近年来为广大心电工作者所重视。环体的形成与心脏结构和电活动传导密切相关。有研究认为VCG可作为高血压病社区防治中对左心室肥厚进行筛查随访的检查方法[4]。为进一步深入探讨VCG对高血压病左心室异常的诊断价值,对76例高血压患者的ECG、VCG和UCG进行回顾性分析,探讨高血压病早期左心室异常的检测方法,为临床及早干预治疗提供诊断依据。

    2017年09月至2019年10月在昆明市中医医院临床诊断为高血压病的门诊和住院患者。纳入标准:(1)年龄 > 18岁;(2)参照《中国高血压基层管理指南》[5]及美国《2014年成人高血压循证管理指南》[6]标准诊断高血压病,(3)病历资料完整。排除标准:合并冠心病,糖尿病、心肌病、肺心病、心室预激及其它器质性心脏病者。纳入研究病例:男22例,女54例。年龄32岁~92岁。所有患者均在同一次住院或门诊时完成ECG、VCG及UCG检查。研究经昆明市中医医院伦理委员会批准,患者知情并同意。

    VCG检查按Frank导联安放电极,患者平卧放松图形基线平稳后采集VCG不低于20 s。基线漂移、肌电干扰和交流电干扰较大者排除。

    ECG检查按Wilson导联安放电极,图形采集要求同VCG。

    二项检查均用华南医电GY-5000A型立体心电图仪完成。

    UCG检查患者取左侧卧位,调整探头位置清晰显示心内膜,于左室长轴切面,在二维超声下分别对左室舒张末期内径、舒张末期左室后壁厚度、舒张末期室间隔厚度进行3次测量,取平均值作为最终测量值。检查设备采用LOGIQ E9型超声诊断仪。

    1.3.1   比较UCG与VCG左心室异常检出情况

    (1)QRS环起始向右向量振幅、起始右前向量振幅、起始向右运行时间为判断室间隔异常的指标,QRS环空间最大向量振幅为判断左心室后壁异常和左心室扩大的指标,以上4项中任意1~4项异常,判定为VCG检出左室异常(阳性);(2)室间隔厚度、左室后壁厚度、左室舒张末期内径,任意1~3项异常,判定为UCG检出左室异常(阳性)[7]

    1.3.2   比较VCG与ECG的异常检出情况

    (1)计算VCG和ECG对除极异常、复极异常、除极与复极均异常(阳性)检出率;(2)以VCG为标准,统计ECG对左室电活动异常的漏诊情况。

    1.3.3   判断标准[8-9]

    (1)QRS环起始向右向量振幅 ≥ 0.16 mv、起始右前向量振幅 ≥ 0.18 mv、起始向量向右运行时间 ≥ 20 ms[8]、最大空间向量振幅 ≥ 1.93 mv[9],判定为VCG检出左室异常。室间隔厚度 > 11.4 mm、左室后壁厚度 > 11.1 mm、左室舒张末期内径 > 54 mm判定为UCG检出左室异常[7, 10]。(2)ECG出现T波异常和/或ST段异常、VCG出现T环异常和/或ST向量异常,判定为心室复极异常,其它的异常为心室除极异常,二者兼有为除极与复极均异常,二者均无为正常。(3)其它诊断标准:VCG诊断标准参照《心电向量图入门》[8];ECG诊断标准参照《心电图学》[11]

    采用SPSS 21.0软件进行统计学分析。计数资料的比较采用配对χ2检验,以P < 0.05为差异具有统计学意义。

    VCG与UCG的左室异常检出结果比较,VCG的阳性检出率(55.3%)显著高于UCG(38.2%),(χ2 = 4.57),差异具有统计学意义(P < 0.05),见表1

    表  1  UCG与VCG对左心室异常检出情况比较( n)
    Table  1.  Comparison of left ventricular abnormalities detection between UCG and VCG (n)
    检查方法检出未检出合计 检出率(%)
    UCG 29 47 76 38.2
    VCG 42 34 76 55.3*
    合计 71 81 152 53.3
      与UCG比较,*P < 0.05。
    下载: 导出CSV 
    | 显示表格

