Value of High Field Tntensity MRIT1 Perfusion Imaging Combined with DWI Imaging in Evaluating The Efficacy of Neoadjuvant Chemotherapy for Breast Cancer
-
摘要:
目的 评估高场强磁共振T1灌注成像联合扩散加权成像(DWI)在乳腺癌新辅助化疗疗效评估中的潜在价值。 方法 回顾性收集126例乳腺癌患者的临床和影像学数据,包括化疗前后的T1灌注成像和DWI成像数据。使用多因素二元Logistic回归分析探讨不同影像学参数与新辅助化疗疗效之间的关系,并建立预测模型。 结果 T1灌注参数和DWI成像参数,包括时间-信号强度曲线(TIC)下面积、达峰时间、流入速率、最大增强、ADC值均为评估乳腺癌新辅助化疗疗效的相关性因素(P < 0.05)。基于这些相关性参数建立的多因素Logistic回归模型用于预测化疗疗效的准确率为91.3%。 结论 磁共振T1灌注成像联合DWI成像在乳腺癌新辅助化疗疗效评估中具有潜在的临床应用前景。通过对磁共振T1灌注成像联合DWI成像参数的综合分析,可以更准确地预测乳腺癌患者新辅助化疗的疗效,为治疗决策提供有力支持。 Abstract:Objective To assess the potential value of high-field MRI T1 perfusion imaging combined with diffusion-weighted imaging (DWI) in evaluating neoadjuvant chemotherapy efficacy in breast cancer. Methods The clinical and radiological data, including pre-and post-chemotherapy T1 perfusion imaging and DWI imaging data, were retrospectively collected from 126 breast cancer patients. Multifactorial logistic regression analysis was used to investigate the relationship between different imaging parameters and neoadjuvant chemotherapy efficacy, and a predictive model was established. Results T1 perfusion parameters and DWI imaging parameters (area under the curve, time to peak, washing, maxenh, ADC value) were all related factors in evaluating the efficacy of neoadjuvant chemotherapy for breast cancer (P < 0.05). The multifactorial logistic regression model based on these correlated parameters achieved an accuracy of 91.3% in predicting chemotherapy efficacy. Conclusions MRI T1 perfusion imaging combined with DWI imaging holds potential clinical application prospects in assessing neoadjuvant chemotherapy efficacy in breast cancer. Comprehensive analysis of MRI T1 perfusion imaging combined with DWI imaging parameters allows for a more accurate prediction of breast cancer patients' response to treatment, providing robust support for treatment decisions. -
表 1 患者的基线资料 [n(%)]
Table 1. Baseline data of patients [n(%)]
项目 n 非完全缓解组(n=103) 完全缓解组(n=23) χ2 P 年龄(岁) 0.427 0.513 ≤50 58(46.03) 46(44.66) 12(52.17) >50 68(53.97) 57(55.34) 11(47.83) 临床分期 1.579 0.454 Ⅱ 31(24.60) 23(22.33) 8(34.78) Ⅲ 83(65.87) 70(67.96) 13(56.52) Ⅳ 12(9.52) 10(9.71) 2(8.70) 免疫组化 HER2 1.883 0.600 1+ 15(11.90) 13(12.62) 2(8.70) 2+ 26(20.63) 22(21.36) 4(17.39) 3+ 36(28.57) 26(25.24) 10(43.48) 阴性 46(36.51) 39(37.86) 7(30.43) ER 1.598 0.206 阴性 51(40.48) 39(37.86) 12(52.17) 阳性 75(59.52) 64(62.14) 11(47.83) PR 0.021 0.884 阴性 64(50.79) 52(50.49) 12(52.17) 阳性 62(49.21) 51(49.51) 11(47.83) Ki67 − 0.241* <14% 24(19.05) 22(21.36) 2(8.70) ≥14% 102(80.95) 81(78.64) 21(91.30) 分子分型 4.208 0.246* HER2阳 20(15.87) 14(13.59) 6(26.09) LuminalA 20(15.87) 19(18.45) 1(4.35) LuminalB 54(42.86) 44(42.72) 10(43.48) TNBC 32(25.40) 26(25.24) 6(26.09) * Fisher精确检验。 表 2 患者T1灌注成像、DWI结果单因素分析
Table 2. Single factor analysis of patients' T1 perfusion imaging and DWI results
变量 化疗前 t/z p 化疗后 t/z P 非完全缓解组
(n=103)完全缓解组
(n=23)非完全缓解组
(n=103)完全缓解组
(n=23)ADC值
(×10-3mm2/s)0.86
(0.68,1.11)0.83
(0.69,1.09)−0.051 0.960 1.02
(0.84,1.32)1.27
(1.14,1.40)−2.807 0.005* 达峰时间
(s)260.72
(201.50,343.03)271.10
(205.36,366.48)−0.041 0.967 319.57±94.07 415.59±46.92 −7.124 <0.001* 流入速率
(L/s)12.53±4.96 13.60±3.98 −0.969 0.335 10.39
(8.50,11.96)6.09
(4.42,8.50)−5.394 <0.001* 曲线下面积
(×103)875.87
(683.30,964.17)907.81
(728.21,1043.72)−1.184 0.236 693.51±258.79 444.52±75.14 8.320 <0.001* 流出速率
(L/s)1.34
(0.61,2.89)1.47
(0.85,2.26)−0.370 0.712 0.43
(0.00,2.18)0.02
(0.00,1.34)−0.806 0.420 最大增强 2279.90±639.40 2304.41±545.15 −0.170 0.865 2000.06
(1625.81,2444.61)1440.10
(1308.98,1597.52)−5.112 <0.001* 相对增强
(%)184.58±48.23 198.07±45.36 −1.225 0.223 167.42
(137.54,201.47)140.80
(119.73,187.02)−1.895 0.058 * P < 0.05。 表 3 乳腺癌新辅助化疗疗效多因素logistic回归分析
