留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

益生菌对脑缺血再灌注损伤大鼠Aβ表达的影响及神经元的保护作用

梁国晶 冀琨 张恺纯 张玉芳 安晶 张钰鸽 文娟 任海燕

秦杰琛, 左笑菲, 邹澄, 庹呈杰, 张科涛, 张晓梅, 赵庆. 结构改造制备抗菌和抗肿瘤的姜科二萜衍生物[J]. 昆明医科大学学报, 2021, 42(5): 1-5. doi: 10.12259/j.issn.2095-610X.S20210501
引用本文: 梁国晶, 冀琨, 张恺纯, 张玉芳, 安晶, 张钰鸽, 文娟, 任海燕. 益生菌对脑缺血再灌注损伤大鼠Aβ表达的影响及神经元的保护作用[J]. 昆明医科大学学报, 2024, 45(5): 37-43. doi: 10.12259/j.issn.2095-610X.S20240506
Jie-chen QIN, Xiao-fei ZUO, Cheng ZOU, Cheng-jie TUO, Ke-tao ZHANG, Xiao-mei ZHANG, Qing ZHAO. Antimicrobial and Antitumor Zingiberaceae Diterpene Derivatives Prepared by Structure Modification[J]. Journal of Kunming Medical University, 2021, 42(5): 1-5. doi: 10.12259/j.issn.2095-610X.S20210501
Citation: Guojing LIANG, Kun JI, Kaichun ZHANG, Yufang ZHANG, Jing AN, Yuge ZHANG, Juan WEN, Haiyan REN. The Effect of Probiotics on the Expression of Aβ and the Protective Effect of Neurons in Rats with Cerebral Ischemia-Reperfusion Injury[J]. Journal of Kunming Medical University, 2024, 45(5): 37-43. doi: 10.12259/j.issn.2095-610X.S20240506

益生菌对脑缺血再灌注损伤大鼠Aβ表达的影响及神经元的保护作用

doi: 10.12259/j.issn.2095-610X.S20240506
基金项目: 新疆维吾尔自治区自然科学基金资助项目(2023D01C38)
详细信息
    作者简介:

    梁国晶(1999~),女,甘肃古浪人,在读硕士研究生,主要从事神经病理生理学研究工作

    通讯作者:

    任海燕,E-mail:424732833@qq.com

  • 中图分类号: R741.02;R363

The Effect of Probiotics on the Expression of Aβ and the Protective Effect of Neurons in Rats with Cerebral Ischemia-Reperfusion Injury

  • 摘要:   目的  探讨益生菌干预对脑缺血再灌注损伤大鼠脑组织Aβ表达的影响及神经元的保护作用。  方法  实验动物为雄性Sprague-Dawley大鼠,随机分为4组,各组n = 12:假手术组、模型组、益生菌组、依达拉奉组。假手术组仅分离颈总动脉,其余各组使用线拴法建立脑缺血再灌注模型。脑损伤程度使用神经行为学评分评估;大鼠脑组织梗死面积使用TTC染色观察;大鼠大脑海马CA1区与皮层区神经元病理形态学改变特征使用HE染色观察;Aβ蛋白的表达使用免疫组化实验检测。  结果  模型组相较假手术组,神经行为学评分升高(P < 0.05),脑梗死面积增加(P < 0.05),海马CA1区与皮层区神经元出现损伤,Aβ蛋白表达显著上调(P < 0.001,P < 0.05);益生菌组、依达拉奉组与模型组相比,神经行为学评分降低(P < 0.05),脑梗死面积减小(P < 0.05),海马CA1区与皮层区神经元损伤减轻,Aβ蛋白表达水平在两组中均显著下调(P < 0.001,P < 0.05);依达拉奉组改善更为明显。  结论  益生菌干预可下调Aβ蛋白的表达,减轻脑缺血再灌注大鼠脑组织损伤、发挥神经元保护作用。
  • 近年来,课题组对姜科姜花属植物萜类成分进行了系统研究[1-6],从滇姜花、圆瓣姜花和毛姜花中分离得到一系列对多种肿瘤细胞具有显著体外细胞毒活性的萜类化合物[7-9]。一些姜科植物中的二萜类成分具有抗菌、抗肿瘤等活性[10-11]。滇姜花(Hedychium yunnanense Gangep)中的呋喃二萜Coronarin E含量较高,该成分没有细胞毒活性和抗菌活性,将其通过光敏氧化反应制备具有生物活性的丁烯酸内酯结构的二萜衍生物[12],有产率较高、选择性高、绿色环保的特点。课题组对Coronarin E经二氧化硒氧化、酰化、光敏氧化三步反应,制备两个衍生物,对其抗菌活性(抑菌圈、MIC和联合用药)及体外抗肿瘤活性进行较为深入的研究,进一步验证了二萜衍生物的生物活性,为寻找较好的药物前体提供了理论基础和科学依据。

