留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

罗格列酮通过诱导HO-1减轻大鼠肝缺血再灌注损伤的作用机制

杨轶涵 陈华梅 方育 王玉鑫 展希

杨轶涵, 陈华梅, 方育, 王玉鑫, 展希. 罗格列酮通过诱导HO-1减轻大鼠肝缺血再灌注损伤的作用机制[J]. 昆明医科大学学报, 2024, 45(7): 14-22. doi: 10.12259/j.issn.2095-610X.S20240703
引用本文: 杨轶涵, 陈华梅, 方育, 王玉鑫, 展希. 罗格列酮通过诱导HO-1减轻大鼠肝缺血再灌注损伤的作用机制[J]. 昆明医科大学学报, 2024, 45(7): 14-22. doi: 10.12259/j.issn.2095-610X.S20240703
Yihan YANG, Huamei CHEN, Yu FANG, Yuxin WANG, Xi ZHAN. Mechanism of Rosiglitazone in Reducing Liver Ischemia Reperfusion Injury in Rats by Inducing HO-1[J]. Journal of Kunming Medical University, 2024, 45(7): 14-22. doi: 10.12259/j.issn.2095-610X.S20240703
Citation: Yihan YANG, Huamei CHEN, Yu FANG, Yuxin WANG, Xi ZHAN. Mechanism of Rosiglitazone in Reducing Liver Ischemia Reperfusion Injury in Rats by Inducing HO-1[J]. Journal of Kunming Medical University, 2024, 45(7): 14-22. doi: 10.12259/j.issn.2095-610X.S20240703

罗格列酮通过诱导HO-1减轻大鼠肝缺血再灌注损伤的作用机制

doi: 10.12259/j.issn.2095-610X.S20240703
基金项目: 云南省科技厅-昆明医科大学应用基础研究联合专项基金资助项目(202001AY070001-041)
详细信息
    作者简介:

    杨轶涵 (1997~),女,云南曲靖人,医学硕士,住院医师,主要从事临床麻醉工作

    通讯作者:

    展希,E-mail:2489555365@qq.com

  • 中图分类号: R657.3

Mechanism of Rosiglitazone in Reducing Liver Ischemia Reperfusion Injury in Rats by Inducing HO-1

  • 摘要:   目的  观察过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor,PPAR-γ)激动剂罗格列酮是否通过调控血红素加氧酶1(heme oxygenase 1,HO-1)活性来减轻大鼠肝缺血再灌注损伤(ischemia reperfusion injury,IRI)。  方法  建立大鼠70%肝脏热缺血再灌注(ischemia/reperfusion,I/R)模型和缺氧缺糖/复氧复糖(oxygen-glucose deprivation/reperfusion,OGD/R)诱导的大鼠肝窦内皮细胞(liver sinusoidal endothelial cells,LSECs)损伤模型,随机分为假手术组、模型组、罗格列酮预处理组和锌原卟啉(zinc protoporphyrin,ZnPP)组(n = 6)。全自动生化分析仪检测大鼠血清ALT、AST水平;HE染色评估肝组织病理学损伤;Western blot检测PPAR-γ和HO-1蛋白表达水平;CCK8法测定LSECs的细胞活力,流式细胞仪测定LSECs中活性氧(reactive oxygen species,ROS)含量。  结果  与I/R组相比,罗格列酮预处理能显著降低肝IRI大鼠ALT、AST水平(P < 0.01),减少肝细胞凋亡并减轻肝组织IRI (P < 0.01)。Western blot结果显示,罗格列酮能上调PPAR-γ和HO-1蛋白的表达(P < 0.01)。此外,罗格列酮预处理(10,30 μmol/L)能改善OGD/R诱导的LSECs存活率,显著降低细胞ROS含量,并呈剂量反应相关性(P < 0.01)。使用ZnPP阻断HO-1活性后,罗格列酮对大鼠肝IRI的保护作用均消失。  结论  罗格列酮通过上调HO-1活性介导抗氧化和抗炎作用,减轻大鼠肝IRI。
  • 图  1  罗格列酮对I/R诱导的肝损伤的影响

    A:各组大鼠血清中ALT水平;B:各组大鼠血清中AST水平;C:大鼠肝脏HE染色 (×400), 表示坏死的肝细胞; 代表炎细胞或免疫细胞浸润; 代表淤血;D:肝组织病理Suzuki标准评分统计图,与假手术组比较, ##P < 0.01;与 I/R 组比较,**P < 0.01;与罗格列酮组比较,▲▲P < 0.01 。

