[1]
|
Kwon H,Bai Q,Baek H-J,et al. Soluble V domain of Nectin-1/HveC enables entry of herpes simplex virus type 1 (HSV-1) into HSV-resistant cells by binding to viral glycoprotein D[J]. Journal of Virology,2006,80(1):138-148. doi: 10.1128/JVI.80.1.138-148.2006
|
[2]
|
Johnston C,Magaret A,Son H,et al. Viral shedding 1 year following first-episode genital HSV-1 infection[J]. Jama,2022,328(17):1730-1739. doi: 10.1001/jama.2022.19061
|
[3]
|
Sharma D,Sharma S,Akojwar N,et al. An insight into current treatment strategies,their limitations,and ongoing developments in vaccine technologies against herpes simplex infections[J]. Vaccines (Basel),2023,11(2):206. doi: 10.3390/vaccines11020206
|
[4]
|
Ravindra N G,Alfajaro M M,Gasque V,et al. Single-cell longitudinal analysis of SARS-cov-2 infection in human airway epithelium identifies target cells,alterations in gene expression,and cell state changes[J]. PLoS Biol,2021,19(3):e3001143. doi: 10.1371/journal.pbio.3001143
|
[5]
|
Kim S R. Viral infection and airway epithelial immunity in asthma[J]. Int J Mol Sci,2022,23(17):9914. doi: 10.3390/ijms23179914
|
[6]
|
Kolli D,Velayutham T S,Casola A. Host-viral interactions: Role of pattern recognition receptors (PRRs) in human pneumovirus infections[J]. Pathogens,2013,2(2):232-263. doi: 10.3390/pathogens2020232
|
[7]
|
Liu C,Zhang X,Xiang Y,et al. Role of epithelial chemokines in the pathogenesis of airway inflammation in asthma[J]. Mol Med Rep,2018,17(5):6935-6941.
|
[8]
|
Yu S,Ge H,Li S,et al. Modulation of macrophage polarization by viruses: Turning off/on host antiviral responses[J]. Front Microbiol,2022,13:839585. doi: 10.3389/fmicb.2022.839585
|
[9]
|
Carty S A. Immunology 101: Fundamental immunology for the practicing hematologist[J]. Hematology Am Soc Hematol Educ Program,2021,2021(1):281-286. doi: 10.1182/hematology.2021000260
|
[10]
|
Hirose S,Wang S,Jaggi U,et al. IL-17A expression by both T cells and non-T cells contribute to HSV-IL-2-induced CNS demyelination[J]. Front Immunol,2023,14:1102486. doi: 10.3389/fimmu.2023.1102486
|
[11]
|
Jaggi U,Wang S,Tormanen K,et al. Role of herpes simplex virus type 1 (hsv-1) glycoprotein k (gk) pathogenic cd8(+) t cells in exacerbation of eye disease[J]. Front Immunol,2018,9:2895. doi: 10.3389/fimmu.2018.02895
|
[12]
|
Jaggi U,Matundan H H,Yu J,et al. Essential role of m1 macrophages in blocking cytokine storm and pathology associated with murine hsv-1 infection[J]. PLoS Pathog,2021,17(10):e1009999. doi: 10.1371/journal.ppat.1009999
|
[13]
|
Mott K,Brick D J,van Rooijen N,et al. Macrophages are important determinants of acute ocular hsv-1 infection in immunized mice[J]. Invest Ophthalmol Vis Sci,2007,48(12):5605-5615. doi: 10.1167/iovs.07-0894
|
[14]
|
Zhang J,Xu X,Duan S,et al. Characterization of the immunologic phenotype of dendritic cells infected with herpes simplex virus 1[J]. Front Immunol,2022,13:931740. doi: 10.3389/fimmu.2022.931740
|
[15]
|
Verzosa A L,McGeever L A,Bhark S J,et al. Herpes simplex virus 1 infection of neuronal and non-neuronal cells elicits specific innate immune responses and immune evasion mechanisms[J]. Front Immunol,2021,12:644664. doi: 10.3389/fimmu.2021.644664
|
[16]
|
Xu X,Feng X,Wang L,et al. A HSV1 mutant leads to an attenuated phenotype and induces immunity with a protective effect[J]. PLoS Pathog,2020,16(8):e1008703. doi: 10.1371/journal.ppat.1008703
|
[17]
|
La Rosa F,Agostini S,Bianchi A,et al. Herpes simplex virus-1 (HSV-1) infection induces a potent but ineffective ifn-lambda production in immune cells of ad and pd patients[J]. J Transl Med,2019,17(1):286. doi: 10.1186/s12967-019-2034-9
|
[18]
|
He T,Wang M,Cheng A,et al. Host shutoff activity of vhs and sox-like proteins: Role in viral survival and immune evasion[J]. Virol J,2020,17(1):1-11. doi: 10.1186/s12985-020-01336-8
|
[19]
|
Zhao J,Qin C,Liu Y,et al. Herpes simplex virus and pattern recognition receptors: An arms race[J]. Front Immunol,2020,11:613799.
|
[20]
|
Lee D H,Ghiasi H. Roles of m1 and m2 macrophages in herpes simplex virus 1 infectivity[J]. J Virol,2017,91(15):e00578-17.
|