    78-1型磁力加热搅拌器(杭州仪器电机厂);分析天平(上海第二天平仪器厂);AM-500型核磁共振波谱仪((瑞士BRUKER公司);LED灯(上海一恒科学仪器有限公司);OSB-2100 旋转蒸发仪(上海爱朗仪器有限公司);ES-315 高压蒸汽灭菌锅,(TOMY 公司);恒温培养箱(上海一恒科学仪器有限公司);SW-CJ-2FD 超净工作台(AIRTECH公司);电热恒温鼓风干燥箱(上海一恒科技有限公司)。

    Coronarin E由本课题组从姜科植物滇姜花中分离得到。所用有机试剂(化学纯)和化学试剂均购自昆明市医药公司化学试剂玻璃仪器采供站,柱色谱硅胶均为青岛海洋化工厂产品,培养基配料均购自雅云生物科技有限公司。

    1.3.1   Coronarin E的SeO2氧化反应

    取400 mg coronarin E、168 mg SeO2溶于5 mL干燥的二氯甲烷中,加入368 mg过氧叔丁醇,在常温下搅拌反应2 h,TLC检测原料反应完全。反应液经200~300目硅胶柱色谱分离纯化,石油醚-乙酸乙酯(80∶1~40∶1)洗脱,得到化合物1(无色油状物,见图1)300 mg,产率为71%。

    图  1  Coronarin E的二氧化硒氧化反应
    Figure  1.  SeO2 oxidation reaction of coronarin E
    1.3.2   化合物1的酰化反应

    取87 mg 1-萘甲酸、0.12 mL N,N-二异丙基碳二亚胺(DIC),0.5 mg对二甲氨基吡啶(DMAP),溶于5 mL干燥过的二氯甲烷,常温搅拌10 min后,加入79 mg化合物1,搅拌反应2 h后,TLC检测反应完全,加入0.2 mL水及50 mL石油醚继续搅拌10 min,超声30 min。产物用150 mL石油醚与100 mL 70%甲醇分配,后者再用100 mL石油醚萃取,合并两次萃取的石油醚层,浓缩后经200-300目硅胶柱色谱分离,石油醚-氯仿(10∶1~5∶1)洗脱。得到化合物2(白色固体,见图2)52.7 mg,产率为44.1%。

    图  2  化合物1的酰化反应
    Figure  2.  Acylation reaction of compound 1
    1.3.3   化合物2的光敏氧化反应

    取52.7 mg化合物2溶于10 mL吡啶中,加入1.0 mg四苯基卟啉(TPP),通入氧气并搅拌,在LED灯照射下反应2 h,TCL检测原料反应完全。溶剂蒸干,经硅胶色谱分离纯化,石油醚-乙酸乙酯(4∶1~1∶1)洗脱,得到化合物3(白色固体)和4(白色固体),见图3,分别为12 mg 和8 mg,产率分别为21.3%和14.1%。

    图  3  化合物2的光敏氧化反应
    Figure  3.  Photosensitized oxidation of compound 2
    1.3.4   化合物的抗菌活性筛选

