留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颞下颌关节骨关节炎分子致病机制的研究进展

陈一晗 张善勇 丁昱 张莉

陈一晗, 张善勇, 丁昱, 张莉. 颞下颌关节骨关节炎分子致病机制的研究进展[J]. 昆明医科大学学报, 2024, 45(7): 1-5. doi: 10.12259/j.issn.2095-610X.S20240701
引用本文: 陈一晗, 张善勇, 丁昱, 张莉. 颞下颌关节骨关节炎分子致病机制的研究进展[J]. 昆明医科大学学报, 2024, 45(7): 1-5. doi: 10.12259/j.issn.2095-610X.S20240701
Yihan CHEN, Shanyong ZHANG, Yu DING, Li ZHANG. Research Progress on the Molecular Pathogenesis of Temporomandibular Joint Osteoarthritis[J]. Journal of Kunming Medical University, 2024, 45(7): 1-5. doi: 10.12259/j.issn.2095-610X.S20240701
Citation: Yihan CHEN, Shanyong ZHANG, Yu DING, Li ZHANG. Research Progress on the Molecular Pathogenesis of Temporomandibular Joint Osteoarthritis[J]. Journal of Kunming Medical University, 2024, 45(7): 1-5. doi: 10.12259/j.issn.2095-610X.S20240701

颞下颌关节骨关节炎分子致病机制的研究进展

doi: 10.12259/j.issn.2095-610X.S20240701
基金项目: 国家自然科学基金资助项目(82071135);云南省省级临床重点专科开放课题(ZKF2024033)
详细信息
    作者简介:

    陈一晗(2000~),女,福建平潭人,医学学士,住院医师,主要从事颞颌关节紊乱病临床研究工作

    通讯作者:

    张莉,E-mail:13658898675@139.com

  • 中图分类号: R578

Research Progress on the Molecular Pathogenesis of Temporomandibular Joint Osteoarthritis

