Effect of Exoskeleton Robot-assisted Rehabilitation Training on Motor Function and Gait Ability in Patients with Stroke
-
摘要:
目的 探究下肢外骨骼机器人联合康复训练对卒中后偏瘫患者下肢功能恢复情况的疗效。 方法 选取云南省第三人民医院康复医学科2023年1 月至2024年2月收治的36例卒中后下肢偏瘫患者为研究对象,随机分为对照组(n = 18)和观察组(n = 18)。对照组予以传统康复治疗,观察组在传统康复治疗的基础上予以下肢外骨骼机器人训练,训练前及训练后2周评估患者下肢肌力(髂腰肌、股四头肌、腘绳肌、小腿三头肌、胫骨前肌);下肢运动能力:功能性步行能力量表(FAC)、10 m步行试验( 10MWT)、步态分析(Tinetti评分);日常生活能力:ADL评估量表。用近红外功能成像对2名卒中后下肢偏瘫患者及2名健康志愿者运动状态下脑功能进行监测。 结果 训练2周后,观察组及对照组所有患者下肢功能均有改善。观察组髂腰肌肌力(P < 0.01)、股四头肌(P < 0.01)、腘绳肌(P < 0.01);小腿三头肌(P < 0.005),胫骨前肌(P < 0.005)肌力较治疗前改善,差异具有统计学意义。观察组和对照组下肢运动能力均得到改善:功能性步行能力量表(FAC)得分提高(P < 0.01)、10 m步行试验(10MWT)时间缩短(P < 0.01)、步态分析(Tinetti评分)得分提高(P < 0.01)。观察组和对照组日常生活能力(ADL评分)均有提高(P < 0.01)。 近红外脑功能成像实时监测,在外骨骼机器人步行运动状态下,观察到卒中后偏瘫患者2侧大脑半球脑网络连接强度较健康志愿者降低。 结论 2组治疗方案均有助于改善患者下肢功能,传统康复联合下肢外骨骼机器人联合康复训练对卒中后偏瘫患者下肢肌力及生活质量的改善更显著;增强2侧大脑半球的脑网络连接可能是促进偏瘫患者肢体功能恢复的潜在靶点。 Abstract:Objective To explore the effect of exoskeleton robot-assisted rehabilitation training on lower limb motor and walking function in patients with hemiplegia after stroke. Methods We recruited 36 patients with lower limb hemiplegia after stroke in the Department of Rehabilitation Medicine of the Third People's Hospital of Yunnan Province, from January 2023 to February 2024. All patients received conventional rehabilitation, observation group received lower limb exoskeleton robot-assisted training. We assessed lower-extremity motor and walking function by following items: muscle strength (iliopsoas, quadriceps, hamstring, triceps, tibialis anterior), functional ambulation category Scale (FAC), 10-meter walk test (10MWT), gait analysis (Tinetti score), ADL score. These measurements were performed before and after the intervention. In addition, we observed the brain network connectivity of 2 patients and 2 normal volunteers during the walking state by functional near-infrared spectroscopy (fNIRS). Results After two weeks of intervention, all patients in the observation group and control group showed improvement in lower extremity function, and the improvement in the observation group was significant. The muscle strength of all patients was significantly improved in the observation group, iliopsoas muscle (P < 0.01), quadriceps muscle (P < 0.01), hamstring muscle (P < 0.01); Triceps calf (P < 0.005), anterior tibialis (P < 0.005). The motor ability of the lower limb was improved in both the observation group and control group, FAC score increased (P < 0.01), 10MWT time was shortened than before (P < 0.01), and Tinetti score was increased (P < 0.01). The ADL score was improved significantly in the observation group (P < 0.01). To compare with normal volunteers, the patients' brain map of fNIRS showed decreased inter-hemispheric connections. Conclusion Exoskeleton robot-assisted rehabilitation training on the lower limb can effectively improve the motor and walking function of patients with hemiplegia after stroke, and improve the quality of life. Enhancing brain network connectivity between interhemispheres might be a potential way to promote functional recovery of stroke patients’ hemiplegic limbs. -