    采用滤纸片扩散法测试化合物3和4的抑菌圈直径[13-14];采用微量倍比稀释法[15-16]测定化合物3和4的最小抑菌浓度(MIC);化合物4的联合用药测试采用棋盘法,测试该成分分别与万古霉素、氨苄西林、卡那霉素3种抗生素联合用药的最小抑菌浓度[17]

    1.3.5   体外细胞毒活性测试

    采用MTT法[18],测定化合物3和4对五个肿瘤细胞株的体外细胞毒活性(阳性对照采用顺铂)。

    化合物3:1H-NMR(CD3OCD3,500 MHz)δ(ppm):0.91(3H,s,H-18),0.98(3H,s,H-19),1.19(3H,s,H-20),3.05(1H,d,J = 10.5 Hz,H-9),5.87(1H,t,J = 3.0 Hz,H-7),4.95(1H,br.s,H-17a),5.34(1H,br.s,H-17b),6.67(1H,dd,J = 16.5,10.5 Hz,H-11),5.94(1H,s,H-14),6.45(1H,d,J = 16.5 Hz,H-12),6.44(1H,s,H-16),8.98(1H,m,H-9′),7.80(1H,m,H-8′),7.36(1H,br.s,H-4′),8.51(1H,d,J = 8.1 Hz,H-3′),8.26(1H,d,J = 8.2 Hz,H-7′),8.23(1H,d,J = 8.2 Hz,H-5′),7.88(1H,d,J = 8.6 Hz,H-6′). 13C-NMR(CD3OCD3,500 MHz)δ(ppm):41.12(t,C-1),19.38(t,C-2),42.54(t,C-3),33.90(s,C-4),48.99(d,C-5),28.87(t,C-6),76.54(d,C-7),146.57(s,C-8),58.83(d,C-9),40.05(s,C-10),141.53(d,C-11),124.80(d,C-12),162.25(s,C-13),116.77(d,C-14),171.25(s,C-15),98.50(d,C-16),115.57(t,C-17),33.47(q,C-18),21.79(q,C-19),14.56(q,C-20),166.82(s,C-1′),128.88(s,C-2′),130.68(d,C-3′),125.68(d,C-4′),134.30(d,C-5′),132.00(s,C-6′),129.52(d,C-7′),126.39(d,C-8′),128.41(d,C-9′),127.15(d,C-10′),134.86(s,C-11′)。

    化合物4:1H-NMR(CD3OCD3,500 MHz)δ(ppm):0.91(3H,s,H-18),0.96(3H,s,H-19),1.19(3H,s,H-20),2.97(1H,d,J = 10.0 Hz,H-9),5.81(1H,t,J = 2.5 Hz,H-7),4.89(1H,br.s,H-17a),5.32(1H,br.s,H-17b),6.97/6.99(1H,dd,J = 15.5,10.0 Hz,H-11),6.23(1H,d,J = 15.5 Hz,H-12),7.15/7.16(1H,s,H-14),6.15/6.16(1H,s,H-15),8.98(1H,m,H-9′),7.16(1H,br.s,H-4′),7.64(1H,m,H-8′),8.01(1H,d,J = 8.2 Hz,H-3′),8.16(1H,d,J = 8.2 Hz,H-7′),8.22(1H,d,J = 8.2 Hz,H-5′),7.87(1H,d,J = 8.6 Hz,H-6′). 13C-NMR(CD3OCD3,500 MHz)δ(ppm):41.18(t,C-1),19.97(t,C-2),42.59(t,C-3),33.81(s,C-4),48.99(d,C-5),29.07(t,C-6),76.95(d,C-7),146.73(s,C-8),58.78(d,C-9),39.98(s,C-10),136.91(d,C-11),122.79(d,C-12),131.00(s,C-13),144.94(d,C-14),97.21(d,C-15),170.67(s,C-16),115.20(t,C-17),33.54(q,C-18),21.94(q,C-19),14.69(q,C-20),166.71(s,C-1′),128.98(s,C-2′),130.64(d,C-3′),125.66(d,C-4′),134.93(d,C-5′),131.97(s,C-6′),129.52(d,C-7′),126.35(d,C-8′),128.29(d,C-9′),127.16(d,C-10′),134.88(s,C-11′)。