    Figure  1.  Effect of rosiglitazone on I/ R-induced liver injury

    图  2  罗格列酮对大鼠IRI肝脏中TUNEL表达的影响

    A:大鼠肝组织TUNEL染色图(×400);B:大鼠肝组织中TUNEL阳性细胞数统计图。与假手术组比较,##P < 0.01;与I/R模型组比较,**P < 0.01;与罗格列酮组比较,▲▲P < 0.01。

    Figure  2.  Effect of rosiglitazone on TUNEL expression in rat IRI liver

    图  3  罗格列酮对大鼠IRI肝脏中PPAR-γ和HO-1蛋白表达的影响

    A:肝组织中PPAR-γ、HO-1蛋白表达条带图;B:肝组织中PPAR-γ蛋白表达统计图;C:肝组织中HO-1蛋白表达统计图。与假手术组比较,##P < 0.05;与I/R模型组比较,**P < 0.01;与罗格列酮组比较,▲▲P < 0.01。

    Figure  3.  Effect of rosiglitazone on the expression of PPAR-γ and HO-1 proteins in the liver of rat IRI

    图  4  罗格列酮对LSECs细胞活力的影响

    与正常对照组比较,##P < 0.01;与OGD/R模型组比较,**P < 0.01。

    Figure  4.  Effect of rosiglitazone on the viability of LSECs cells

    图  5  LSECs中的ROS含量检测结果

    A:流式细胞仪检测各组LSECs中ROS含量结果图;B:各组LSECs中DCF荧光强度统计图,与正常对照组比较,##P < 0.01;与OGD/R模型组比较,**P < 0.01;与高剂量罗格列酮组比较,▲▲P < 0.01。