    VCG与ECG左室电活动异常检出情况比较结果,VCG的阳性检出率(88.2%)显著高于ECG(71.1%),(χ2 = 8.47),差异具有统计学意义(P < 0.01),见表2

    表  2  VCG与ECG阳性检出率比较(n)
    Table  2.  Comparison of the positive detection rate between VCGand ECG (n)
    检查方法检出未检出合计检出率(%)
    ECG 54 22 76 71.1
    VCG 67 9 76 88.2*
    合计 121 31 152 53.3
      与ECG比较,*P < 0.05。
    下载: 导出CSV 
    | 显示表格

    VCG与ECG在心脏电活动异常的检查情况比较显示,二种方法对心脏电活动异常的检出,差异无统计学意义(P > 0.05),见表3

    表  3  ECG和VCG电活动异常检出情况[项(%)]
    Table  3.  Detection rate of abnormal ECG and VCG electrical activity [ piece(%)]
    检出情况VCGECGP
    除极异常 3(3.9) 8(10.5) 0.12
    除极与复极均异常 21(27.6) 12(15.8) 0.08
    复极异常 43(56.6) 34(44.7) 0.11
    下载: 导出CSV 
    | 显示表格

    以VCG为标准,ECG漏诊电活动异常共25项,漏诊最多的为心室复极异常,其次分别为左心室高电压和分支阻滞,见表4

    表  4  ECG对心电异常漏诊情况
    Table  4.  Missed diagnosis of abnormal ECG by ECG
    漏诊项目漏检数(项)
    心室复极异常(T环异常) 18
    左心室高电压 4
    分支阻滞 3
    合计 25
    下载: 导出CSV 
    | 显示表格

    随着社会经济发展,高血压病发病率居高不下,并有逐年上升的趋势[12]。左心室肥大是其靶器官损伤的重要并发症之一,有学者对UCG与ECG诊断高血压病左心室肥大的指标进行探讨研究,肯定了UCG和ECG对高血压病左心室异常的诊断价值[13-15]。VCG从空间角度描述心脏电活动,能详尽反映心脏电活动的早期异常,弥补心电图的诊断不足。且其环体形成与心脏结构密切相关,与超声心动图联合运用可提高早期左心室异常阳性检出率。

    心室除极最早从室间隔左侧面开始,由左后向右前推进,向下向上完成室间隔除极。起始20 ms向量可大致反映室间隔除极情况。侧壁心肌梗死、心肌病及心室预激(C型)等均可使起始向量增大,在排除上述情况后,QRS环起始向量增大可作为反映高血压病室间隔异常的指标。而QRS环最大向量的形成与左室后壁及整个左心室除极相关,左室后壁肥厚、左室扩大均可使QRS环振幅增大。将QRS环起始向量测量值与室间隔厚度比较、QRS环最大向量振幅与左室后壁测量值、左室舒张末期内径比较,可反映2种方法对左室异常的检出情况。比较显示,VCG左心室异常阳性检出率高于UCG。分析与心脏电活动异常早于结构学异常有关[16]。但心电向量环的形成受多种因素影响,例如向量的相互抵消和相互叠加等均会使向量的大小和方向发生改变,正如观察对象中有室间隔测量值增大而VCG起始向量正常者,考虑与此有关。UCG观察心脏结构直观准确,VCG可发现早期心脏电活动异常,但受各部位向量的相互影响使其表现相互掩盖而变得不典型。因此强调在应用VCG对高血压病左心室异常诊断时,应密切结合临床,并参考UCG结果进行综合判断。