    化合物3对两种MRSA病原菌具有一定的抗菌活性,化合物4对多种革兰氏阳性菌、革兰氏阴性菌具有明显的抗菌活性,见表1

    表  1  化合物3和4对病原菌株抑菌活性筛选结果(抑菌圈直径:mm)
    Table  1.  The result of antimicrobial activities against pathogens ( diameter of inhibition zone:mm)
    病原菌株化合物3化合物4
    金黄色葡萄球菌29213 10.1
    MRSA 1450 8.2 10.5
    MRSA 1505 10.1 10.3
    MRSA 2024 8.2
    MRSA I-20 10.0
    MRSA I-67 9.8
    MRSA 1957 8.1
    MRSA 28299 10.5
    克雷伯氏菌13883 10.8
    粪肠球菌29212 9.4
    白色葡萄球菌1029 12.0
    铜绿假单胞菌PA01 10.2
    大肠杆菌25922 10.0
    鼠伤寒沙门氏菌χ 8956 17.0
    鲍曼不动杆菌19606 13.2
    枯草芽孢杆菌6633
      注:表中抑菌圈直径为三次测量的平均值;“−”表示无抑菌圈。革兰氏阳性菌:金黄色葡萄球菌(Staphylococcus aureus ATCC 29213),7个耐甲氧西林金黄色葡萄球菌(MRSA 145015052024195728299I-20I-67),白色葡萄球菌(Staphylococcus albus 1029);革兰氏阴性菌:鼠伤寒沙门氏菌(Salmonella typhimurium χ 8956),铜绿假单胞菌(Pseudomonas aeruginosa PA01),大肠杆菌(Escherichia coil ATCC 25922),枯草芽孢杆菌(Bacillus subtilis ATCC 6633),鲍曼不动杆菌(Acinetobacter baumanii ATCC 19606),肺炎克雷伯氏菌(Klebsiella pneumonia ATCC 13883),粪肠球菌(Enterococcus faecalis ATCC 29212)。
    下载: 导出CSV 
    | 显示表格

    化合物4与三种抗生素联合使用时,对MRSA病原菌株抑制活性有不同程度的协同或相加作用,见表2

    表  2  化合物4与三种抗生素的联合用药测试结果
    Table  2.  Combination test of compound 4 with three antibiotics
    菌株药物MIC(μg/ml)最佳抑菌点(化合物4∶抗生素)FICI作用方式
    鼠伤寒沙门氏菌χ8956 化合物4 0.25
    万古霉素 0.25 0.125∶0.0625 0.75 +
    氨苄西林 2 0.125∶1 1 +
    卡那霉素 2 0.0625∶1 0.75 +
    鲍曼不动杆菌19606 化合物4 0.5
    万古霉素 0.25 0.125∶0.125 0.75 +
    氨苄西林 8 0.25∶8 1.5
    卡那霉素 4 0.25∶4 1.5
    白色葡萄球菌1029 化合物4 0.5
    万古霉素 0.125 0.125∶0.03125 0.5 ++
    氨苄西林 0.5 0.25∶0.125 0.75 +
    卡那霉素 4 0.125∶1 0.5 ++
      注:1、FICI = 甲药MIC联合/甲药MIC单用 + 乙药MIC联合/乙药MIC单用,其中甲药代表化合物4,乙药代表抗生素。FICI > 1,表示两药有无关作用;0.5 < FICI≤1,表示两药有相加作用;FICI≤0.5,表示两药有协同作用。2、以“++”表示协同作用,“+”表示相加作用,“−”表示无关。
    下载: 导出CSV 
    | 显示表格