    Figure  5.  ROS content detection results in LSECs

  • [1] Ling S,Jiang G,Que Q,et al. Liver transplantation in patients with liver Failure: Twenty years of experience from China[J]. Liver International : Official Journal of the International Association for the Study of the Liver,2022,42(9) : 2110-2116.
    [2] Guan Y,Yao W,Yi K,et al. Nanotheranostics for the management of hepatic ischemia-reperfusion injury[J]. Small (Weinheim an der Bergstrasse,Germany),2021,17(23):e2007727. doi: 10.1002/smll.202007727
    [3] Gao F,Qiu X,Wang K,Shao C,et al. Targeting the hepatic microenvironment to improve ischemia/reperfusion injury: New insights into the immune and metabolic compartments[J]. Aging and Disease,2022,13(4):1196-1214. doi: 10.14336/AD.2022.0109
    [4] Tang S P,Mao X L,Chen Y H,et al. Reactive oxygen species induce fatty liver and ischemia-reperfusion injury by promoting inflammation and cell death[J]. Frontiers in Immunology,2022,13:870239. doi: 10.3389/fimmu.2022.870239
    [5] Takada I,Makishima M. Peroxisome proliferator-activated receptor agonists and antagonists: A patent review (2014-Present)[J]. Expert Opinion on Therapeutic Patents,2020,30(1):1-13. doi: 10.1080/13543776.2020.1703952
    [6] Sauer S. Ligands for the nuclear peroxisome proliferator-activated receptor gamma[J]. Trends in Pharmacological Sciences,2015,36(10):688-704. doi: 10.1016/j.tips.2015.06.010
    [7] Katori M,Busuttil R W,Kupiec-Weglinski J W. Heme oxygenase-1 system in organ transplantation[J]. Transplantation,2002,74(7):905-912. doi: 10.1097/00007890-200210150-00001
    [8] Sano N,Tamura T,Toriyabe N,et al. New drug delivery system for liver sinusoidal endothelial cells for ischemia-reperfusion injury[J]. World Journal of Gastroenterology,2015,21(45):12778-12786. doi: 10.3748/wjg.v21.i45.12778
    [9] Yuan B,Ming T,Qu S,et al. The effect of heme oxygenase-1 on liver sinusoidal endothelial cells proliferation and pro-regeneration[J]. Chinese Journal of Hepatobiliary Surgery,2022,28(7):536-541.
    [10] Shen X,Wang M,Bi X,et al. Resveratrol prevents endothelial progenitor cells from senescence and reduces the oxidative reaction via PPAR-γ/HO-1 pathways[J]. Molecular Medicine Reports,2016,14(6):5528-5534. doi: 10.3892/mmr.2016.5929
    [11] Abdalla H B,Napimoga M H,Lopes A H,et al. Activation of PPAR-γ induces macrophage polarization and reduces neutrophil migration mediated by heme oxygenase 1[J]. International Immunopharmacology,2020,84(7):106565. doi: 10.1016/j.intimp.2020.106565
    [12] Lhuillier F,Parmantier P,Goudable J,et al. Hepatic ischemia is associated with an increase in liver parenchyma nitric oxide that is in part enzyme-independent[J]. Anesthesiology,2003,98(2):373-378. doi: 10.1097/00000542-200302000-00017
    [13] Jaeschke H. Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning[J]. American Journal of Physiology Gastrointestinal and Liver Physiology,2003,284(1):G15-26. doi: 10.1152/ajpgi.00342.2002
    [14] Roushansarai N S,Pascher A,Becker F. Innate immune cells during machine perfusion of liver grafts-the janus face of hepatic macrophages[J]. Journal of Clinical Medicine,2022,11(22):6669.
    [15] Kotlinowski J,Jozkowicz A. PPAR-gamma and angiogenesis: endothelial cells perspective[J]. Journal of Diabetes Research,2016,2016:8492353.
    [16] Han X,Wu Y,Yang Q,et al. Peroxisome proliferator-activated receptors in the pathogenesis and therapies of liver fibrosis[J]. Pharmacology & Therapeutics,2021,222(6):107791.
    [17] Huang R,Zhang C,Wang X,et al. PPAR-γ in ischemia-reperfusion injury: Overview of the biology and therapy[J]. Frontiers in Pharmacology,2021,12(4):600618. doi: 10.3389/fphar.2021.600618
    [18] Hirao H,Nakamura K,Kupiec-Weglinski J W. Liver ischaemia-reperfusion injury: A new understanding of the role of innate immunity[J]. Nature Reviews Gastroenterology & Hepatology,2022,19(4):239-256.
    [19] Abu-Amara M,Yang S Y,Tapuria N,et al. Liver ischemia/reperfusion injury: Processes in inflammatory networks-a review[J]. Liver transplantation : Official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society,2010,16(9): 1016-1032.
    [20] Forman HJ,Zhang H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy[J]. Nature Reviews Drug Discovery,2021,20(9):689-709. doi: 10.1038/s41573-021-00233-1
