Molecular Analysis on the Molecular Mechanism of Lung Development in the Piglet Model of Early Onset Scoliosis Complicated with Thoracic Insufficiency Syndrome
-
摘要:
目的 基于已建立的早发性脊柱侧凸合并胸廓发育不良综合征(EOS+TIS)幼猪模型及治疗模型获取组织标本,进行转录组测序,生物信息学分析。筛选出影响肺发育相关的部分HUB基因。 方法 建立EOS+TIS及治疗动物模型,进行HE及Masson染色观察肺组织形态及纤维化程度,并对3组(对照组、模型组、治疗组)肺组织测序。利用R软件的DESeq2进行差异分析,运用DAVID数据库进行差异基因的GO/KEGG富集分析,筛选核心基因,预测相关通路,并通过PCR和免疫印迹实验进行验证。 结果 (1)HE染色结果:模型组肺组织体现了显著的支气管肺发育不良,治疗组获得明显改善;Masson染色结果:模型组肺纤维化程度较重,治疗组减轻;(2)DESeq2分析表明,正常组与模型组有170个上调和262个下调基因,而模型组与治疗组有323个上调和467个下调基因;(3)GO功能注释显示差异基因主要富集在细胞外基质、质膜组成、免疫应答、炎症反应、钙离子结合、细胞因子活性等功能。KEGG显示差异基因主要富集在神经活性配体-受体相互作用、细胞因子-细胞因子受体相互作用等通路;(4)筛选出共同基因THBS1;(5)PCR和Western Blot实验验证,THBS1在模型组中下调,治疗后上调(P < 0.05),使用Western Blot实验检测TGF-β在3组中的表达量,模型组下降,治疗后上升(P < 0.05)。 结论 THBS1与TGF-β参与了早发性脊柱侧凸合并胸廓发育不良综合征幼猪模型的肺发育变化过程。 Abstract:Objective To identify key HUB genes involved in lung development through transcriptomic sequencing and bioinformatics analysis using tissue samples collected from an established piglet model of early-onset scoliosis with thoracic insufficiency syndrome (EOS+TIS) and its treatment model. Methods EOS+TIS and treatment animal models were established, followed by histological analysis using HE and Masson staining to observe lung tissue morphology and fibrosis severity. Lung tissue samples from three groups (control, model, treatment) were sequenced. Differential analysis was performed using the DESeq2 package in R, and differential gene GO/KEGG enrichment analysis was conducted using the DAVID database. Core genes were identified, relevant pathways were predicted, and validation was done via PCR and Western blot experiments. Results (1) HE staining results: The model group displayed significant bronchopulmonary dysplasia, which was notably improved in the treatment group. (2) Masson staining results: The model group showed severe lung fibrosis, which was alleviated in the treatment group. (3) DESeq2 analysis: The normal vs. model group comparison identified 170 upregulated and 262 downregulated genes, while the model vs. treatment group comparison identified 323 upregulated and 467 downregulated genes. (4) GO functional annotation: Differential genes were mainly enriched in functions like extracellular matrix, plasma membrane composition, immune response, inflammatory response, calcium ion binding, and cytokine activity. KEGG enrichment: Differential genes were primarily enriched in pathways like neuroactive ligand-receptor interaction and cytokine-cytokine receptor interaction. (5) Common gene identification: THBS1 was identified as a common gene. (6) PCR and Western Blot validation: THBS1 was downregulated in the model group and upregulated post-treatment (P < 0.05). Western Blot analysis revealed that TGF-β expression was reduced in the model group and increased post-treatment (P < 0.05). Conclusion THBS1 and TGF-β are involved in the process of lung development in the early onset scoliosis with thoracic insufficiency syndrome pig models. -