    化合物3对5种人类肿瘤细胞株具有显著的体外细胞毒活性;化合物4具有较弱的体外肿瘤生长抑制活性,见表3

    表  3  产物对五种肿瘤细胞株的半数生长抑制浓度IC50(μM)
    Table  3.  The IC50 value of 3 and 4 against five tumor cell lines (μM)
    化合物编号白血病HL-60肝癌SMMC-7721肺癌A-549乳腺癌MCF-7结肠癌SW480
    3 2.55 2.77 1.17 2.49 1.37
    4 15.71 15.62 26.49 25.13 22.87
    顺铂 5.00 4.33 2.17 9.18 13.19
      评价标准:无效IC50 > 40 μM;有效IC50 < 40 μM;标示下划线的为活性高于阳性对照顺铂。
    下载: 导出CSV 
    | 显示表格

    二萜coronarin E经三步衍生化反应,制备具有丁烯酸内酯结构单元的二萜衍生物3和4。对3和4的生物活性测试表明:化合物4对多种革兰氏阳性菌、革兰氏阴性菌有明显的抗菌活性,化合物3对两种MRSA具有一定的抗菌活性。化合物4对鼠伤寒沙门氏菌(Salmonella typhimurium χ8956)、鲍曼不动杆菌(Acinetobacter baumannii ATCC 19606)、白色葡萄球菌(Staphylococcus albus 1029)的抗菌效果显著。化合物4对鼠伤寒沙门氏菌的抗菌活性接近万古霉素,高于氨苄西林、卡那霉素;对鲍曼不动杆菌的抗菌活性高于氨苄西林、卡那霉素;对白色葡萄球菌的抗菌活性接近氨苄西林,高于卡那霉素。化合物4与三种抗生素联用时,对鼠伤寒沙门氏菌抑制活性均具有相加作用。化合物4与万古霉素、卡那霉素联用时对白色葡萄球菌抑制活性具有协同作用,与氨苄西林联用时具有相加作用。化合物4与万古霉素联用时对鲍曼不动杆菌抑制活性具有相加作用。

    化合物3对5种人类肿瘤细胞株(白血病细胞株HL-60、肝癌细胞株SMMC-7721、肺癌细胞株A-549、乳腺癌细胞株MCF-7和结肠癌细胞株SW-480)均具有显著的体外细胞毒活性,超过阳性对照顺铂;化合物4具有较弱的体外肿瘤生长抑制活性。

    由此可见,以姜科二萜为原料,经结构改造制备丁烯酸内酯结构单元的二萜衍生物,并从中寻找有苗头的抗菌、抗癌活性成分或先导化合物,可作为未来抗菌、抗肿瘤药物研究与开发的一个方向。

  • 图  1  各组大鼠脑组织梗死灶

    A:假手术组;B:模型组;C:益生菌组;D:依达拉奉组。

    Figure  1.  Cerebral infarction focus of rats in each group

    图  2  各组大鼠大脑海马CA1区与皮层区神经元病理形态学改变(×400)

    A~D:大鼠海马CA1区神经元病理形态学改变;E~H:大鼠皮层区神经元病理形态学改变。

    Figure  2.  Pathological and morphological changes of neurons in the hippocampus CA1 and cortical regions of rats in each group (×400)

    图  3  各组大鼠大脑海马CA1区与皮层区Aβ蛋白的表达

    A~D:大鼠海马CA1区神经元Aβ蛋白表达情况;E~H:大鼠皮层区神经元Aβ蛋白表达情况。

    Figure  3.  Expression of Aβ protein in the hippocampal CA1 and cortical regions of rats in each group

    图  4  各组大鼠大脑海马CA1区与皮层区Aβ蛋白的表达比较

    A:大鼠大脑海马CA1区Aβ蛋白的表达统计图;B:大鼠大脑皮层区Aβ蛋白的表达统计图与模型组比较,**P < 0.05,****P < 0.001。

    Figure  4.  Comparison of protein expression in the hippocampal CA1 and cortical regions of rats in each groups

    表  1  Zea Longa 5 级评分法评分标准

    Table  1.   Zea longa grade 5 scoring method scoring standard

    评分表现
    0无神经损害症状
    1梗死侧对侧前肢和前爪不能完全伸展
    2不能正常行走,行走时向梗死侧旋转
    3行走时向梗死对侧倾倒
    4无法行走和意识障碍
    下载: 导出CSV

    表  2  各组大鼠神经行为学评分[($ \bar x \pm s $),分]