    VCG与ECG同为反映心脏电活动的检查手段。二者对心脏电活动异常的检出情况对照发现,VCG阳性检出率明显高于ECG。以VCG为标准,ECG漏诊心室复极异常(T环异常)18项。T环异常包含:T环振幅异常、形态异常、运行方向异常、方位异常、运行速度异常等,一般情况T环振幅和方位异常投影于心电导联轴可形成异常T波。而其它T环异常并不一定形成异常T波。因此,对高血压病心室复极异常的诊断,T环更能从多角度反映,有助于发现早期复极异常。

    对左室高电压的诊断,以VCG为标准,ECG漏诊4项。VCG的空间最大向量振幅反映的是从原点到立体心电向量环最远端的距离,真实反映了左心室除极的最大电压。环体在投影形成心电图的过程中,位置稍有偏移即可导致QRS波群电压变化,故导致检查阳性率不同。

    高血压病收缩期负荷过重、左心室肥厚、室间隔肥厚,可致左室内束支和分支阻滞。以VCG为标准,ECG漏诊分支阻滞3项,其中左间隔支阻滞2项、左前分支阻滞1项。多数正常人存在左间隔分支,其阻滞的发生率低于右束支和左前分支,高于左后分支和左束支,其发生与左心室肥大及室间隔负荷过重导致左间隔分支受损有关[17]。左前分支传导阻滞亦跟高血压病左心室异常有关。ECG对室内传导阻滞依靠心室除极向量改变向心电导联轴投影后的QRS波形态变化进行诊断,投影过程中难免有部分信息出现偏差致图形不典型,而VCG以环状图形在空间上表达心脏电活动变化,对观察心室电活动传导改变更为直观,对ECG表现不典型的束支和分支阻滞能给予支持、肯定和否定的诊断。在束支和分支阻滞的诊断上能弥补心电图的不足。

    综上所述,在对高血压病左室异常的诊断上,VCG有较高的异常检出率,对心脏电活动异常的阳性检出率明显高于ECG,特别对心室复极异常、左室除极电压异常和分支阻滞等,较心电图有更高的检出率。VCG联合UCG可及早发现高血压左心室异常。但本研究为单中心小样本回顾性研究,且心电向量环的形成较为复杂,受多因素影响,在对高血压病早期左心室异常的诊断上,特别是心室除极异常与心室结构异常的关系上,有待于多中心大样本的前瞻性研究及进一步观察。

  • 图  1  过表达TRIM48对胶质瘤生长的影响

    A:肿瘤组织重量;B:肿瘤组织体积;C:肿瘤组织HE染色(×200);n=6; ****P < 0.0001。

    Figure  1.  Effect of TRIM48 overexpression on glioma growth

    图  2  过表达TRIM48影响胶质瘤组织增殖活性

    n=5,****P < 0.0001。

    Figure  2.  Overexpression of TRIM48 affects the proliferation activity of glioma tissues

    图  3  过表达TRIM48对ERK1/2通路的调控

    A:qRT-PCR和Western blot检测转染结果;B:Western blot检测过表达TRIM48对ERK1/2信号通路激活情况。n=6; ns:差异无统计学意义;*P < 0.05;**P < 0.01;****P < 0.0001。

    Figure  3.  Regulation of ERK1/2 pathway by overexpression of TRIM48

    图  4  胶质瘤患者组织芯片中TRIM48与ERK1/2信号通路之间的关系(×200)

    A:通过免疫组化检测组织芯片中胶质瘤患者肿瘤组织及匹配癌旁组织TRIM48与p-ERK1/2表达情况;B:p-ERK1/2在肿瘤组织与癌旁组织中的阳性区域;C:TRIM48在肿瘤组织和癌旁组织中的阳性区域;n=6;****P < 0.0001。

    Figure  4.  Direct relationship between TRIM48 and ERK1/2 signaling pathway in glioma tissue microarray (×200)