Key words:
- Early-onset scoliosis /
- Thoracic insufficiency syndrome /
- Bioinformatics analysis /
- THBS1 /
- TGF-β
-
液体治疗是抢救失血性休克的关键措施。笔者以往的研究[1]表明,乳酸林格氏液及羟乙基淀粉有改善失血性休克犬微循环的作用,但目前很多学者[2-5]对不同类型复苏液体对失血性休克动物微循环影响上还存在着分歧,其次鲜见全面探讨临床常用晶体液(生理盐水、乳酸林格氏液、醋酸林格氏液)、常用胶体液(羟乙基淀粉、琥珀酰明胶和白蛋白)对失血性休克动物微循环及炎性因子影响的研究报道。故本研究旨在探讨临床常用复苏液体对失血性休克兔肠系膜微循环及炎性因子(肿瘤坏死因子-α及白介素-1)的影响,寻找能改善失血性休克兔微循环及减少炎性因子的最佳复苏液体,为临床上提高失血性休克的救治成功率提供理论基础。
1. 材料与方法
1.1 实验动物与分组
本实验选用健康雄性家兔,普通级,体重2150~3200 g(实验动物由昆明医科大学实验动物学部提供)。本次实验选取48只家兔,随机分为实验对照组、生理盐水组、乳酸林格组、醋酸林格组、羟乙基淀粉组以及琥珀酰明胶组,每组8只。本研究通过昆明医科大学实验动物伦理委员会批准(kmmu2021473)。
1.2 方法
1.2.1 实验方法
麻醉诱导采用25%乌拉坦3~4 mL/kg于耳缘静脉注射,待家兔不再挣扎及角膜反射、疼痛刺激消失后,用胶布固定头皮针,以方便后续维持麻醉深度及补液。所有动物行颈部气管切开辅助通气,分离一侧颈内静脉以及颈总动脉。颈内静脉置入小儿4Fr中心静脉导管,颈总动脉置管并接动脉压力传感器后持续监测平均动脉血压(mean artery pressure,MAP)以及心率(heart rate,HR)。从正中切开动物腹部,暴露出腹腔,寻找一小段肠系膜轻柔拉出,置于微循环监测仪肠系膜观察窗上,调节显微镜图像获取最佳的肠系膜微血管。从颈动脉置管处缓慢放血至MAP下降至术前基础值的40%,维持休克状态60 min后即认为失血性休克兔模型建立成功。之后开始液体复苏,实验对照组仅泵入2 mL/(kg·h)的生理盐水,休克后观察90 min则结束实验。生理盐水组、乳酸林格组及醋酸林格组则分别在30 min内经静脉匀速泵入3倍放血量体积的液体。羟乙基淀粉组、琥珀酰明胶组则泵入同放血量等体积的对应液体。复苏期间需保持全身肝素化,每隔1 h注入1 mL 肝素钠注射液维持抗凝。复苏结束后,观察1 h即结束实验,将实验动物予空气栓塞法处死。
1.2.2 肠系膜微循环的观察指标
实验中兔肠系膜微循环的观察及分析由同一研究人员完成。微循环观测仪由成都泰盟软件有限公司提供,分析由配套的BI-2000A+微循环观测分析系统完成。每次观察3个不同视野,取平均值并记录。通过分析灌注血管比例(proportion of perfused vessels,PPV)以及微血管流动指数(microvascular flow index,MFI)2项指标对肠系膜微循环进行评价。灌注血管比例定义为:将显微镜下一视野内的所有微血管分为有灌注(至少20 s内持续血流)、无灌注(至少20 s内无血流)或间歇性灌注(至少50%的时间内无血流),其中有灌注的血管比上总血管数计算得出灌注血管比例。微血管流动指数定义为:一个视野内的所有微血管根据流动的特征进行评分:无(0分)、间歇(1分)、缓慢(2分)和正常(3分),评分相加后取平均值得到微血管流动指数[6]。
1.2.3 炎性因子及乳酸含量测定
兔肿瘤坏死因子-α酶联免疫分析试剂盒、兔白细胞介素1酶联免疫分析试剂盒以及乳酸含量试剂盒购买后均冷藏保存。保存于-80℃冰箱的血清实验样本常温解冻后,利用ELISA检测血清中的炎性因子及乳酸。所有的操作严格按照试剂盒提供说明书进行,整个测定过程由同一研究人员完成。
1.3 观察指标
观察各组放血前(T0)、失血性休克时(T1)、液体复苏开始时(T2)、液体复苏完成时(T3)、实验结束时(T4)各组的平均动脉压(MAP)、心率(HR)、微循环灌注血管比例(PPV)和微血管血流指数(MFI);测定T0、T2、T4时刻肿瘤坏死因子-α(TNF-α)、白细胞介素-1(IL-1)和乳酸(Lac)的含量;实验结束后统计家兔的放血量、尿量和复苏液体量。
1.4 统计学处理
采用SPSS 26.0软件进行数据分析,所有数据先用Shapiro-Wilk检验正态性。计量资料用均数±标准差($ \bar x \pm s $)表示,一般资料行单因素方差分析,多次观察资料行重复测量的方差分析,多重比较采用Bonferroni法。以P < 0.05为差异有统计学意义。
2. 结 果
2.1 家兔一般情况比较
各组家兔体重及放血量差异无统计学意义(P > 0.05);对照组的尿量少于其余各组,与其他各组比较差异有统计学意义(P < 0.05),见表1。
表 1 体重、尿量、放血量体量比较($ \bar x \pm s $)Table 1. Comparison of weight,urine output,and blood letting volume($ \bar x \pm s $)组别 只数(n) 体重(kg) 尿量(mL) 放血量(mL) 实验对照组 8 2.79±0.29 4.67 ±2.58 34.17± 7.33 生理盐水组 8 2.49±0.31 21.00±4.82* 29.83± 7.25 乳酸林格组 8 2.51±0.34 20.50± 4.23* 28.17±11.84 醋酸林格组 8 2.73±0.27 23.83±7.55* 40.00± 7.48 羟乙基淀粉组 8 2.65±0.23 17.17±2.79* 42.33± 9.25 琥珀酰明胶组 8 2.58±0.27 15.33±1.45* 35.67± 7.31 F − 1.388 13.220 2.500 P − 0.257 < 0.001# 0.052 #P < 0.05。与对照组比较,*P < 0.05。 2.2 不同液体复苏对全身血流动力学的影响