    Table  2.   Neurobehavioral scores of rats in each group[ ($ \bar x \pm s $),points]

    分组 n 神经行为学评分
    假手术组 12 0±0*
    模型组 12 3.51±0.41
    益生菌组 12 2.53±0.41*
    依达拉奉组 12 2.27±0.20*
      与模型组比较,*P < 0.05。
    下载: 导出CSV

    表  3  各组大鼠脑组织梗死灶体积的比较[($ \bar x \pm s$)%]

    Table  3.   Comparison of cerebral infarction focus volume of rats in each group [($ \bar x \pm s$)%]

    分组 n 脑梗死体积百分比
    假手术组 3 0±0*
    模型组 3 21.56±2.24
    益生菌组 3 9.48±1.43*
    依达拉奉组 3 6.99±1.32*
      与模型组比较,*P < 0.05。
    下载: 导出CSV
  • [1] Savitz S I,Baron J C,Yenari M A,et al. Reconsidering neuroprotection in the reperfusion era[J]. Stroke,2017,48(12):3413-3419. doi: 10.1161/STROKEAHA.117.017283
    [2] Pawar A,Pardasani K R. Mechanistic insights of neuronal calcium and ip3 signaling system regulating atp release during ischemia in progression of Alzheimer's disease[J]. Eur Biophys J,2023,52(3):153-173. doi: 10.1007/s00249-023-01660-1
    [3] Ren H,Ma L,Gong X,et al. Edaravone exerts brain protective function by reducing the expression of aqp4,app and aβ proteins[J]. Open Life Sci,2019,14(1):651-658. doi: 10.1515/biol-2019-0074
    [4] Pluta R,Ułamek-Kozioł M,Januszewski S,et al. Participation of amyloid and tau protein in neuronal death and neurodegeneration after brain ischemia[J]. Int J Mol Sci,2020,21(13):4599. doi: 10.3390/ijms21134599
    [5] Ułamek-Kozioł M,Czuczwar S J,Januszewski S,et al. Proteomic and genomic changes in tau protein,which are associated with Alzheimer's disease after ischemia-reperfusion brain injury[J]. Int J Mol Sci,2020,21(3):892. doi: 10.3390/ijms21030892
    [6] Nguyen T-V V,Hayes M,Zbesko J C,et al. Alzheimer's associated amyloid and tau deposition co-localizes with a homeostatic myelin repair pathway in two mouse models of post-stroke mixed dementia[J]. Acta Neuropathol Commun,2018,6(1):100. doi: 10.1186/s40478-018-0603-4
    [7] Wang J,Zhang H,He J,et al. The role of the gut microbiota in the development of ischemic stroke[J]. Front Immunol,2022,28(13):845243.
    [8] Benakis C,Poon C,Lane D,et al. Distinct commensal bacterial signature in the gut is associated with acute and long-term protection from ischemic stroke[J]. Stroke,2020,51(6):1844-1854. doi: 10.1161/STROKEAHA.120.029262
    [9] Li H,Sun J,Du J,et al. Clostridium butyricum exerts a neuroprotective effect in a mouse model of traumatic brain injury via the gut-brain axis[J]. Neurogastroenterol Motil,2018,30(5):e13260. doi: 10.1111/nmo.13260
    [10] 冯云,亢君君,方宗平,等. 肠道菌群移植通过降低il-17水平减轻老年小鼠脑缺血再灌注损伤[J]. 细胞与分子免疫学杂志,2019,35(1):52-57.