    表  1  PCR引物

    Table  1.   PCR primers

    引物名称目的基因序列(5'→3')产物大小(bp)
    Forward primer 1TRIM48AGCACCGGTATCACAGACAC162
    Reverse primer 1TRIM48TGTCTCCAAAAGCCTTCCAGTG162
    Forward primer 2β-actinAGGATTCCTATGTGGGCGAC273
    Reverse primer 2β-actinATAGCACAGCCTGGATAGCAA273
    下载: 导出CSV
  • [1] Omuro A,DeAngelis L M. Glioblastoma and other malignant gliomas: A clinical review[J]. Jama,2013,310(17):1842-1850. doi: 10.1001/jama.2013.280319
    [2] 国家卫生健康委员会医政医管局,中国抗癌协会脑胶质瘤专业委员会,中国医师协会脑胶质瘤专业委员会. 脑胶质瘤诊疗指南(2022版)[J]. 中华神经外科杂志,2022,38(8):757-777. doi: 10.3760/cma.j.cn112050-20220510-00239
    [3] Ostrom Q T,Bauchet L,Davis F G,et al. The epidemiology of glioma in adults: A "state of the science" review[J]. Neuro Oncol,2014,16(7):896-913. doi: 10.1093/neuonc/nou087
    [4] Schaff L R,Mellinghoff I K. Glioblastoma and other primary brain malignancies in adults: A review[J]. Jama,2023,329(7):574-587.
    [5] Ozato K,Shin D M,Chang T H,et al. TRIM family proteins and their emerging roles in innate immunity[J]. Nat Rev Immunol,2008,8(11):849-860. doi: 10.1038/nri2413
    [6] Hatakeyama S. TRIM proteins and cancer[J]. Nat Rev Cancer,2011,11(11):792-804. doi: 10.1038/nrc3139
    [7] Watanabe M,Hatakeyama S. TRIM proteins and diseases[J]. J Biochem,2017,161(2):135-144.
    [8] Menon S,Goldfarb D,Ho C T,et al. The TRIM9/TRIM67 neuronal interactome reveals novel activators of morphogenesis[J]. Mol Biol Cell,2021,32(4):314-330. doi: 10.1091/mbc.E20-10-0622
    [9] Montell D J. TRIMing neural connections with ubiquitin[J]. Dev Cell,2019,48(1):5-6. doi: 10.1016/j.devcel.2018.12.012
    [10] Magiera M M,Mora S,Mojsa B,et al. Trim17-mediated ubiquitination and degradation of Mcl-1 initiate apoptosis in neurons[J]. Cell Death Differ,2013,20(2):281-292. doi: 10.1038/cdd.2012.124
    [11] Venuto S,Castellana S,Monti M,et al. TRIM8-driven transcriptomic profile of neural stem cells identified glioma-related nodal genes and pathways[J]. Biochim Biophys Acta Gen Subj,2019,1863(2):491-501. doi: 10.1016/j.bbagen.2018.12.001
    [12] Zhang C,Mukherjee S,Tucker-Burden C,et al. TRIM8 regulates stemness in glioblastoma through PIAS3-STAT3[J]. Mol Oncol,2017,11(3):280-294. doi: 10.1002/1878-0261.12034
    [13] Deng Y,Zhu H,Xiao L,et al. Circ_0005198 enhances temozolomide resistance of glioma cells through miR-198/TRIM14 axis[J]. Aging (Albany NY),2020,13(2):2198-2211.
    [14] Meng L,Wang Y,Tu Q,et al. Circular RNA circ_0000741/miR-379-5p/TRIM14 signaling axis promotes HDAC inhibitor (SAHA) tolerance in glioblastoma[J]. Metab Brain Dis,2023,38(4):1351-1364.