各时间点HR组间及组内比较,差异均无统计学意义(P > 0.05)。组内MAP比较:T1与T0比较,差异有统计学意义(P < 0.05)。除对照组外,T3时刻与T2比较,差异有统计学意义(P < 0.05);生理盐水组在T4时刻与T3比较,差异有统计学意义(P < 0.05)。组间MAP:组间比较,T3时刻,乳酸林格组与羟乙基淀粉组的MAP差异有统计学意义(P < 0.05);T4时刻,实验对照组与其他各组差异有统计学意义(P < 0.05),乳酸林格组、生理盐水组与羟乙基淀粉组差异有统计学意义(P < 0.05),见表2~表3。
表 2 不同液体复苏对HR的影响($ \bar x \pm s $,n = 8)Table 2. Effects of different types of fluid resuscitation on HR($ \bar x \pm s $,n = 8)组别 HR(次/min) T0 T1 T2 T3 T4 实验对照组 239.17 ± 13.66 244.17 ± 10.67 241.67 ± 6.98 − 226.67 ± 13.78 生理盐水组 232.33 ± 14.57 242.50 ± 7.99 239.67 ± 7.69 238.67 ± 10.77 239.33 ± 14.79 乳酸林格组 233.83 ± 16.67 240.33 ± 9.99 236.67 ± 7.69 239.83 ± 18.25 239.17 ± 13.98 醋酸林格组 238.17 ± 7.49 245.33 ± 9.93 244.83 ± 6.82 242.67 ± 10.93 242.17 ± 10.05 羟乙基淀粉组 235.67 ± 13.47 242.67 ± 11.69 231.83 ± 7.68 229.33 ± 15.95 230.17 ± 22.74 琥珀酰明胶组 234.17 ± 11.36 248.17 ± 5.67 236.67 ± 6.98 242.83 ± 6.59 243.00 ± 8.37 F 0.243 0.482 2.305 1.056 1.259 P 0.940 0.786 0.069 0.399 0.307 表 3 不同液体复苏对MAP的影响($ \bar x \pm s $,n = 8)Table 3. Effects of different types of fluid resuscitation on MAP($ \bar x \pm s $,n = 8)组别 MAP(mmHg) T0 T1 T2 T3 T4 实验对照组 88.50 ± 9.14 52.50 ± 5.24a 51.50 ± 5.09 − 41.67 ± 8.94 生理盐水组 93.17 ± 5.27 55.00 ± 2.61 a 55.33 ± 3.45 77.67 ± 8.82b 68.67 ± 16.10*▲c 乳酸林格组 92.50 ± 12.34 50.83 ± 8.50 a 54.33 ± 10.63 65.33 ± 15.82 ▲b 64.83 ± 9.54*▲ 醋酸林格组 85.00 ± 11.08 47.83 ± 7.41 a 54.33 ± 7.74 77.17 ± 5.38 b 69.67 ± 6.35* 羟乙基淀粉组 82.83 ± 13.73 45.00 ± 2.53 a 51.50 ± 4.89 86.00 ± 6.81 b 88.00 ± 8.46* 琥珀酰明胶组 83.90 ± 11.80 41.67 ± 3.20 a 49.50 ± 5.54 77.33 ± 11.38 b 78.00 ± 10.70* F 0.998 3.194 0.689 3.057 13.226 P 0.436 0.020# 0.636 0.035# < 0.001# #P < 0.05。与实验对照组比较,*P < 0.05;与羟乙基淀粉组比较,▲P < 0.05;与T0比较,aP < 0.05;与T2比较,bP < 0.05;与T3比较,cP < 0.05。 2.3 不同液体复苏对微循环的影响
2.3.1 不同液体复苏对PPV的影响
组内比较:T1时刻,各组失血性休克后PPV较T0明显下降,T1与T0比较差异有统计学意义(P < 0.05);T3时刻,各组液体复苏后PPV明显升高,除对照组外,与T2时刻比较,差异均有统计学意义(P < 0.05)。
组间比较:T4时刻胶体组PPV水平高于晶体组,差异均有统计学意义(P < 0.05);各组与实验对照组比较差异有统计学意义(P < 0.05),见表4。
表 4 不同液体复苏对PPV的影响($ \bar x \pm s $,n = 8)Table 4. Effects of different types of fluid resuscitation on PPV($ \bar x \pm s $,n = 8)组别 PPV(%) T0 T1 T2 T3 T4 实验对照组 93.63 ± 5.54 55.37 ± 9.16 a 55.93 ± 7.58 − 56.08 ± 8.15▲△ 生理盐水组 95.50 ± 4.56 54.62 ± 8.26 a 50.95 ± 10.88 87.38 ± 6.68b 84.76 ± 2.31*▲△ 乳酸林格组 95.21 ± 3.88 62.77 ± 7.22 a 58.46 ± 7.70 91.16 ± 5.43 b 84.79 ± 5.01*▲△ 醋酸林格组 96.54 ± 4.01 57.63 ± 9.10 a 53.52 ± 10.89 90.39 ± 5.63 b 85.90 ± 5.97*▲△ 羟乙基淀粉组 93.03 ± 5.62 59.27 ± 6.96 a 61.14 ± 5.95 94.35 ± 4.80 b 95.90 ± 3.52*△ 琥珀酰明胶组 95.31 ± 3.81 60.49 ± 8.03 a 59.92 ± 9.97 90.80 ± 7.64 b 95.80 ± 4.71*▲ F 0.475 0.909 1.193 1.053 47.096 P 0.792 0.488 0.335 0.399 < 0.001# #P < 0.05。与实验对照组比较,*P < 0.05;与羟乙基淀粉组比较,▲P < 0.05;与琥珀酰明胶组比较,△P < 0.05;与T0比较,aP<0.05;与T2比较,bP < 0.05。 2.3.2 不同液体复苏对MFI的影响
