[1]
|
Devezas M. Shedding light on neuroscience: Two decades of functional near-infrared spectroscopy applications and advances from a bibliometric perspective[J]. J Neuroimaging,2021,31(4):641-655. doi: 10.1111/jon.12877
|
[2]
|
Yoon J A,Kong IJ,Choi I,et al. Correlation between cerebral hemodynamic functional near-infrared spectroscopy and positron emission tomography for assessing mild cognitive impairment and Alzheimer's disease: An exploratory study[J]. PLoS One,2023,18(8):e0285013. doi: 10.1371/journal.pone.0285013
|
[3]
|
Li G,Niu Y,Linag X,Andari E,et al. Psychological characteristics and emotional difficulties underlying school refusal in adolescents using functional near-infrared spectroscopy[J]. BMC Psychiatry,2023,23(1):898. doi: 10.1186/s12888-023-05291-w
|
[4]
|
Hendrikx D, Smits A, Lavanga M, et al. Measurement of neurovascular coupling in neonates[J]. Front Physiol, 2019, 2(10): 65.Hendrikx D,Smits A,Lavanga M,et al. Measurement of neurovascular coupling in neonates[J]. Front Physiol,2019,2(10):65.
|
[5]
|
Suh M,Ma H,Zhao M,et al. Neurovascular coupling and oximetry during epileptic events[J]. Mol Neurobiol,2006,33(3):181-197. doi: 10.1385/MN:33:3:181
|
[6]
|
Chen W L,Wagner J,Heugel N,et al. Functional near-infrared spectroscopy and its clinical application in the field of neuroscience: Advances and future directions[J]. Front Neurosci,2020,7(14):724.
|
[7]
|
Barth A M,Mody I. Changes in hippocampal neuronal activity during and after unilateral selective hippocampal ischemia in vivo[J]. J Neurosci,2011,31(3):851-860. doi: 10.1523/JNEUROSCI.5080-10.2011
|
[8]
|
Ekkekakis P. Illuminating the black box: investigating prefrontal cortical hemodynamics during exercise with near-infrared spectroscopy[J]. J Sport Exerc Psychol,2009,31(4):505-553. doi: 10.1123/jsep.31.4.505
|
[9]
|
Lloyd-fox S,Blasi A,Elweil C E. Illuminating the developing brain: The past,present and future of functional near infrared spectroscopy[J]. Neurosci Biobehav Rev,2010,34(3):269-284. doi: 10.1016/j.neubiorev.2009.07.008
|
[10]
|
Nguyen D K,Tremblay J,Pouliot P,et al. Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures[J]. Epilepsy Res,2012,99(1-2):112-126. doi: 10.1016/j.eplepsyres.2011.10.035
|
[11]
|
Nguyen D K,Tremblay J,Pouliot P,et al. Noninvasive continuous functional near-infrared spectroscopy combined with electroencephalography recording of frontal lobe seizures[J]. Epilepsia,2013,54(2):331-340. doi: 10.1111/epi.12011
|
[12]
|
Haginoya K,Munakata M,Kato R,et al. Ictal cerebral haemodynamics of childhood epilepsy measured with near-infrared spectrophotometry[J]. Brain,2002,125(Pt 9): 1960-1971.
|
[13]
|
Bourel-Ponchel E,Mahmoudzadeh M,Delignieres A,et al. Non-invasive,multimodal analysis of cortical activity,blood volume and neurovascular coupling in infantile spasms using EEG-fNIRS monitoring[J]. Neuroimage Clin,2017,5(15):359-366.
|
[14]
|
Nourhashemi M,Mahmoudzadeh M,Heberle C,et al. Preictal neuronal and vascular activity precedes the onset of childhood absence seizure: Direct current potential shifts and their correlation with hemodynamic activity[J]. Neurophotonics,2023,10(2):25005.
|
[15]
|
Golyala A,Kwan P. Drug development for refractory epilepsy: The past 25 years and beyond[J]. Seizure,2017,1(44):147-156.
|
[16]
|
Steinoff B J,Herrendorf G,Kurth C. Ictal near infrared spectroscopy in temporal lobe epilepsy: A pilot study[J]. Seizure,1996,5(2):97-101.
|
[17]
|
Rizki E E,UGA M,DAN I,et al. Determination of epileptic focus side in mesial temporal lobe epilepsy using long-term noninvasive fNIRS/EEG monitoring for presurgical evaluation[J]. Neurophotonics,2015,2(2):25003. doi: 10.1117/1.NPh.2.2.025003
|
[18]
|
Vezyroglou A,Hebden P,De Roever I,et al. Broadband-NIRS system identifies epileptic focus in a child with focal ortical dysplasia-A case study[J]. Metabolites,2022,12(3):260. doi: 10.3390/metabo12030260
|
[19]
|
Watanabe E,Maki A,Kawaguchi F,et al. Non-invasive assessment of language dominance with near-infrared spectroscopic mapping[J]. Neurosci Lett,1998,256(1):49-52. doi: 10.1016/S0304-3940(98)00754-X
|
[20]
|
Vannasing P,Coraggia I,Vanasse C,et al. Potential brain language reorganization in a boy with refractory epilepsy; An fNIRS-EEG and fMRI comparison[J]. Epilepsy Behav Case Rep,2016,2(5):34-37.
|
[21]
|
Arun K M,Smitha K A,Rajesh P G,et al. Functional near-infrared spectroscopy is in moderate accordance with functional MRI in determining lateralisation of frontal language areas[J]. Neuroradiol J,2018,31(2):133-141. doi: 10.1177/1971400917739083
|
[22]
|
Tung H,Lin WH,Hsieh PF,et al. Left frontotemporal region plays a key role in letter fluency task-evoked activation and functional connectivity in normal subjects: A functional near-infrared spectroscopy study[J]. Front Psychiatry,2022,5(13):810685.
|
[23]
|
Meier E L,Bunker L D,Kim H,et al. Resting-state connectivity in acute and subacute poststroke aphasia: A functional near-infrared spectroscopy pilot study[J]. Brain Connect,2023,13(8):441-452. doi: 10.1089/brain.2022.0065
|
[24]
|
周官. 局灶性癫痫和全面性癫痫疾病的脑网络研究[D]. 成都: 电子科技大学,2023.
|
[25]
|
Tung H,Lin W H,Lan T H,et al. Network reorganization during verbal fluency task in fronto-temporal epilepsy: A functional near-infrared spectroscopy study[J]. J Psychiatr Res,2021,5(138):541-549.
|
[26]
|
Husser A M,Vannasing P,Tremblay J,et al. Brain language networks and cognitive outcomes in children with frontotemporal lobe epilepsy[J]. Front Hum Neurosci,2023,10(17):1253529.
|