    [15] Zhang L H,Yin Y H,Chen H Z,et al. TRIM24 promotes stemness and invasiveness of glioblastoma cells via activating Sox2 expression[J]. Neuro Oncol,2020,22(12):1797-1808. doi: 10.1093/neuonc/noaa138
    [16] Han K,Lou D I,Sawyer S L. Identification of a genomic reservoir for new TRIM genes in primate genomes[J]. PLoS Genet,2011,7(12):e1002388. doi: 10.1371/journal.pgen.1002388
    [17] Xue L P,Lu B,Gao B B,et al. Overexpression of tripartite motif-containing 48 (TRIM48) inhibits growth of human glioblastoma cells by suppressing extracellular signal regulated kinase 1/2 (ERK1/2) pathway[J]. Med Sci Monit,2019,25(1):8422-8429.
    [18] Jin Q,Zhang W,Qiu X G,et al. Gene expression profiling reveals Ki-67 associated proliferation signature in human glioblastoma[J]. Chin Med J (Engl),2011,124(17):2584-2588.
    [19] Yang P,Wang Y,Peng X,et al. Management and survival rates in patients with glioma in China (2004-2010): A retrospective study from a single-institution[J]. J Neurooncol,2013,113(2):259-266. doi: 10.1007/s11060-013-1103-9
    [20] Sun X,Kaufman P D. Ki-67: More than a proliferation marker[J]. Chromosoma,2018,127(2):175-186. doi: 10.1007/s00412-018-0659-8
    [21] Cuylen S,Blaukopf C,Politi A Z,et al. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes[J]. Nature,2016,535(7611):308-312. doi: 10.1038/nature18610
    [22] Mrouj K,Andr é s-S á nchez N,Dubra G,et al. Ki-67 regulates global gene expression and promotes sequential stages of carcinogenesis[J]. Proc Natl Acad Sci USA,2021,118(10):e2026507118. doi: 10.1073/pnas.2026507118
    [23] Theresia E,Malueka R G,Pranacipta S,et al. Association between Ki-67 labeling index and histopathological grading of glioma in indonesian population[J]. Asian Pac J Cancer Prev,2020,21(4):1063-1068. doi: 10.31557/APJCP.2020.21.4.1063
    [24] Yu Z,Ye S,Hu G,et al. The RAF-MEK-ERK pathway: Targeting ERK to overcome obstacles to effective cancer therapy[J]. Future Med Chem,2015,7(3):269-289. doi: 10.4155/fmc.14.143
    [25] Bhattacharya D,Chaudhuri S,Singh M K,et al. T11TS inhibits angiopoietin-1/Tie-2 signaling,EGFR activation and Raf/MEK/ERK pathway in brain endothelial cells restraining angiogenesis in glioma model[J]. Exp Mol Pathol,2015,98(3):455-466. doi: 10.1016/j.yexmp.2015.03.026
    [26] Cheng M,Liu L. MUC15 promotes growth and invasion of glioma cells by activating Raf/MEK/ERK pathway[J]. Clin Exp Pharmacol Physiol,2020,47(6):1041-1048. doi: 10.1111/1440-1681.13277