组内比较:T1失血性休克后,各组MFI分值明显下降,与T0时刻比较,差异有统计学意义(P < 0.05);各种液体复苏后T3时刻的MFI值明显升高,除实验对照组外,各组与T2时刻比较,差异有统计学意义(P < 0.05);
组间比较:T4时刻除实验对照组外,各组MFI值较前均升高,与实验对照组比较,差异有统计学意义(P < 0.05);胶体组评分高于晶体组,差异均有统计学意义(P < 0.05),见表5。
表 5 不同液体复苏对MFI的影响($ \bar x \pm s $,n = 8)Table 5. Effects of different types of fluid resuscitation on MFI($ \bar x \pm s $,n = 8)组别 MFI(分值) T0 T1 T2 T3 T4 实验对照组 2.87 ± 0.14 1.85 ± 0.24a 1.80 ± 0.19 − 1.88 ± 0.15 生理盐水组 2.91 ± 0.10 1.86 ± 0.17 a 1.76 ± 0.30 2.68 ± 0.20b 2.57 ± 0.25*▲△ 乳酸林格组 2.90 ± 0.09 2.03 ± 0.12 a 1.94 ± 0.23 2.79 ± 0.14 b 2.55 ± 0.17*▲△ 醋酸林格组 2.91 ± 0.09 1.94 ± 0.25 a 1.76 ± 0.36 2.74 ± 0.20 b 2.72 ± 0.27* 羟乙基淀粉组 2.92 ± 0.09 2.03 ± 0.08 a 1.96 ± 0.23 2.92 ± 0.10 b 2.94 ± 0.10* 琥珀酰明胶组 2.93 ± 0.06 1.99 ± 0.23 a 1.98 ± 0.28 2.82 ± 0.12 b 2.92 ± 0.10* F 0.252 1.101 0.896 1.982 25.786 P 0.935 0.380 0.496 0.127 < 0.001# #P < 0.05。与实验对照组比较,*P < 0.05; 与羟乙基淀粉组比较,▲P < 0.05;与琥珀酰明胶组比较,△P < 0.05;与T0比较,aP < 0.05;与T2比较,bP < 0.05。 2.4 不同液体复苏对炎症因子的影响
2.4.1 不同液体复苏对TNF-α的影响
组内比较:休克30 min后的T2时刻,各组的TNF-α较前明显升高,与T0比较,差异均有统计学意义(P < 0.05)。组间比较:各组在T0、T2、T4时刻比较,差异均无统计学意义(P > 0.05),见表6。
表 6 不同液体复苏对TNF-α的影响($ \bar x \pm s $,n = 8)Table 6. Effects of different types of fluid resuscitation on TNF-α ($ \bar x \pm s $,n = 8)组别 TNF-α(pg/mL) T0 T2 T4 实验对照组 530.90±43.30 586.75±45.07 a 625.13±40.04 生理盐水组 498.84±19.48 578.00±21.57 a 597.27±34.35 乳酸林格组 497.63±26.21 595.43±40.84 a 599.15±22.37 醋酸林格组 505.95±15.86 556.81±45.19 a 572.52±42.40 羟乙基淀粉组 500.58±35.79 554.26±41.79 a 594.58±46.09 琥珀酰明胶组 501.79±55.45 592.59±53.72 a 620.65±38.81 F 0.761 1.065 1.518 P 0.585 0.399 0.214 与T0比较,aP < 0.05。 2.4.2 不同液体复苏对IL-1的影响
各时刻组间和组内比较,差异均无统计学意义(P > 0.05),见表7。
表 7 不同液体复苏对IL-1的影响($ \bar x \pm s $,n = 8)Table 7. Effects of different types of fluid resuscitation on IL-1($ \bar x \pm s $,n = 8)组别 IL-1(ng/L) T0 T2 T4 实验对照组 102.17±8.99 109.49±16.88 114.33±13.60 生理盐水组 92.13±14.30 108.25±11.45 116.70±16.70 乳酸林格组 85.19±15.26 100.51±17.73 107.48±11.36 醋酸林格组 87.16±11.25 95.70±12.14 98.17±11.07 羟乙基淀粉组 84.13±7.26 98.22±11.64 110.01±11.04 琥珀酰明胶组 85.65±14.86 102.65±11.11 109.66±12.01 F 1.843 0.953 1.523 P 0.135 0.462 0.212 2.5 不同液体复苏对Lac的影响
组内比较:各组T2时刻乳酸浓度较前明显升高,与T1比较,差异均有统计学意义(P < 0.05);T4时刻经液体复苏的组别乳酸含量较前下降,与T2时刻比较,差异有统计学意义(P < 0.05);T4时刻对照组乳酸较T2升高,差异有统计学意义(P < 0.05)。组间比较:T4时刻,乳酸林格组、生理盐水组与羟乙基淀粉组比较,差异有统计学意义(P < 0.05),实验对照组与经液体复苏组比较,差异均有统计学意义(P < 0.05),见表8。