More Information
    Corresponding author: 张莉 , 1993年毕业于华西医科大学口腔医学院 ,现任云南大学附属医院口腔医学中心主任医师, 颞下颌关节疾病多学科诊疗团队副组长,口腔医学中心科研管理组组长,参与组建省内首个颞下颌关节疾病 MDT 诊疗团队。担任国家级住院医师规范化培训口腔颌面外科基地主任 ,口腔住院医师规范化培训结业考核考官,口腔执业医师资格实践技能考试考官;中华口腔医学会第七届颞下颌关节病学及牙合学专业委员会委员,中华预防医学会口腔卫生保健专业委员会委员,云南省口腔医学会第一口腔预防专业委员会副主任委员,云南省口腔医学会第一、二届口腔颌面外科专业委员会委员。主持及参与6项各级各类科研项目。以通讯作者及第一作者发表国家级核心期刊论文24篇,获2项授权专利。
  • 摘要: 颞下颌关节骨关节炎(temporomandibular joint osteoarthritis,TMJOA)是发生于颞颌关节结构的1种慢性退行性病变,但TMJOA的发病机制仍未完全阐明。随着研究方法的进步,TMJOA的研究开始深入到基因层面,对近年来颞下颌关节骨关节炎发病机制的分子生物研究的进展进行综述。
  • [1] Zhao Y,An Y,Zhou L,et al. Animal models of temporomandibular joint osteoarthritis: Classification and selection[J]. Front Physiol,2022,13:859517. doi: 10.3389/fphys.2022.859517
    [2] Hunter D J,Bierma-Zeinstra S. Osteoarthritis[J]. Lancet,2019,393(10182):1745-1759. doi: 10.1016/S0140-6736(19)30417-9
    [3] Allen K D,Thoma L M,Golightly Y M. Epidemiology of osteoarthritis[J]. Osteoarthritis Cartilage,2022,30(2):184-195. doi: 10.1016/j.joca.2021.04.020
    [4] Ernberg M. The role of molecular pain biomarkers in temporomandibular joint internal derangement[J]. J Oral Rehabil,2017,44(6):481-491. doi: 10.1111/joor.12480
    [5] Sanchez-Lopez E,Coras R,Torres A,et al. Synovial inflammation in osteoarthritis progression[J]. Nat Rev Rheumatol,2022,18(5):258-275. doi: 10.1038/s41584-022-00749-9
    [6] Wu C L,Harasymowicz N S,Klimak M A,et al. The role of macrophages in osteoarthritis and cartilage repair[J]. Osteoarthritis Cartilage,2020,28(5):544-554. doi: 10.1016/j.joca.2019.12.007
    [7] Resiere D,Mehdaoui H,Neviere R. Inflammation and oxidative stress in snakebite envenomation: A brief descriptive review and clinical implications[J]. Toxins (Basel),2022,14(11):802-815. doi: 10.3390/toxins14110802
    [8] Ibi M,Horie S,Kyakumoto S,et al. Cell-cell interactions between monocytes/macrophages and synoviocyte-like cells promote inflammatory cell infiltration mediated by augmentation of MCP-1 production in temporomandibular joint[J]. Biosci Rep,2018,38(2):BSR20171217. doi: 10.1042/BSR20171217
    [9] Wehmeyer C,Pap T,Buckley C D,et al. The role of stromal cells in inflammatory bone loss[J]. Clin Exp Immunol,2017,189(1):1-11. doi: 10.1111/cei.12979
    [10] Scanzello C R. Chemokines and inflammation in osteoarthritis: Insights from patients and animal models[J]. J Orthop Res,2017,35(4):735-739. doi: 10.1002/jor.23471
    [11] Pan X,Zhao Z,Huang X,et al. Circ-slain2 alleviates cartilage degradation and inflammation of TMJOA[J]. J Dent Res,2023,102(13):1498-1506. doi: 10.1177/00220345231198448
    [12] Liu X,Li H,Feng Y,et al. Resatorvid alleviates experimental inflammatory TMJOA by restraining chondrocyte pyroptosis and synovial inflammation[J]. Arthritis Res Ther,2023,25(1):230-244. doi: 10.1186/s13075-023-03214-4
    [13] Guo H,Callaway J B,Ting J P. Inflammasomes: Mechanism of action,role in disease,and therapeutics[J]. Nat Med,2015,21(7):677-687. doi: 10.1038/nm.3893
    [14] Zhang S,Teo K Y W,Chuah S J,et al. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis[J]. Biomaterials,2019,200: 35-47.
    [15] Li B,Guan G,Mei L,et al. Pathological mechanism of chondrocytes and the surrounding environment during osteoarthritis of temporomandibular joint[J]. J Cell Mol Med,2021,25(11):4902-4911. doi: 10.1111/jcmm.16514
    [16] Hu H, Liu W, Sun C, et al. Endogenous repair and regeneration of injured articular cartilage: A challenging but promising therapeutic strategy[J]. Aging Dis,2021,12(3):886-901.