    [27] Li Q,Zhang L,Yang Q,et al. Thymidine kinase 1 drives hepatocellular carcinoma in enzyme-dependent and -independent manners[J]. Cell Metab,2023,35(6):912-927. doi: 10.1016/j.cmet.2023.03.017
    [28] Hirata Y. Reactive oxygen species (ROS) signaling: Regulatory mechanisms and pathophysiological roles[J]. Yakugaku Zasshi,2019,139(10):1235-1241. doi: 10.1248/yakushi.19-00141
    [29] Hirata Y,Katagiri K,Nagaoka K,et al. TRIM48 promotes ASK1 activation and cell death through ubiquitination-dependent degradation of the ASK1-negative regulator PRMT1[J]. Cell Rep,2017,21(9):2447-2457. doi: 10.1016/j.celrep.2017.11.007
  • [1] 洪超, 向旭东, 李盈甫, 曹杨, 陈雪雅, 李帅, 邢安灏, 林牧, 马千里.  ERK1/2信号通路基因3'UTR多态性与非小细胞肺癌的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240302
    [2] 郭小兵, 李晓文, 李恒希, 曹艳, 李坪.  miR-212-3p靶向调控NAP1L1抑制胶质瘤细胞增殖、迁移和上皮-间充质转化, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241104
    [3] 冯毅, 王小峰, 白西民, 姚胜, 党俊涛, 赵云洁, 蔡冰.  miR-149-5p通过MSH5/Wnt信号通路调控胶质瘤细胞恶性生物学行为, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230823
    [4] 余朝军, 赵迁浩, 赵宁辉.  低氧微环境对脑胶质瘤细胞增殖、凋亡及HIF-1α表达的影响, 昆明医科大学学报.
    [5] 李梦楠, 徐焕焕, 刘亚南, 杨双, 李崇阳, 徐世莲.  伏核神经元ERK1/2在GalR1激活对神经痛大鼠镇痛作用中的机制, 昆明医科大学学报.
    [6] 王宏宇, 韦焘, 王进昆, 杨智勇, 王伟民, 丁鹏.  MCP-1、VEGF在人脑胶质瘤中的表达及其相关性, 昆明医科大学学报.
    [7] 陈希, 许智星, 刘旭杰, 田锦涛, 牛小群, 蒲军.  洛哌丁胺体外对胶质瘤干细胞的杀伤作用, 昆明医科大学学报.
    [8] 黄治国, 殷维, 晏毅.  瑞芬太尼抑制大鼠炎症性疼痛及其机制, 昆明医科大学学报.
    [9] 徐波, 杨锐, 陆斌, 曾锐, 孙珂, 丁鹏.  趋化因子CCL2在胶质瘤细胞株U251、U373中的表达, 昆明医科大学学报.
    [10] 李国林, 李超, 李峰.  IL1RN基因多态性与脑胶质瘤患病风险的相关性, 昆明医科大学学报.
    [11] 徐华.  X线辐射联合替莫唑胺化疗对胶质瘤CD133、ABCG2表达的影响, 昆明医科大学学报.
    [12] 魏亚辉.  IGF-2及IGFBP-2与脑神经胶质瘤侵袭能力的相关性分析, 昆明医科大学学报.
    [13] 王参智.  MGMT、XRCC1基因在脑胶质瘤中的表达及其临床应用, 昆明医科大学学报.
    [14] 郝金钢.  DWI在脑转移瘤和恶性胶质瘤鉴别诊断中的价值, 昆明医科大学学报.
    [15] 刘佳鑫.  SDF-1/CXCR4在恶性胶质瘤细胞体外增殖、迁移及侵袭中的作用, 昆明医科大学学报.
    [16] 牛华涛.  XRCC1在脑胶质瘤中的表达及与放疗的相关性研究, 昆明医科大学学报.
    [17] PAI-1在人脑胶质瘤中的表达及意义分析, 昆明医科大学学报.
    [18] 苏星.  PAI-1在人脑胶质瘤中的表达及意义分析, 昆明医科大学学报.
    [19] 人脑胶质瘤中proNGF凋亡前信号的研究, 昆明医科大学学报.
    [20] SDF-1与VEGF在胶质瘤表达中的关系及意义, 昆明医科大学学报.
  • 期刊类型引用(3)

    1. 龙佑玲,熊田珍,盛祖桃,周志娴,尹蕊,苏勇. 心电向量图诊断高血压早期心脏靶器官损害的临床应用及影响因素. 昆明医科大学学报. 2024(06): 120-125 . 本站查看
    2. 熊田珍,李娟,龙佑玲,吴彦,黄雯,栗莹. 心尖肥厚型心肌病一例. 实用医技杂志. 2022(02): 220-221+230 . 百度学术
    3. 吴彦,熊田珍,栗莹,黄雯,龙佑玲. 心电向量图对心电轴右偏的诊断价值. 实用医技杂志. 2022(02): 160-162+226-228 . 百度学术

    其他类型引用(0)

  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  1417
  • HTML全文浏览量:  1144
  • PDF下载量:  14
  • 被引次数: 3
出版历程
  • 收稿日期:  2024-01-15
  • 网络出版日期:  2024-04-30
  • 刊出日期:  2024-05-31

目录

/

返回文章
返回