表 8 不同液体复苏对Lac的影响($ \bar x \pm s $,n = 8)Table 8. Effects of different types of fluid resuscitation on Lac($ \bar x \pm s $,n = 8)组别 Lac(mmol/L) T0 T2 T4 实验对照组 1.98±0.44 6.91±0.92a 10.63±1.06b 生理盐水组 2.33±0.48 7.65±0.69 a 5.67±0.94*▲b 乳酸林格组 2.19±0.28 8.61±1.33 a 6.43±1.99*▲b 醋酸林格组 2.02±0.59 7.07±0.82 a 4.74±1.19* b 羟乙基淀粉组 2.37±0.29 8.00±1.15 a 3.22±1.02* b 琥珀酰明胶组 1.99±0.28 8.32±1.40 a 4.34±1.50* b F 1.086 2.356 22.842 P 0.388 0.064 < 0.001# #P < 0.05。与实验对照组比较,*P < 0.05;与羟乙基淀粉组比较,▲P < 0.05;与T0比较,aP < 0.05;与T2比较,bP < 0.05。 3. 讨 论
在面对失血性休克的高发生率以及高致死率时,早期有效的复苏策略可以为患者在止血措施实施之前争取到更多的时间。液体复苏的有效性已经得到一致的肯定[7],早期液体的选择或许能够为失血性休克患者的预后带来好处,临床常用液体均能够有效恢复宏观血流动力学指标,但部分液体复苏后微循环功能并不能有效恢复,微循环功继续恶化可导致氧化应激、促炎细胞因子的释放和内皮完整性的破坏,继而加重组织缺氧、炎症反应以及凝血功能的紊乱,后期甚至导致全身炎症反应综合征(systemic inflammatory response syndrome,SIRS)及多器官功能障碍综合征(multiple organ dysfunction syndrome,MODS)等发生[4-5,8-9]。在失血性休克的复苏液体中,晶体液以生理盐水、乳酸林格和醋酸林格氏液,胶体液以羟乙基淀粉、琥珀酰明胶和白蛋白最为常用。但目前很多学者对不同类型、不同组合的复苏液体对失血性休克微循环影响还存在分歧[2-5]。本研究采用从颈动脉置管处缓慢放血至MAP下降至术前基础值的40%为准,维持休克状态60 min,成功复制了失血性休克兔模型,并使用临床最为常用的液体复苏,以此全面观察不同液体早期复苏对失血性休克后微循环功能以及炎性因子水平的改善情况。
在宏观血流动力学方面,本次试验结果显示,液体复苏开始时(T2)各组的MAP较前略有上升,考虑与机体代偿反应有关,休克后静脉回流的减少以及动脉血压的下降引起传入动脉压力感受器的冲动减少,进而交感神经兴奋性增加,儿茶酚胺等神经递质增加,导致代偿性的血管收缩,以此来保证重要脏器的血液灌注[7,10-11];液体复苏完成后,除了实验对照组,各组MAP均有效升高,输注羟乙基淀粉和琥珀酰明胶血压升高最为明显且维持时间较长,且均有了明显的尿量。晶体液复苏所需液体量远多于胶体液,虽然晶体液对肝肾功能影响比较小,但是其维持效应短暂,仅有20%能够停留在血管内,大量输注不仅会造成凝血功能紊乱以及体温降低,而且可能导致器官及组织水肿,加重病情[12]。有学者的临床研究结果与本次实验中输注生理盐水不能很好的维持MAP一致,晶体液复苏量多,不能长时间维持血流动力学稳定,并且过多的晶体液输注还会导致肺水增多[13]。而胶体液的溶质是大分子物质,不能自由通过大部分毛细血管而在血管内产生较高的胶体渗透压。因此,胶体液的优点是维持血容量的效率高、持续的时间更长 [14]。
失血性休克时,为保证重要脏器的血供,腹腔内血流将会大大减少。本实验将肠系膜微循环作为微循环的监测靶点,同时参考大多学者对微循环的观察方法,将微血管的流动的状态分为:线流、线粒流、粒线流、粒流、粒缓流、粒摆流和停滞[15]。本次实验各组在放血前PPV和MFI均在较高水平,但血管灌注比例均未达到100%及微血管流动评分不及3分,考虑与手术过程中的牵拉有关。出现失血性休克时,PPV与MFI数值显著下降,镜下可见微血管流速明显变慢,部分血管可以看到一颗颗的红细胞通过血管,有的甚至停止,流态大致为粒流、粒缓流、粒摆流甚至停滞;复苏开始时,PPV与MFI数值与休克时相似,镜下可见有部分小血管已经完全停滞,并且长出透明状的血栓;复苏完成时,各组PPV及MFI数值显著升高,从镜下可以看到微血管的流态明显好转,多数呈线流、线粒流、粒线流;实验结束时,生理盐水、乳酸林格液及醋酸林格液PPV较复苏完成时下降,羟乙基淀粉及琥珀酰明胶PPV较前稍升高,与3种晶体液比较,差异有统计学意义(P < 0.05),说明2种胶体用于失血性休克复苏时微循环可以有很大的改善,这与笔者早期对失血性休克狗液体复苏后微循环变化的研究结果一致[1]。笔者还使用乳酸来评估液体复苏后组织灌注恢复的的情况,结果发现未经液体复苏的对照组乳酸含量较休克时明显升高,达到(10.63±1.06)mmol/L,而液体复苏组均明显下降,其中羟乙基淀粉液复苏后乳酸值最低,仅为(3.22±1.02)mmol/L,说明失血性休克时使用羟乙基淀粉液复苏微循环的改善最明显(P < 0.05)。Komori等[16]研究了晶体液和胶体液对失血性休克兔微循环、中心静脉氧饱和度、中心静脉-动脉二氧化碳间隙的影响,也发现经液体复苏后,羟乙基淀粉组的乳酸水平比乳酸林格组下降更明显(1.9±0.7)mmol/L,这也和笔者的研究结果一致。
大量失血时机体炎症反应加重,促炎因子大量释放,当促炎因子与抗炎因子失衡后将导致炎性因子的瀑布式释放,导致SIRS发生。机体炎症反应的严重程度与血液中的TNF-α、IL-1以及白细胞介素-6(interleukin-6,IL-6)的浓度相关,这些因子可以作为评价失血性休克后炎症反应严重程度的血清标志物[17]。炎性因子水平不仅反应失血性休克的严重程度,炎性因子的下降还能够改善失血性休克的预后。有研究用新鲜全血,羟乙基淀粉130/0.4、4%琥珀酰明胶或80 mL/kg等渗晶体对失血性休克犬进行复苏后,发现炎性因子会有所下降[18]。但本次实验炎性因子从放血前开始到失血性休克造模观察1 h之后,各组的TNF-α及IL-1均明显升高,待不同液体复苏完成后继续观察1 h,TNF-α及IL-1总体还是较复苏之前升高。可能原因为观察时间较短有关。失血性休克后以及液体复苏后观察时间应该适当的延长,并且测量炎性因子的次数应该增加,观察更多时间点炎性因子的变化情况。
本次研究存在一些局限性:(1)因未在市场上找到兔血白蛋白,故本研究未做白蛋白复苏的研究;(2)欧洲近10 a来在临床中并未把羟乙基淀粉用于休克患者的使用,故羟乙基淀粉的研究临床意义有限;(3)对复苏后的观察时间较短,本次实验仅观察到复苏后1 h,炎性因子或许在这个阶段还在继续释放,因此未观察到阳性结果;(4)本次实验样本量偏少,但实验做了对照,数据真实,得出的结论可靠。