    [11] Wang H,Ren S,Lv H,et al. Gut microbiota from mice with cerebral ischemia-reperfusion injury affects the brain in healthy mice[J]. Aging (Albany NY),2021,13(7):10058-10074. doi: 10.18632/aging.202763
    [12] Wu H,Chiou J. Potential benefits of probiotics and prebiotics for coronary heart disease and stroke[J]. Nutrients,2021,13(8):2878. doi: 10.3390/nu13082878
    [13] Pan F,Zhang L,Li M,et al. Predominant gut lactobacillus murinus strain mediates anti-inflammaging effects in calorie-restricted mice[J]. Microbiome,2018,6(1):54. doi: 10.1186/s40168-018-0440-5
    [14] Akhoundzadeh K,Vakili A,Shadnoush M,et al. Effects of the oral ingestion of probiotics on brain damage in a transient model of focal cerebral ischemia in mice[J]. Iran J Med Sci,2018,43(1):32-40.
    [15] 刘兆兰,刘宝全,李兰花,等. 动态随机分组方法介绍及应用[J]. 中西医结合学报,2011,9(3):246-251.
    [16] 梁国晶,任海燕,张钰鸽,等. 红茶菌在脑缺血再灌注损伤大鼠模型中的作用研究[J]. 现代生物医学进展,2023,23(3):428-432.
    [17] 卢小叶,吕倩忆,李棋龙,等. Zea-longa评分与改良Garcia评分应用于针刺治疗CIRI大鼠神经功能缺损评估的研究[J]. 湖南中医药大学学报,2021,41(9):1356-1360.
    [18] Li Y,Zhang J. Animal models of stroke[J]. Animal Model Exp Med,2021,4(3):204-219. doi: 10.1002/ame2.12179
    [19] Maida C D,Norrito R L,Daidone M,et al. Neuroinflammatory mechanisms in ischemic stroke: Focus on cardioembolic stroke,background,and therapeutic approaches[J]. Int J Mol Sci,2020,21(18):6454. doi: 10.3390/ijms21186454
    [20] Dai S J,Zhang J Y,Bao Y T,et al. Intracerebroventricular injection of aβ1-42 combined with two-vessel occlusion accelerate Alzheimer's disease development in rats[J]. Pathol Res Pract,2018,214(10):1583-1595. doi: 10.1016/j.prp.2018.07.020
    [21] Pluta R,Miziak B,Czuczwar S J. Post-ischemic permeability of the blood-brain barrier to amyloid and platelets as a factor in the maturation of Alzheimer's disease-type brain neurodegeneration[J]. Int J Mol Sci,2023,24(13):10739. doi: 10.3390/ijms241310739
    [22] Loh J S, Mak W Q, Tan L K S, et al. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases[J]. Signal Transduct Target Ther,2024,9(1):37. Published 2024 Feb 16.
    [23] Abdelhamid M,Zhou C,Ohno K,et al. Probiotic bifidobacterium breve prevents memory impairment through the reduction of both amyloid-β production and microglia activation in app knock-in mouse[J]. J Alzheimers Dis,2022,85(4):1555-1571. doi: 10.3233/JAD-215025
    [24] 王亚南, 陈真珍, 王凯华, 等. 补阳壮通饮对脑缺血再灌注损伤大鼠的神经保护作用及其可能机制研究[J]. 医学研究杂志,2024,53(4):40-45.
    [25] 杨梅芳,程萍,陈治任,等. 肠道菌群代谢产物TMAO激活HMGB1/NLRP3炎症通路促进小鼠脑缺血半暗带损伤的机制研究[J]. 中风与神经疾病杂志,2023,40(12):1096-1100.