    [17] Derwich M,Mitus-Kenig M,Pawlowska E. Interdisciplinary approach to the temporomandibular joint osteoarthritis-review of the literature[J]. Medicina (Kaunas),2020,56(5):225-247. doi: 10.3390/medicina56050225
    [18] Yang H,Wen Y,Zhang M,et al. MTORC1 coordinates the autophagy and apoptosis signaling in articular chondrocytes in osteoarthritic temporomandibular joint[J]. Autophagy,2020,16(2):271-288. doi: 10.1080/15548627.2019.1606647
    [19] Lian C,Wang X,Qiu X,et al. Collagen type II suppresses articular chondrocyte hypertrophy and osteoarthritis progression by promoting integrin β1-SMAD1 interaction[J]. Bone Res,2019,7:8-23. doi: 10.1038/s41413-019-0046-y
    [20] Shi Y,Hu X,Cheng J,et al. A small molecule promotes cartilage extracellular matrix generation and inhibits osteoarthritis development[J]. Nat Commun,2019,10(1):1914-1928. doi: 10.1038/s41467-019-09839-x
    [21] Yan J F,Qin W P,Xiao B C,et al. Pathological calcification in osteoarthritis: an outcome or a disease initiator?[J]. Biol Rev Camb Philos Soc,2020,95(4):960-985. doi: 10.1111/brv.12595
    [22] Huang Z,Zhou M,Wang Q,et al. Mechanical and hypoxia stress can cause chondrocytes apoptosis through over-activation of endoplasmic reticulum stress[J]. Arch Oral Biol,2017,84: 125-132
    [23] Ren H,Yang H,Xie M,et al. Chondrocyte apoptosis in rat mandibular condyles induced by dental occlusion due to mitochondrial damage caused by nitric oxide[J]. Arch Oral Biol,2019,101: 108-121
    [24] Zhang C,Lin S,Li T,et al. Mechanical force-mediated pathological cartilage thinning is regulated by necroptosis and apoptosis[J]. Osteoarthritis Cartilage,2017,25(8):1324-1334. doi: 10.1016/j.joca.2017.03.018
    [25] Poli G,Fabi C,Sugoni C,et al. The role of NLRP3 inflammasome activation and oxidative stress in varicocele-mediated male hypofertility[J]. Int J Mol Sci,2022,23(9):5233-5248. doi: 10.3390/ijms23095233
    [26] Nunes P R,Mattioli S V,Sandrim V C. NLRP3 activation and its relationship to endothelial dysfunction and oxidative stress: Implications for preeclampsia and pharmacological interventions[J]. Cells,2021,10(11):2828-2842. doi: 10.3390/cells10112828
    [27] Liu X, Zhao J, Jiang H, et al. ALPK1 aggravates TMJOA cartilage degradation via NF-κB and ERK1/2 signaling[J]. J Dent Res,2022,101(12):1499-1509.
    [28] Lu K,Ma F,Yi D,et al. Molecular signaling in temporomandibular joint osteoarthritis[J]. J Orthop Translat,2021,32: 21-27
    [29] Zhou Y,Wang T,Hamilton J L,et al. Wnt/β-catenin signaling in osteoarthritis and in other forms of arthritis[J]. Curr Rheumatol Rep,2017,19(9):53-65. doi: 10.1007/s11926-017-0679-z
    [30] Zhou Y,Shu B,Xie R,et al. Deletion of Axin1 in condylar chondrocytes leads to osteoarthritis-like phenotype in temporomandibular joint via activation of β-catenin and FGF signaling[J]. J Cell Physiol,2019,234(2):1720-1729. doi: 10.1002/jcp.27043
    [31] Li W,Zhao S,Yang H,et al. Potential novel prediction of TMJ-OA: MiR-140-5p regulates inflammation through Smad/TGF-β signaling[J]. Front Pharmacol,2019,10:15-24. doi: 10.3389/fphar.2019.00015
    [32] Ghassemi Nejad S, Kobezda T, Tar I, et al. Development of temporomandibular joint arthritis: The use of animal models[J]. Joint Bone Spine,2017,84(2):145-151.
    [33] Wang Z,Huang J,Zhou S,et al. Loss of Fgfr1 in chondrocytes inhibits osteoarthritis by promoting autophagic activity in temporomandibular joint[J]. J Biol Chem,2018,293(23):8761-8774. doi: 10.1074/jbc.RA118.002293