综上所述,羟乙基淀粉液和琥珀酰明胶液可以改善失血性休克兔的微循环,但不能改善失血性休克兔的炎性因子水平。
-
表 1 THBS1及内参的引物序列
Table 1. Primer sequences of THBS1 and internal reference
序列 名称 长度(bp) CATCCAAAGCATCTTCAC THBS1(pig)-F 77 GTGAGAAGGACATTGGTA THBS1(pig)-R GTTCCAGTATGATTCCAC GAPDH(pig)-F 56 GACTCCACAACATACGTA GAPDH(pig)-R 表 2 3组幼猪肺组织HE和Masson染色的测量结果($\bar x \pm s$)
Table 2. Results of HE and Masson staining in lung tissue of three groups of piglets ($\bar x \pm s$)
参数 对照组 模型组 治疗组 F P 放射状肺泡计数(个) 9.24±2.56 6.53±2.08*** 7.88±3.34# 19.25 <0.001※ 肺泡壁厚度(μm) 5.81±2.78 12.04±3.10*** 9.44±2.63## 88.37 <0.001※ 平均胶原纤维量 0.02±0.01 0.18±0.02*** 0.13±0.02### 1834.28 <0.001※ 与对照组比较,***P < 0.001;与模型组比较,#P < 0.05,##P < 0.01,###P < 0.001;※P < 0.001。 表 3 钙离子相关基因
Table 3. Calcium ion-related genes
基因名称 LogFC P 校正后P FBN2 1.976806186 5.53E-47 1.71E-44 RCVRN −1.699843423 7.65E-10 1.89E-08 TENM2 −2.236357095 2.22E-07 3.50E-06 CLSTN2 −1.324235347 0.01174761 0.04453978 TNFAIP6 1.061241719 0.000194661 0.001447986 ACTN2 1.683023897 5.87E-08 1.04E-06 DGKB −2.383519856 1.67E-07 2.70E-06 PON1 2.571409628 6.39E-45 1.74E-42 VWDE 3.543226537 0.000610734 0.003897322 TUBB4A 1.433642182 0.007848305 0.032416471 THBS1 −1.256610433 6.47E-86 4.87E-83 THBS4 −3.280684277 0.000147676 0.001142492 MYL4 −4.865802484 6.08E-21 4.71E-19 SCGN 3.150720501 0.00280126 0.014003149 EGFLAM −1.048561742 0.000400331 0.002700883 VSNL1 1.482799905 6.29E-09 1.33E-07 SYT10 −3.851326165 0.006301379 0.027241397 EFHD1 −1.084242649 1.75E-05 0.000178469 ANXA9 −1.111630395 2.47E-12 8.42E-11 ASTN2 −1.202867655 6.21E-05 0.000542506 LOC100522787 1.087678946 0.009057674 0.036435259 PPEF2 1.557961567 0.003120276 0.015314764 UMODL1 1.277593564 0.006711926 0.028675953 表 5 免疫应答相关基因
Table 5. Genes related to immune response
基因名称 LogFC P 校正后P CD274 −1.171256037 2.60E-17 1.49E-15 SLA-DRB1 1.337022797 3.35E-38 6.62E-36 JUN −1.850222012 6.44E-158 3.44E-154 CXCL8 −1.561364145 2.25E-38 4.50E-36 OSM −1.138466837 1.79E-05 0.000182168 CXCL14 −1.021217549 2.23E-09 5.16E-08 CXCL2 −1.789799638 1.19E-37 2.27E-35 THBS1 −1.256610433 5.47E-86 4.87E-83 IL1A −1.242147858 2.09E-21 1.64E-19 CCL8 −1.300951991 4.26E-26 4.32E-24 CTSL −2.367477476 5.27E-05 0.000470351 IL1B −1.733900902 8.48E-19 5.37E-17 SLA-2 1.181319808 3.31E-28 3.87E-26 表 4 细胞外基质相关基因
Table 4. Genes related to extracellular matrix
