Individualized Numerical Simulation of Blood Flow in Stanford Type A Aortic Dissection
-
摘要:
目的 研究Stanford A型主动脉夹层的血流动力学变化。 方法 收集4名Stanford A型主动脉夹层患者和2名健康志愿者的主动脉计算机断层扫描血管造影(computed tomography angiography,CTA)图像,建立主动脉三维模型并进行网格划分,使用流体仿真软件对模型进行数值模拟。 结果 健康志愿者主动脉内血流近似层流。夹层真腔的血流近似层流,位于破口附近的真腔和被假腔压迫的真腔会在局部形成湍流。真腔的壁面压力高于假腔。心脏收缩期,假腔的壁面压力峰值位于夹层第一个破口处,被假腔压迫的真腔和假腔破口处出现较高的壁面剪切力且破口处出现了应力集中。相比于单一破口的夹层,有2个破口的夹层其破口周围的壁面剪切力更低。 结论 个体化计算流体力学分析可以为主动脉夹层的个性化诊疗提供参考。 Abstract:Objective To investigate the hemodynamic changes after the occurrence of Stanford type A aortic dissection. Methods Computed tomography angiography(CTA) images of the aorta were collected from 4 Stanford A type aortic dissection patients and 2 healthy volunteers, and the three-dimensional models of the aorta were established and meshed. The above models were numerically simulated by fluid simulation software. Results The blood flow in the aorta of healthy volunteers was approximately laminar. The blood flow field in the true lumen was approximately laminar. Turbulence not only occurred near the intimal tear of the true lumen, but also near the area where the false lumen compressed the true lumen. The wall pressure of the true lumen was higher than that of the false lumen. During the systolic phase, the peak wall pressure of the false lumen was located at the primary entry tear of the dissection, the high wall shear stress appeared around the true lumen compressed by false lumen and the tear of false lumen. Moreover, stress concentration occurred at the intimal tear. Compared to aortic dissection with a single tear, aortic dissection with two tears exhibited lower wall shear stress around the intimal tear. Conclusion Individualized computational fluid dynamics analysis can provide reference for personalized diagnosis and treatment of aortic dissection. -
Key words:
- Computational fluid dynamics /
- Hemodynamics /
- Numerical simulation /
- Aortic dissection
-
表 1 6个案例的基线资料
Table 1. Baseline data for 6 cases
案例 性别 年龄(岁) 病程(h) 基础疾病 第一破口位置 第二破口位置 破口数量 AD1 男 58 18 高血压 主动脉弓 N/A 1 AD2 男 53 33 高血压 主动脉弓 N/A 1 AD3 男 30 10 高血压 升主动脉 主动脉弓 2 AD4 女 60 23 高血压 升主动脉 降主动脉 2 Control 1 男 40 N/A N/A N/A N/A N/A Control 2 女 67 N/A N/A N/A N/A N/A AD:主动脉夹层患者;Control:经CT证实主动脉正常的健康志愿者;N/A:不适用。 -
[1] Takahashi K,Sekine T,Miyagi Y,et al. Four-dimensional flow analysis reveals mechanism and impact of turbulent flow in the dissected aorta[J]. Eur J Cardiothorac Surg,2021,60(5):1064-1072. doi: 10.1093/ejcts/ezab201 [2] Marlevi D,Ruijsink B,Balmus M,et al. Estimation of cardiovascular relative pressure using virtual work-energy[J]. Sci Rep,2019,9(1):1375. doi: 10.1038/s41598-018-37714-0 [3] Zhu Y,Xu X Y,Rosendahl U,et al. Advanced risk prediction for aortic dissection patients using imaging-based computational flow analysis[J]. Clin Radiol,2023,78(3):e155-e165. doi: 10.1016/j.crad.2022.12.001 [4] Osswald A,Karmonik C,Anderson J R,et al. Elevated wall shear stress in aortic type B dissection may relate to retrograde aortic type A dissection: A computational fluid dynamics pilot study[J]. Eur J Vasc Endovasc Surg,2017,54(3):324-330. doi: 10.1016/j.ejvs.2017.06.012 [5] Zhu Y,Lingala B,Baiocchi M,et al. Type A aortic Dissection-experience over 5 decades: JACC historical breakthroughs in perspective[J]. J Am Coll Cardiol,2020,76(14):1703-1713. doi: 10.1016/j.jacc.2020.07.061 [6] 韩涵,郭宝磊,孙翠茹,等. 主动脉夹层裂纹面内扩展的数值模拟[J]. 医用生物力学,2023,38(3):479-486. [7] Madhavan S,Kemmerling E M C. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow[J]. Biomed Eng Online,2018,17(1):66. doi: 10.1186/s12938-018-0497-1 [8] Alimohammadi M,Agu O,Balabani S,et al. Development of a patient-specific simulation tool to analyse aortic dissections: assessment of mixed patient-specific flow and pressure boundary conditions[J]. Med Eng Phys,2014,36(3):275-284. doi: 10.1016/j.medengphy.2013.11.003 [9] Williams J G,Marlevi D,Bruse J L,et al. Aortic dissection is determined by specific shape and hemodynamic interactions[J]. Ann Biomed Eng,2022,50(12):1771-1786. doi: 10.1007/s10439-022-02979-0 [10] Chi Q,He Y,Luan Y,et al. Numerical analysis of wall shear stress in ascending aorta before tearing in type A aortic dissection[J]. Comput Biol Med,2017,89(10):236-247. doi: 10.1016/j.compbiomed.2017.07.029 [11] Sun W,Zheng J,Gao Y. Targeting platelet activation in abdominal aortic aneurysm: Current knowledge and perspectives[J]. Biomolecules,2022,12(2):206. doi: 10.3390/biom12020206 [12] Spinelli D,Benedetto F,Donato R,et al. Current evidence in predictors of aortic growth and events in acute type B aortic dissection[J]. J Vasc Surg,2018,68(6): 1925-1935. e8. [13] 柏亚明. Stanford A型主动脉夹层数值模拟研究的初步探讨[D]. 昆明:昆明医科大学,2022. [14] 王仕奇,王凌云,林志鸿,等. 基于计算流体力学的个性化Stanford B型主动脉夹层血流动力学研究[J/OL]. 中国胸心血管外科临床杂志,2024,31(4):594-599. [15] Qiao Y,Zeng Y,Ding Y,et al. Numerical simulation of two-phase non-Newtonian blood flow with fluid-structure interaction in aortic dissection[J]. Comput Methods Biomech Biomed Engin,2019,22(6):620-630. doi: 10.1080/10255842.2019.1577398 [16] Armour C H,Guo B,Saitta S,et al. Evaluation and verification of patient-specific modelling of type B aortic dissection[J]. Comput Biol Med,2022,140(1):105053. doi: 10.1016/j.compbiomed.2021.105053 [17] Pirola S,Guo B,Menichini C,et al. 4-D Flow MRI-based computational analysis of blood flow in patient-specific aortic dissection[J]. IEEE Trans Biomed Eng,2019,66(12):3411-3419. doi: 10.1109/TBME.2019.2904885