    [34] Saito T,Tanaka S. Molecular mechanisms underlying osteoarthritis development: Notch and NF-κB[J]. Arthritis Res Ther,2017,19(1):94-101. doi: 10.1186/s13075-017-1296-y
    [35] Luo X,Jiang Y,Bi R,et al. Inhibition of notch signaling pathway temporally postpones the cartilage degradation progress of temporomandibular joint arthritis in mice[J]. J Craniomaxillofac Surg,2018,46(7):1132-1138. doi: 10.1016/j.jcms.2018.04.026
    [36] Ruscitto A,Scarpa V,Morel M,et al. Notch regulates fibrocartilage stem cell fate and is upregulated in inflammatory TMJ arthritis[J]. J Dent Res,2020,99(10):1174-1181. doi: 10.1177/0022034520924656
    [37] Chen Y,Zhao B,Zhu Y,et al. HIF-1-VEGF-Notch mediates angiogenesis in temporomandibular joint osteoarthritis[J]. Am J Transl Res,2019,11(5):2969-2982.
    [38] Yang H,Zhang M,Liu Q,et al. Inhibition of Ihh reverses temporomandibular joint osteoarthritis via a PTH1R signaling dependent mechanism[J]. Int J Mol Sci,2019,20(15):3797-3815. doi: 10.3390/ijms20153797
    [39] Nachury M V,Mick D U. Establishing and regulating the composition of cilia for signal transduction[J]. Nat Rev Mol Cell Biol,2019,20(7):389-405. doi: 10.1038/s41580-019-0116-4
    [40] Zhang Q,Lenardo M J,Baltimore D. 30 Years of NF-κB: A blossoming of relevance to human pathobiology[J]. Cell,2017,168(1-2):37-57. doi: 10.1016/j.cell.2016.12.012
    [41] Yuan J,Ding W,Wu N,et al. Protective effect of genistein on condylar cartilage through downregulating NF-κB expression in experimentally created osteoarthritis rats[J]. Biomed Res Int,2019,2019:2629791.
    [42] Taleuan A, Kamal D, Aouinti L, et al. Arthrotic ankylosis of the temporomandibular joint[J]. Pan Afr Med J,2019,32:151-160.
  • [1] 谢飞飞, 辛隐子, 徐敏, 李景涵, 王伟.  长链非编码RNA在软骨发育及骨关节炎中作用机制的研究进展, 昆明医科大学学报.
    [2] 张雪, 陈伟伟, 李翠花, 曹海涛.  基于力学理念的康复训练联合Ilizarov技术矫形对老年膝骨关节炎患者膝关节稳定性和下肢负重的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230326
    [3] 邓绍友, 李蓉, 李进涛, 赵玉兰, 王佩锦, 郑红.  基于网络药理学探讨恒古骨伤愈合剂治疗骨关节炎的机制及动物实验初步验证, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230701
    [4] 皇甫文丽, 黄瑶, 刘波, 吕长海, 刘娟, 代自超.  建立大鼠颞下颌关节骨关节炎动物模型的2种方法比较, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230308
    [5] 王子涵, 叶改映, 赵涛, 张俊, 胡瑜.  mTOR在SD大鼠TMJOA髁突软骨中表达变化的实验研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221033
    [6] 张莉, 薛林佳, 包译, 陈涌, 孙承锋, 丁昱.  软硬颌垫结合综合康复治疗颞下颌关节盘不可复性前移位复位固定术后咬合的临床研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221111
    [7] 张莉, 岳万远, 杨鹴, 张善勇.  正畸前患者颞下颌关节结构异常175例分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210411
    [8] 陈先维, 陆向东, 王永峰, 赵轶波, 杨旭, 王文轩, 范彦鑫, 张晖, 赵斌.  骨关节炎患者单核细胞/淋巴细胞比值、红细胞压积与疾病活动度的相关性, 昆明医科大学学报.
    [9] 闫慧玲, 赵宏斌, 钱传云, 王应忠, 张洋, 沈相霖, 蒋罡, 高爽.  膝骨关节炎疗效评估的研究进展, 昆明医科大学学报.
    [10] 奉永泉, 王健龙, 刘阳, 饶磊.  关节镜清理结合腓骨近端截骨术对膝内翻骨关节炎的治疗效果, 昆明医科大学学报.
    [11] 李雪武.  依托芬那酯凝胶与双氯芬酸钠治疗膝骨关节炎的临床比较, 昆明医科大学学报.
    [12] 唐涛, 孙先润, 姜艳萍, 张敏, 马骅, 龙宇.  NO/iNOS与关节软骨破坏的相关性, 昆明医科大学学报.
    [13] 王洪.  前列腺素E2对COPD合并肺癌的致病机理, 昆明医科大学学报.
    [14] 刘兴政.  颞骨关节结节气室样改变流行情况及临床特征的影像学研究, 昆明医科大学学报.
    [15] 代龙金.  β-连环蛋白与膝骨关节炎相关性研究, 昆明医科大学学报.
    [16] 张晓磬.  慢性病患者生命质量测定量表体系之骨关节炎量表的研制及考评, 昆明医科大学学报.
    [17] 张晓磬.  慢性病患者生命质量测定量表体系之骨关节炎量表的研制及考评, 昆明医科大学学报.
    [18] 戴琳.  单纯心理应激对SD大鼠行为及髁突软骨组织结构影响的实验研究, 昆明医科大学学报.
    [19] ADAMTS-4在膝骨关节炎关节液中的表达和意义, 昆明医科大学学报.
    [20] 王伟.  骨关节炎患者软骨细胞的体外培养技术, 昆明医科大学学报.
  • 加载中
计量
  • 文章访问数:  1108
  • HTML全文浏览量:  588
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-05
  • 网络出版日期:  2024-06-05
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回