Key words:
- Stroke /
- Exoskeleton robot /
- Hemiplegia /
- Functional near-infrared spectroscopy
-
表 1 肌力—赋分对照表
Table 1. The score corresponds to muscle strength
肌力 0 1− 1 1+ 2− 2 2+ 3− 3 3+ 4− 4 4+ 5− 5 赋分 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 表 2 一般资料($\bar x \pm s $)
Table 2. General data($\bar x \pm s $)
组别 n 性别(n) 年龄(岁) 卒中类型(n) 偏瘫侧(n) 男 女 缺血性 出血性 左 右 对照组 18 14 4 57.66 ± 15.74 10 8 7 11 观察组 18 13 5 52.00 ± 14.23 7 11 12 6 t/χ2 0.887 P 0.064 0.389 0.832 1.000 表 3 治疗前后患者髂腰肌、股四头肌肌力对比 ($\bar x \pm s $)/[ M(Q1,Q3)]
Table 3. Comparison of the iliopsoas and quadriceps muscle strength before and after rehabilitation ($\bar x \pm s $)/[ M(Q1,Q3)]
组别 髂腰肌 股四头肌 治疗前 治疗后 t/Z P 治疗前 治疗后 t/Z P 对照组 8.5(8,11) 10.0(8,11) −1.89 0.059 9(8,11) 10(8,11) −1.63 0.102 观察组 8.17±2.57 10.06±2.48 −4.35 <0.01* 8.39±2.36 10.22±2.39 −4.27 <0.01** t/Z −1.098 −0.273 −1.221 −0.544 P 0.272 0.785 0.222 0.584 *P < 0.05;**P < 0.01。 表 4 治疗前后患者腘绳肌、小腿三头肌肌力对比 ($\bar x \pm s $)/[ M(Q1,Q3)]
Table 4. Comparison of hamstring and tricepsand muscle strength before and after rehabilitation ($\bar x \pm s $)/[ M(Q1,Q3)]
组别 腘绳肌 小腿三头肌 治疗前 治疗后 t/Z P 治疗前 治疗后 t/Z P 对照组 9(8,11) 10(8,11) −1.63 0.102 8.5(8,11) 9.5(8,11) −1.6 0.109 观察组 7.33±3.27 9.33±3.106 −4.66 <0.01* 7(3,9) 8.5(4.5,10.5) −2.831 0.005** t/Z −1.703 −0.272 −2.528 −1.548 P 0.089 0.786 0.011* 0.122 *P < 0.05;**P < 0.01。 表 5 治疗前后患者胫骨前肌肌力、Tinetti评分对比($\bar x \pm s $)/[M(Q1,Q3)]
Table 5. Comparison of tibialis anterior muscle strength and Tinetti score before and after rehabilitation ($\bar x \pm s $)/[M(Q1,Q3)]
组别 胫骨前肌(级) Tinetti(分) 治疗前 治疗后 t/Z P 治疗前 治疗后 t/Z P 对照组 8.5(8,11) 9.5(8,11) −1.84 0.066 15.11±2.11 16.44±1.69 −5.5 <0.01** 观察组 6.5(0,9) 8.5(2.25,10.0) −2.98 0.003* 16(15,16) 19(18,20) −3.77 <0.01** t/Z −2.779 −1.852 −1.038 −3.371 P 0.005** 0.064 0.299 <0.01** **P < 0.01。 表 6 治疗前后患者FAC、10 m步行试验对比($\bar x \pm s $)/[ M(Q1,Q3)]
Table 6. Comparison of FAC and 10MWT before and after rehabilitation ($\bar x \pm s $)/[ M(Q1,Q3)]
组别 FAC(级) 10 m步行试验(s) 治疗前 治疗后 t/Z P 治疗前 治疗后 t/Z P 对照组 2(1,3) 3(2,3) −3.32 <0.001 30.39±11.91 26.5(13,36.25) −3.74 <0.01** 观察组 2(2,2) 3(3,4) −3.94 <0.001 31(20,47.75) 20.50(16.5,31.75) −3.67 <0.01** t/Z −0.663 −3.597 −0.555 −0.32 P 0.507 <0.001*** 0.579 0.975 **P < 0.01;***P < 0.001。 表 7 治疗前后患者ADL评分对比 [($\bar x \pm s $),分]
Table 7. Comparison of ADL score before and after rehabilitation[($\bar x \pm s $),score]
组别 治疗前 治疗后 t/Z P 对照组 62.29±15.13 66.44±16.05 −2.63 0.017* 实验组 43.11±17.26 58.78±18.77 −5.56 <0.01** t/Z 3.543 1.317 P 0.01* 0.197 *P < 0.05;**P < 0.01。 -
[1] Dong S,Fang J,Li Y,et al. The population attributable risk and clustering of stroke risk factors in different economical regions of China[J]. Medicine (Baltimore),2020,99(16):e19689. [2] Ramsey L E,Siegel J S,Lang C E,et al. Behavioural clusters and predictors of performance during recovery from stroke[J]. Nat Hum Behav,2017,2(1):0038. [3] Turner D L,Ramos-murguialday A,Birbaumer N,et al. Neurophysiology of robot-mediated training and therapy: A perspective for future use in clinical