Table 3. Multivariate logistic regression analysis of therapeutic effect of neoadjuvant chemotherapy for breast cancer
变量 B SE Wald χ2 OR 95% P 下限 上限 ADC值 0.004 0.001 6.246 1.004 1.001 1.007 0.012* 达峰时间 0.018 0.007 7.124 1.019 1.005 1.032 0.008* 流入速率 −0.523 0.214 6.007 0.592 0.390 0.900 0.014* 曲线下面积 −0.006 0.003 4.065 0.994 0.988 1.000 0.044* 最大增强 −0.005 0.002 10.446 0.995 0.992 0.998 0.001* *P < 0.05。 表 4 多因素Logistic回归模型预测乳腺癌新辅助化疗疗效准确率(%)
Table 4. Prediction accuracy of multifactor logistic regression model for therapeutic effect of neoadjuvant chemotherapy for breast cancer (%)
实测 预测(n) 正确百分比 非完全缓解组 完全缓解组 非完全缓解组 97 6 94.2 完全缓解组 5 18 78.3 总体百分比 91.3 -
[1] Sung H,Ferlay J,Siegel R L,et al. Global cancer statistics 2020: GLOBOCAN estimates of Incidence and mortality worldwide for 36 cancers in 185 countries[J]. Ca Cancer J Clin,2021,71(3):209-249. doi: 10.3322/caac.21660 [2] Malveiro C,Correia I R,Cargaleiro C,et al. Effects of exercise training on cancer patients undergoing neoadjuvant treatment: A systematic review[J]. J Sci Med Sport,2023,26(11):586-592. doi: 10.1016/j.jsams.2023.08.178 [3] Cortazar P,Zhang L,Untch M,et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis[J]. Lancet,2014,384(9938):164-172. doi: 10.1016/S0140-6736(13)62422-8 [4] D í az C,Gonz á lez-Olmedo C,D í az-Beltrán L,et al. Predicting dynamic response to neoadjuvant chemotherapy in breast cancer: A novel metabolomics approach[J]. Mol Oncol,2022,16(14):2658-2671. doi: 10.1002/1878-0261.13216 [5] Fisusi F A,Akala E O. Drug Combinations in Breast Cancer Therapy[J]. Pharm Nanotechnol,2019,7(1):3-23. doi: 10.2174/2211738507666190122111224 [6] Zhang M,Horvat J V,Bernard-Davila B,et al. Multiparametric MRI model with dynamic contrast-enhanced and diffusion-weighted imaging enables breast cancer diagnosis with high accuracy[J]. J Magn Reson Imaging,2018,49(3):864-874. [7] Park G E,Kang B J,Kim S H,et al. The role of diffusion-weighted imaging based on maximum-intensity projection in young patients with marked background parenchymal enhancement on contrast-enhanced breast MRI[J]. Life (basel),2023,13(8):1744-1758. doi: 10.3390/life13081744 [8] Hu X Y,Li Y,Jin G Q,et al. Diffusion-weighted MR imaging in prediction of response to neoadjuvant chemotherapy in patients with breast cancer[J]. Oncotarget,2017,8(45):79642-79649. doi: 10.18632/oncotarget.18999 [9] Huang Z,Chen X,Jiang N,et al. A clinical radiomics nomogram preoperatively to predict ductal carcinoma in situ with microinvasion in women with biopsy-confirmed ductal carcinoma in situ: a preliminary study[J]. Bmc Med Imaging,2023,23(1):118-130. doi: 10.1186/s12880-023-01092-5 [10] Iannessi A,Beaumont H,Liu Y,et al. RECIST 1.1 and lesion selection: How to deal with ambiguity at baseline?[J]. Insights Imaging,2021,12(1):36-44. doi: 10.1186/s13244-021-00976-w [11] Scaranelo A M. What’ s hot in breast MRI[J]. Can Assoc Radiol J,2022,73(1):125-140. doi: 10.1177/08465371211030944 [12] Leithner D,Moy L,Morris E A,et al. Abbreviated MRI of the breast: Does it provide value?[J]. J Magn Reson Imaging,2018,49(7):e85-e100. [13] Tran W T,Sadeghi-Naini A,Lu F I,et al. Computational radiology in breast cancer screening and diagnosis using artificial intelligence[J]. Can Assoc Radiol J,2020,72(1):98-108. [14] Saha M,Mukherjee R,Chakraborty C. Computer-aided diagnosis of breast cancer using cytological images: A systematic review[J]. Tissue Cell,2016,48(5):461-474. doi: 10.1016/j.tice.2016.07.006 [15] Satake H,Ishigaki S,Ito R,et al. Radiomics in breast MRI: current progress toward clinical application in the era of artificial intelligence[J]. Radiol Med,2021,127(1):39-56. [16] Xu H D,Zhang Y Q. Evaluation of the efficacy of neoadjuvant chemotherapy for breast cancer using diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging[J]. Neoplasma,2017,64(3):430-436. doi: 10.4149/neo_2017_314