基因名称 LogFC P 校正后P ASAH2 −1.681188858 0.010202271 0.039995696 TNFAIP6 1.061241719 0.000194661 0.001447986 PON1 2.571409628 6.39E-45 1.74E-42 WFIKKN2 1.000982632 6.38E-10 1.60E-08 KLK5 3.198981333 0.011602127 0.04414435 CD1E 1.412361441 1.11E-07 1.86E-06 CXCL14 −1.021217549 2.23E-09 5.16E-08 THBS1 −1.256610433 5.47E-86 4.87E-83 AREG −2.393896705 1.88E-06 2.43E-05 CXCL2 −1.789799638 1.19E-37 2.27E-35 THBS4 −3.280684277 0.000147676 0.001142492 ADAMTS4 −1.020844602 9.62E-09 1.97E-07 CCL8 −1.300951991 4.26E-26 4.32E-24 CTSL −2.367477476 5.27E-05 0.000470351 FLRT1 3.028606366 0.001234795 0.007069199 OTOG 1.419656249 0.001549784 0.008528336 CCL2 −1.003309962 1.86E-06 2.40E-05 NDP 1.297577098 0.001027728 0.006056795 APOB −1.67037521 0.000425658 0.002851356 XDH 4.945718658 2.01E-70 1.11E-67 COL22A1 −3.012702444 0.001677249 0.009126374 BMP8A −1.131393016 1.58E-09 3.74E-08 DKK1 −1.3841467 2.94E-10 7.75E-09 IL1A −1.242147858 2.09E-21 1.64E-19 IL6 −1.828458638 6.10E-07 8.74E-06 SFRP2 −2.214720482 0.012270295 0.046204564 TG 2.389166701 0.000128918 0.001023048 CILP −1.030855274 2.52E-12 8.58E-11 IL1B −1.733900902 8.48E-19 5.37E-17 IFNE −1.147986534 0.002583079 0.013078573 UPTI 1.310012634 0.00120919 0.006944936 DPEP1 −1.726138591 0.002018831 0.01068401 LOC100521998 −4.045174213 0.006775299 0.028877436 ACPP 1.016963504 0.00127865 0.007273515 UMODL1 1.277593564 0.006711926 0.028675953 CXCL8 −1.561364145 2.25E-38 4.50E-36 表 6 THBS1基因相对表达量($\bar x \pm s$)
Table 6. Relative gene expression levels of THBS1 ($\bar x \pm s$)
基因 对照组 模型组 治疗组 F P THBS1 1.04±0.07 0.53±0.06*** 2.08±0.07### 755.75 P < 0.001※※※ 与对照组比较,***P < 0.001;与模型组比较,###P < 0.001;※※※P < 0.001。 表 7 THBS1蛋白相对表达量($\bar x \pm s$ )
Table 7. Relative protein expression levels of THBS1 ($\bar x \pm s$)
归一值 对照组 模型组 治疗组 F P THBS1 1.00±0.08 0.62±0.08** 0.77±0.10# 15.02 0.005※※ 与对照组比较,**P < 0.01;与模型组比较,#P < 0.05;※※P < 0.01。 表 8 TGF-β蛋白相对表达量($\bar x \pm s$)
Table 8. Relative protein expression levels of TGF-β ($\bar x \pm s$)
归一值 对照组 模型组 治疗组 F P TGFβ归一值 1.00±0.24 0.55±0.14* 0.91±0.05# 6.07 0.036※ 与对照组比较,*P < 0.05;与模型组比较,#P < 0.05;※P < 0.05。 -
[1] Campbell R M Jr,Smith M D,Mayes T C,et al. The characteristics of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis[J]. J Bone Joint Surg Am,2003,85(3):399-408. [2] Cooney T P,W M Thurlbeck. The radial alveolar count method of emery and mithal: A reappraisal 2-intrauterine and early postnatal lung growth[J]. Thorax,1982,37(8):580-583. doi: 10.1136/thx.37.8.580 [3] Dogar A M,Semplicio G,Guennewig B,et al. Multiple microRNAs derived from chemically synthesized precursors regulate thrombospondin 1 expression[J]. Nucleic Acid Ther,2014,24(2):149-159. doi: 10.1089/nat.2013.0467 [4] Harpel J G,Schultz-Cherry S,Murphy-Ullrich J E,et al. Tamoxifen and estrogen effects on TGF-beta formation: Role of thrombospondin-1,alphavbeta3,and integrin-associated protein[J]. Biochem Biophys Res Commun,2001,284(1):11-14. doi: 10.1006/bbrc.2001.4922 [5] Bissinger R,Petkova-Kirova P,Mykhailova O,et al. Thrombospondin-1/CD47 signaling modulates transmembrane cation conductance,survival,and deformability of