populations[J]. Front Neurol,2013,11(4):184. [4] Lo A C,Guarino P D,Richards L G,et al. Robot-assisted therapy for long-term upper-limb impairment after stroke[J]. N Engl J Med,2010,362(19):1772-1783. doi: 10.1056/NEJMoa0911341 [5] Lo H S,Xie S Q. Exoskeleton robots for upper-limb rehabilitation: State of the art and future prospects[J]. Med Eng Phys,2012,34(3):261-268. doi: 10.1016/j.medengphy.2011.10.004 [6] Huang V S,Krakauer J W. Robotic neurorehabilitation: A computational motor learning perspective[J]. J Neuroeng Rehabil,2009,25(6):5. [7] 中华医学会. 各类脑血管疾病诊断要点[J]. 中国神经外科杂志,2014,29(6):379-380. [8] 李希,王秉翔,李娜,等. 下肢外骨骼机器人康复训练对脑卒中偏瘫患者下肢运动的影响[J]. 山东大学学报(医学版),2023,61(3):121-126,133. [9] 刘畅,郄淑燕,王寒明,等. 下肢康复机器人对脑卒中偏瘫患者下肢运动功能与步行能力的效果[J]. 中国康复理论与实践,2017,23(6):696-700. doi: 10.3969/j.issn.1006-9771.2017.06.016 [10] Nilsson A,Vreede K S,Haglund V,et al. Gait training early after stroke with a new exoskeleton--the hybrid assistive limb: A study of safety and feasibility[J]. J Neuroeng Rehabil,2014,6(11): 92. [11] Chang W H,Kim M S,Huh J P,et al. Effects of robot-assisted gait training on cardiopulmonary fitness in subacute stroke patients: A randomized controlled study[J]. Neurorehabil Neural Repair,2012,26(4):318-324. doi: 10.1177/1545968311408916 [12] Yamamoto R,Sasaki S,Kuwahara W,et al. Effect of exoskeleton-assisted Body Weight-Supported Treadmill Training on gait function for patients with chronic stroke: A scoping review[J]. J Neuroeng Rehabil,2022,19(1):143. doi: 10.1186/s12984-022-01111-6 [13] 王艳,吴珊红,宫子涵. 下肢外骨骼机器人系统改善脑卒中患者步行功能研究进展[J]. 中国现代神经疾病杂志,2023,23(1):22-28. [14] Saita K,Morishita T,Arima H,et al. Biofeedback effect of hybrid assistive limb in stroke rehabilitation: A proof of concept study using functional near infrared spectroscopy[J]. PLoS One,2018,13(1):e191361. [15] Cerasa A,Pignolo L,Gramigna V,et al. Exoskeleton-robot assisted therapy in stroke patients: A lesion mapping study[J]. Front Neuroinform,2018,7(12):44. [16] Tung H,Lin W H,Lan T H,et al. Network reorganization during verbal fluency task in fronto-temporal epilepsy: A functional near-infrared spectroscopy study[J]. J Psychiatr Res,2021,5(138):541-549. [17] 田婧,范晨雨,李浩正,等. 基于功能性近红外光谱技术的脑卒中后运动功能障碍患者脑网络功能连接研究[J]. 中国康复医学杂志,2022,37(5):600-605. doi: 10.3969/j.issn.1001-1242.2022.05.005 [18] Radlinska B A,Blunk Y,Leppert I R,et al. Changes in callosal motor fiber integrity after subcortical stroke of the pyramidal tract[J]. J Cereb Blood Flow Metab,2012,32(8):1515-1524. doi: 10.1038/jcbfm.2012.37 [19] Stewart J C,Dewanjee P,Tran G,et al. Role of corpus callosum integrity in arm function differs based on motor severity after stroke[J]. Neuroimage Clin,2017,3(14):641-647. [20] 陈泓鑫,林强,罗思仪,等. 基于近红外光谱成像技术的脑卒中后偏瘫步态脑功能成像研究[J]. 中西医结合心脑血管病杂志,2023,21(5):800-804. doi: 10.12102/j.issn.1672-1349.2023.05.008 [21] Lu W,Jin X,Chen J,et al. Prefrontal cortex activity of active motion,cyclic electrical muscle stimulation,assisted motion,and imagery of wrist extension in stroke using fNIRS[J]. Stroke Cerebrovasc Dis,2023,32(12):107456. doi: 10.1016/j.jstrokecerebrovasdis.2023.107456