    [26] Gilbert K,Arseneault-Br é ard J,Flores Monaco F,et al. Attenuation of post-myocardial infarction depression in rats by n-3 fatty acids or probiotics starting after the onset of reperfusion[J]. Br J Nutr,2013,109(1):50-56. doi: 10.1017/S0007114512003807
    [27] Rezaeiasl Z,Salami M,Sepehri G. The effects of probiotic lactobacillus and bifidobacterium strains on memory and learning behavior,long-term potentiation (ltp),and some biochemical parameters in β-amyloid-induced rat's model of alzheimer's disease[J]. Prev Nutr Food Sci,2019,24(3):265-273. doi: 10.3746/pnf.2019.24.3.265
    [28] Kim M S,Kim Y,Choi H,et al. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer's disease animal model[J]. Gut,2020,69(2):283-294. doi: 10.1136/gutjnl-2018-317431
    [29] 任海燕,赵晖,王蕾,等. 依达拉奉对脑缺血再灌注后aβ及其前体表达干预[J]. 科技导报,2015,33(12):77-82.
    [30] Ye T,Yuan S,Kong Y,et al. Effect of probiotic fungi against cognitive impairment in mice via regulation of the fungal microbiota-gut-brain axis[J]. J Agric Food Chem,2022,70(29):9026-9038. doi: 10.1021/acs.jafc.2c03142
  • [1] 屈继波, 祝玲, 候炳辉, 白松, 谢安木.  淋巴细胞亚群对脑缺血再灌注损伤认知功能障碍的早期预测价值, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241218
    [2] 冉蕾晶, 王绍华, 李林童, 桂莉.  益生菌辅助治疗骨质疏松患者效果的Meta分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240209
    [3] 刘幸, 李海雯, 黄红丽, 沈凌筠, 张乐, 刘向芳, 张文林, 王璐.  益生菌强化肠内营养支持对重症急性胰腺炎患者胃肠道功能和炎症因子的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211116
    [4] 林泽西, 林荔青, 王剑刃, 谢涛, 傅西安, 浦军.  益生菌肠内营养对重型颅脑损伤患者呼吸机相关性肺炎的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211213
    [5] 黄治国, 殷维, 晏毅.  异氟烷对脑缺血再灌注脑损伤的保护作用及对海马区c-fos和Bax表达的影响, 昆明医科大学学报.
    [6] 孙行云, 刘霞, 孟繁兴, 王乐, 王凤丽.  联合血塞通对比单纯西药治疗脑梗临床疗效的Meta分析, 昆明医科大学学报.
    [7] 罗靖, 高娴玲, 邵建林, 张超, 张琦.  胆绿素改善大鼠脑缺血再灌注损伤的作用机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201107
    [8] 王增涛, 张洁, 郭涛.  七氟烷预处理对大鼠脑缺血再灌注损伤时细胞凋亡以及能量代谢的影响, 昆明医科大学学报.
    [9] 边立功, 钟莲梅, 艾青龙, 陈鑫月, 许文凯, 闫润淇, 邱进, 陆地.  人参皂苷Rg1调控Nrf2在SD大鼠脑缺血再灌注损伤后的抗氧化作用, 昆明医科大学学报.
    [10] 乔廷廷, 陈忠义, 董宝莲, 殷燕, 郭玲.  依达拉奉干预LPS介导原代小胶质细胞的激活实验, 昆明医科大学学报.
    [11] 张玮.  SGK1对脑缺血再灌注损伤的保护机制, 昆明医科大学学报.
    [12] 李文华, 魏云鸿, 叶吉云.  益生菌对老年冠心病患者血脂代谢的影响, 昆明医科大学学报.
    [13] 刘少星.  帕瑞昔布钠预先给药对大鼠局灶脑缺血再灌注血脑屏障通透性的影响, 昆明医科大学学报.
    [14] 杨力.  脑缺血再灌注大鼠脑内Mrp1的表达变化, 昆明医科大学学报.
    [15] 边海霞.  单纯疱疹病毒性角膜炎抗氧化治疗的临床观察, 昆明医科大学学报.
    [16] 曹德钧.  帕瑞昔布钠对大鼠局灶脑缺血再灌注损伤的影响, 昆明医科大学学报.
    [17] 姚洁梅.  纳洛酮联合依达拉奉对急性酒精中毒的临床疗效分析, 昆明医科大学学报.
    [18] 李经辉.  不同浓度高渗盐水对大鼠急性局灶性脑缺血再灌注损伤的保护, 昆明医科大学学报.
    [19] 郭昌贵.  依达拉奉治疗急性脑出血的临床疗效观察, 昆明医科大学学报.
    [20] 李园园.  黄芩苷对脑缺血-再灌注小鼠纹状体Bax和Bcl-2蛋白表达影响, 昆明医科大学学报.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  730
  • HTML全文浏览量:  772
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-05
  • 网络出版日期:  2024-04-30
  • 刊出日期:  2024-05-31

目录

/

返回文章
返回