    [21] Linares I,Farrokhi K,Echeverri J,et al. PPAR-gamma activation is associated with reduced liver ischemia-reperfusion injury and altered tissue-resident macrophages polarization in a mouse model[J]. PloS One,2018,13(4):e0195212. doi: 10.1371/journal.pone.0195212
    [22] Zingarelli B,Chima R,O'Connor M,et al. Liver apoptosis is age dependent and is reduced by activation of peroxisome proliferator-activated receptor-gamma in hemorrhagic shock[J]. American Journal of Physiology Gastrointestinal and Liver Physiology,2010,298(1):G133-141. doi: 10.1152/ajpgi.00262.2009
    [23] R G B,Panisello-Roselló A,Sanchez-Nuno S,et al. Nrf2 and oxidative stress in liver ischemia/reperfusion injury[J]. The FEBS Journal,2022,289(18):5463-5479. doi: 10.1111/febs.16336
    [24] Zhan X,Zhang Z,Huang H,et al. Effect of heme oxygenase-1 on the protection of ischemia reperfusion injury of bile duct in rats after liver transplantation[J]. Clinics and Research in Hepatology and Gastroenterology,2018,42(3):245-254. doi: 10.1016/j.clinre.2017.09.008
    [25] Qu S,Yuan B,Zhang H,et al. Heme oxygenase 1 attenuates hypoxia-reoxygenation injury in mice liver sinusoidal endothelial cells[J]. Transplantation,2018,102(3):426-432. doi: 10.1097/TP.0000000000002028
    [26] Shen X,Wang M,Bi X,et al. Resveratrol prevents endothelial progenitor cells from senescence and reduces the oxidative reaction via PPAR-γ/HO-1 pathways[J]. Molecular Medicine Reports,2016,14(6):5528-5534. doi: 10.3892/mmr.2016.5929
    [27] Cho R L,Yang C C,Tseng H C,et al. Heme oxygenase-1 up-regulation by rosiglitazone via ROS-dependent Nrf2-antioxidant response elements axis or PPAR-γ attenuates LPS-mediated lung inflammation[J]. British Journal of Pharmacology,2018,175(20):3928-3946. doi: 10.1111/bph.14465
    [28] Yang Y,Li X,Zhang L,et al. Ginsenoside Rg1 suppressed inflammation and neuron apoptosis by activating PPAR/HO-1 in hippocampus in rat model of cerebral ischemia-reperfusion injury[J]. International Journal of Clinical and Experimental Pathology,2015,8(3):2484-2494.
    [29] Yang H,Zhang L,Chen J,et al. Heme oxygenase-1 inhibits the poliferation of hepatic stellate cells by activating PPAR-γ and suppressing Nf-κB[J]. Computational and Mathematical Methods in Medicine,2022,2022:8920861.
    [30] Jang H Y,Hong O Y,Youn H J,et al. 15d-Pgj2 inhibits Nf-κB and AP-1-mediated MMP-9 expression and invasion of breast cancer cell by means of a heme oxygenase-1-dependent mechanism[J]. BMB Reports,2020,53(4):212-217. doi: 10.5483/BMBRep.2020.53.4.164
  • [1] 梁国晶, 冀琨, 张恺纯, 张玉芳, 安晶, 张钰鸽, 文娟, 任海燕.  益生菌对脑缺血再灌注损伤大鼠Aβ表达的影响及神经元的保护作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240506
    [2] 张紫微, 郑甲林, 许晓宇, 王红.  二甲双胍通过AMPK/PPAR-γ通路诱导自噬抑制高糖对血管平滑肌细胞的增殖作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231026
    [3] 杨伟, 陈洪艳, 陈文栋, 王燕琼, 白向锋.  miR-208a通过调控QKI5表达对大鼠心肌缺血再灌注损伤的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220724
    [4] 王峰, 杨伟, 钱佃伦, 梅松, 王文杰, 冯科翔, 白向锋.  miR-582-5p调控Notch1减轻心肌缺血再灌注损伤的研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221207
    [5] 罗靖, 高娴玲, 邵建林, 张超, 张琦.  胆绿素改善大鼠脑缺血再灌注损伤的作用机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201107
    [6] 王小莹, 刘作金, 申丽娟.  缺血再灌注损伤与细胞焦亡的相关性研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201240
    [7] 马旭东, 孙锋, 段永庆, 吴雪松, 李薇.  大鼠肝脏缺血再灌注损伤对COX-2和micorRNA-101的表达, 昆明医科大学学报.
    [8] 王增涛, 张洁, 郭涛.  七氟烷预处理对大鼠脑缺血再灌注损伤时细胞凋亡以及能量代谢的影响, 昆明医科大学学报.
    [9] 李红阳, 苏天义, 龚建平, 甘平, 杨步荣, 寸英丽, 查勇, 赵公芳.  缺血后处理对裸鼠肝脏缺血再灌注损伤的保护作用及其机制, 昆明医科大学学报.
    [10] 边立功, 钟莲梅, 艾青龙, 陈鑫月, 许文凯, 闫润淇, 邱进, 陆地.  人参皂苷Rg1调控Nrf2在SD大鼠脑缺血再灌注损伤后的抗氧化作用, 昆明医科大学学报.
    [11] 李俊杰.  脑缺血-再灌注损伤大鼠脑组织中TNF-α,IL-6和IL-1β的表达, 昆明医科大学学报.
    [12] 张玮.  SGK1对脑缺血再灌注损伤的保护机制, 昆明医科大学学报.
    [13] 张海燕.  P38信号通路在肝脏缺血再灌注损伤中作用的研究进展, 昆明医科大学学报.
    [14] 杨力.  脑缺血再灌注大鼠脑内Mrp1的表达变化, 昆明医科大学学报.
    [15] 曹德钧.  帕瑞昔布钠对大鼠局灶脑缺血再灌注损伤的影响, 昆明医科大学学报.
    [16] 李经辉.  不同浓度高渗盐水对大鼠急性局灶性脑缺血再灌注损伤的保护, 昆明医科大学学报.
    [17] 邵建林.  HO-1对氧糖剥夺海马神经元线粒体运动调节蛋白的影响, 昆明医科大学学报.
    [18] MAPKs在硫化氢抗大鼠肢体缺血再灌注所致肺损伤中的作用, 昆明医科大学学报.
    [19] 双黄连对大鼠肝缺血再灌注损伤的保护机制, 昆明医科大学学报.
    [20] 黄雅.  Brn-3a、PPAR-γ在宫颈癌及癌前病变中的表达, 昆明医科大学学报.
  • 加载中
图(5)
计量
  • 文章访问数:  823
  • HTML全文浏览量:  647
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-15
  • 网络出版日期:  2024-06-14
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回