human red blood cells[J]. Cell Commun Signal,2020,18(1):155. doi: 10.1186/s12964-020-00651-5 [6] Grosser J A,Maes M E,Nickells R W. Characteristics of intracellular propagation of mitochondrial BAX recruitment during apoptosis[J]. Apoptosis,2021,26(1-2):132-145. doi: 10.1007/s10495-020-01654-w [7] Jiang D,Guo B,Lin F,et al. Effect of THBS1 on the biological function of hypertrophic scar fibroblasts[J]. Biomed Res Int,2020,2020(1):8605407. [8] Lai Y H,Lee P Y,Lu C Y,et al. Thrombospondin 1-induced exosomal proteins attenuate hypoxia-induced paraptosis in corneal epithelial cells and promote wound healing[J]. FASEB J,2021,35(1):e21200. [9] 陈冲,封志纯. 支气管肺发育不良分子遗传学研究进展[J]. 实用儿科临床杂志,2012,27(16):1282-1284. [10] Inui N,Sakai S,Kitagawa M. Molecular pathogenesis of pulmonary fibrosis,with focus on pathways related to TGF-β and the ubiquitin-proteasome pathway[J]. Int J Mol Sci,2021,22(11):6107. doi: 10.3390/ijms22116107 [11] Chanda D,Otoupalova E,Smith S R,et al. Developmental pathways in the pathogenesis of lung fibrosis[J]. Mol Aspects Med,2019,65(1):56-69. doi: 10.1016/j.mam.2018.08.004 [12] Lawler J,Miao W M,Duquette M,et al. Thrombospondin-1 gene expression affects survival and tumor spectrum of p53-deficient mice[J]. Am J Pathol,2001,159(5):1949-1956. doi: 10.1016/S0002-9440(10)63042-8 [13] Zippel N,Malik R A,Fromel T,et al. Transforming growth factor-beta-activated kinase 1 regulates angiogenesis via AMP-activated protein kinase-alpha1 and redox balance in endothelial cells[J]. Arterioscler Thromb Vasc Biol,2013,33(12):2792-2799. [14] Xu S,Yang S,Sun G,et al. Transforming growth factor-beta polymorphisms and serum level in the development of osteosarcoma[J]. DNA Cell Biol,2014,33(1):802-806. doi: 10.1089/dna.2014.2527 [15] Rashid A,Zeng C,Motta-Ribeiro G,et al. Proteomics of lung tissue reveals differences in inflammation and alveolar-capillary barrier response between atelectasis and aerated regions[J]. Sci Rep,2022,12(1):7065. doi: 10.1038/s41598-022-11045-7 [16] Kaneshita S,Kida T,Yoshioka M,et al. CG223,a novel BET inhibitor,exerts TGF-β1-mediated antifibrotic effects in a murine model of bleomycin-induced pulmonary fibrosis[J]. Pulm Pharmacol Ther,2021,70(2):102057. doi: 10.1016/j.pupt.2021.102057 [17] Wang I M,Stepaniants S,Boie Y,et al. Gene expression profiling in patients with chronic obstructive pulmonary disease and lung cancer[J]. Am J Respir Crit Care Med,2008,177(4):402-411. doi: 10.1164/rccm.200703-390OC 期刊类型引用(3)
1. 岳冬芳,王飞,牛斌. 尿常规与尿微量白蛋白检测对糖尿病肾病早期肾损伤的诊断价值. 黑龙江医药科学. 2025(02): 174-176 . 百度学术
2. 王帅南,曹松真,王莹莹. 血清Smad1与2型糖尿病肾功能的关联及对糖尿病肾病的预测效能. 华夏医学. 2025(01): 58-63 . 百度学术
3. 程克兰,杨莹,陈鹤,孟圆圆. CysC、Scr、Sur联合mAlb检测在糖尿病肾病诊断中的灵敏度和特异度分析. 糖尿病新世界. 2024(22): 54-57 . 百度学术
其他类型引用(0)
-